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INTRODUCTION

Seagrasses are recognized as important foundation
species in shallow coastal ecosystems that both mod-
ify the physical habitat and modulate ecosystem pro-
cesses. The complex structure of seagrasses com-
pared to unvegetated sediments enhances biodiversity
(Duffy 2006) and alters local hydrodynamics by
attenuating wave energy and currents, which in -
fluences sediment suspension and deposition (Ward
et al. 1984, Fonseca & Fisher 1986, Gacia et al. 2002,

Folkard 2005, Gruber & Kemp 2010, Hansen & Rei-
denbach 2012, this Theme Section). Seagrass habi-
tats also sequester carbon (C) and nutrients, support
higher trophic levels, and provide energy and bio-
mass subsidies to other marine ecosystems (Duarte et
al. 2005, 2010, Heck et al. 2008, Kennedy et al. 2010).
Long-term trends in seagrass abundance and distrib-
ution indicate that the rate of habitat loss due to
degraded water quality, disturbance, and disease is
accelerating worldwide and is accompanied by a loss
of the services that these ecosystems provide (Orth et
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al. 2006a, Waycott et al. 2009, Short et al. 2011). Mod-
eling of future climate scenarios suggests that sea-
grass habitats are also vulnerable to an increase in
storm frequency and temperature, and that synergis-
tic effects between water quality and climate change
could further accelerate seagrass decline (Carr et
al. 2010, Carr et al. 2012, this Theme Section). Small
changes in environmental factors (light, temperature,
nutrients, disturbance) may lead to a rapid and cata-
strophic loss of seagrass, and a shift to a bare, unveg-
etated state (van der Heide et al. 2007, Carr et al.
2010). Although there have been some successes in
large-scale restoration efforts to mitigate these losses,
these have not been enough to reverse the declining
trends globally (Orth et al. 2006a).

Restoration efforts have the greatest probability of
success if habitat suitability is high (i.e. the habitat has
not been degraded or degradation has been reversed),
and if donor material is from comparable conditions
and has high genetic diversity (Short et al. 2002, van
der Heide et al. 2007, van Katwijk et al. 2009, Fonseca
2011, Reynolds et al. 2012, this Theme Section). The
most important habitat characteristics in fluencing
restoration success are water column light attenuation,
sediment characteristics (e.g. porewater redox, sul-
fide, organic content, grain size), and local hydro -
dynamics (Koch 2001, Short et al. 2002, van der Heide
et al. 2007, van Katwijk et al. 2009). The existence of
alternative states of clear water/seagrass conditions
and turbid water/no seagrass in shallow ecosystems
occurs primarily because of the positive feedback of
seagrasses on dampening sediment sus pen sion and
improving water clarity (van der Heide et al. 2007,
Carr et al. 2010). Recent studies have suggested that
this feedback also should be incorporated into guide-
lines for restoration (van Katwijk et al. 2009).

Which metrics are best used to judge restoration
success is a matter of some debate (Palmer et al.
1997, Fonseca et al. 1998, Short et al. 2002), but
include structural and/or functional attributes of
the system. Generally, structural aspects for seagrass
ecosystems include shoot density, plant morpho -
metrics, and biomass as proxies for habitat structure
(Fonseca et al. 1996a, 1998, Evans & Short 2005,
Leschen et al. 2010, Li et al. 2010). Functional aspects
are typically measures of primary productivity, faunal
abundance and community composition, and sedi -
ment trapping (Fonseca et al. 1996b, 1998, Evans &
Short 2005, Leschen et al. 2010). Metrics in restored
habitats are generally compared with natural, refer-
ence meadows, although the selection of suitable
 reference sites by which to judge appropriate
restoration endpoints can be problematic, especially

in degraded habitats or in areas where seagrass loss
is widespread. Assessment of functional trajectories
describing the development of ecological functions
over time can be used to assess when functional
equivalency is reached in seagrass restoration pro-
jects (Craft et al. 2003, Evans & Short 2005, Bell et
al. 2008). Our study is the first to monitor long-term
(9 yr) trajectories of recovery in seagrass meadows
following restoration by seeding.

The local extinction of Zostera marina in the Vir-
ginia, USA, coastal bay region in the early 1930s due
to disease and storm disturbance is a striking exam-
ple of the loss of ecosystem services with seagrass
habitat loss (Orth et al. 2006b, Orth & McGlathery
2012, this Theme Section). The extirpation of Z.
marina led to an immediate decline of commercially
and recreationally important species, including bay
scallops Argo pecten irradians and brant Branta ber-
nicla (Milne & Milne 1951, Orth et al. 2006b). Follow-
ing the loss of the sediment-stabilizing service of Z.
marina, it was debated whether the continued
absence of Z. marina was the result of light or seed
limitation. Recent studies have indicated that much
of the seafloor in the coastal bays is suitable habitat
for Z. marina recolonization based on light attenua-
tion (Lawson et al. 2007) and that the lack of recovery
was likely due to seed limitation (Orth et al. 2012, this
Theme Section). The discovery of a small patch of Z.
marina in the late 1990s spurred a large-scale effort
to restore Z. marina that has resulted in approxi-
mately 1700 ha of Z. marina habitat from an original
125 ha seeded throughout the Virginia coastal bays
as of 2012 (Orth et al. 2006b, 2012). Here we describe
the recovery trajectories of both functional and struc-
tural attributes of Z. marina meadows restored by
seeding in successive years, resulting in a chronose-
quence of sites from 0 (unvegetated) to 9 yr since
seeding. We follow the terminology of Elliot et al.
(2007) where ‘restoration’ refers to ‘re-creating habi-
tat that was present within historical records.’ We
measured plant and sediment parameters that quan-
tify the reinstatement of key ecosystem services, i.e.
primary productivity, C and nutrient sequestration,
and sediment deposition, with successful large-scale
restoration initiated by seeding.

MATERIALS AND METHODS

Site description

The seed additions were done within the Virginia
Coast Reserve Long Term Ecological Research (VCR
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LTER) site on the eastern shore of Virginia. The
coastal bay system is bound to the west by the Del-
marva Peninsula and to the east by barrier islands;
exchange with Atlantic Ocean waters is through
 narrow inlets between the islands. Water residence
times are spatially variable, averaging 16 d, and
ranging from 30 d near the mainland margin to 2
tidal cycles near the inlets (Fugate et al. 2006). The
coastal bays are shallow, with 50% <1 m at mean low
water (Oertel 2001), and have a tidal range of 1.2 to
1.3 m (Table 1). Watershed nitrogen (N) loading to
the coastal bays averages 2.1 g N m−2 yr−1 (Cole 2011)
and is extremely low compared to similar shallow
coastal bays in the US and other countries (McGlath-
ery et al. 2007). As a result, water quality (based on
dissolved nutrients, chlorophyll) is high and has
shown no negative trends for the last 2 decades (VCR
LTER data base, www1. vcrlter.virginia.edu/home1/
?q=data_wq). The high water quality and availability
of long-term data on primary productivity and nutri-
ent cycling (e.g. McGlathery et al. 2001, Tyler et al.
2001, 2003, Anderson et al. 2003, 2010) make this an
ideal location to understand the consequences of
state change from an algal- to a seagrass-dominated
system. The seed plots were located at (37° 24’ 47’’ N,
75° 43’ 36’’ W, ‘Hog Island Bay’) and (37° 15’ 54’’ N,
75° 48’ 50’’ W, ‘South Bay’) within the coastal bay sys-
tem and were separated by mudflats and a tidal

channel. The sites are comparable with respect to
bathymetry and water depth, sediment and water
column characteristics in unvegetated regions (rep-
resenting initial conditions), and current speeds
(Table 1). Both have light penetration capable of sup-
porting Zostera marina production (Lawson et al.
2007, Orth et al. 2012).

Experimental design

Plots were seeded in 2001, 2006, 2007, and 2008,
and Zostera marina and sediment parameters (see
below) were measured annually mid-summer in 2007
to 2010, which resulted in a gradient in Z. marina col-
onization from 1 to 9 yr. Meadows seeded in South
Bay in 2001 were sampled 6 to 9 yr after seeding;
meadows seeded in Hog Island Bay in 2006 to 2008
were sampled 1 to 4 yr after seeding. Vegetated sites
were compared with nearby ‘bare’ unvegetated plots
(n = 12, 6 at each site), which represented the initial
condition (0 yr time point; Table 1). Seeds were har-
vested by hand from stable Z. marina populations in
nearby Chesapeake Bay and subsequently from the
expanding meadow in South Bay in the VCR; full
details of the collection and seeding methodology
can be found in Orth et al. (2012). Briefly, reproduc-
tive shoots with mature seeds were collected in late

spring and were held in flowing outdoor
seawater tanks; released seeds were sep-
arated from detritus and were kept in
seawater until they were distributed by
hand broadcasting in the fall just prior to
the normal period of seed germination in
this region (Moore et al. 1993). In total,
4.4 million seeds were added to the plots
included in the present study, and 37.9
million seeds throughout all of the coastal
bays (Orth et al. 2012). Establishment
rates for seeds broadcast in the fall and
assessed as seedlings the following
spring in these coastal bays were 2 to 7%
(Orth et al. 2012).

Seeds were broadcast in 2001 and 2008
into 0.4 ha plots at densities of 100 000
seeds 0.4 ha−1; we followed 6 plots seeded
in 2001 and 6 plots seeded in 2008. The
plots seeded in 2006 to 2008 were located
along a depth gradient from 0.9 to 1.6 m
at mean sea level (MSL). In 2006 and
2007, seeds were broadcast in a 2 × 2
 factorial design to compare plot size (0.2
and 0.4 ha) and seed density (50 000 and
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HIB SB

Depth (MSL, m) 0.9−1.6 0.9−1.6

Water columna

Median annual turbidity (NTU) 5.2−11.4 7.8−16.9
Median annual chlorophyll (µg l−1) 4.8−7.0 3.8−6.9

Hydrodynamicsb

Tidal range (m) 1.24 1.32
Current
Tidally-averaged mean (cm s−1) 1.3−3.5 3.5−4.4
Maximum (cm s−1) 7.1−18.0 13.2−18.0

Sediment
% organic matter 1.68 ± 0.23 1.17 ± 0.19
% N 0.01 ± 0.005 0.008 ± 0.001
% C 0.35 ± 0.06 0.33 ± 0.05
% sand (63−250 µm) 80.19 ± 4.390 84.36 ± 5.470
% silt/clay (<63 µm) 19.81 ± 4.290 15.64 ± 5.470
Exchangeable NH4

+ (µmol N 0.0239 ± 0.0030 0.0236 ± 0.0020
g−1 dry wt of sediment)

aData from Orth et al. (2012)
bData calculated from coastal ocean circulation model, FVCOM (Chen
et al. 2006), run for 5 tidal cycles to reach steady-state conditions

Table 1. Comparison of hydrodynamic, sediment, and water column char-
acteristics of eelgrass restoration sites in Hog Island Bay (HIB) and South 

Bay (SB) in the Virginia coastal bay system, USA. MSL: mean sea level
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100 000 seeds 0.4 ha−1), with 7 plots treatment−1 in
2006 and 6 plots treatment−1 in 2007. The uneven plot
replication between years was due to variation in the
number of seeds available in a given year. Analyses
of sediment and plant parameters showed no signifi-
cant effects of plot size or seed density in either 2006
or 2007, and so all plots were pooled for each of these
years for comparisons of the different aged plots.
Here we refer to ‘age’ as time since seeding. This
resulted in sample sizes from 6 to 28 plots for a given
age. Within each plot, 3 to 10 replicate samples were
analyzed for specific plant and sediment parameters
(detailed below), so individual plot replication incor-
porated the variation within a plot. Replicate samples
were collected along transects extending 50 m in
0.4 ha plots and 25 m in 0.2 ha plots through the cen-
ter of each plot. Samples were collected equidistant
along the transect line depending on the number of
replicates.

Eelgrass metrics

In each plot, Zostera marina shoot density was
determined by counting individual shoots in situ in
10 quadrats (0.25 m2 each). Quadrats were placed at
a random distance perpendicular to the transect line
at each sampling point. For biomass estimates, 3
cores (15.24 cm inner diameter) containing shoots
were collected, including sediment and eelgrass bio-
mass to 20 cm depth, in each plot. The cores were
sieved in situ to remove sediments. In the laboratory,
shoots were separated into aboveground and below-
ground biomass for each core, and the number of
shoots was counted to obtain estimates of total,
above-, and belowground biomass per shoot. To sep-
arate biomass into above- and belowground portions,
we cut the shoots at the root primordia, where the
presence of 2 small bumps at the base of the shoot
indicated the formation of a new rhizome internode.
Canopy height was determined in the laboratory as
the average height of the 3 tallest leaves. Pooled
samples of leaf tissue and rhizome/root tissue for
each core were dried at 60°C to a constant weight
and ground to a fine powder using a Digital Wig-L-
Bug® Mixer/Amalgamator. C and N contents were
determined on 3 to 7 mg samples for plant tissue and
20 to 30 mg samples for sediments using a Carlo Erba
Elemental Analyzer with a 1020°C combustion tube
and 650°C reduction tube, and helium as a carrier gas.

In 4 plots for each age class, plant productivity was
measured on all shoots within a 20 × 10 cm anchored
grid using the leaf-marking method, where the blades

were punctured with a 22-gauge needle using the
top of the sheath bundle as the reference point.
Shoots were collected 10 to 15 d after marking, and
leaf area and dry weights of the older growth (above
the scar) and the new growth (below the scar, but
excluding the sheath bundle and including new
shoots) were measured.

Sediment metrics

Sediments were collected in 60 cm3 syringe corers
in each vegetated and bare plot for determination of
sediment organic content, C and N contents, ex -
changeable ammonium, and grain size distribution.
We standardized our sampling to collect the top
5 cm where we expected to see meadow effects
on these sediment parameters independent of the
accumulation of belowground biomass. Five cores
were collected in each plot for each analysis; the
reported values represent the integrated measure
for the 0 to 5 cm depth interval. Sediment organic
content was calculated as loss on ignition from sedi-
ment dry weight after combustion in a 500°C muffle
furnace for 8 h. C and N contents were measured
on dried sediment (60°C for at least 48 h) using a
Carlo Erba Elemental Analyzer as described above.
Exchangeable ammonium was determined by KCl
extraction of sediments (Keeney & Nelson 1982);
am monium concentrations were measured on a
Lachat 8500 autoanalyzer.

Sediment grain size distributions were determined
on samples collected in 2010 and were compared
between Zostera marina-vegetated sediments and
bare sediments. Two sediment cores were taken in
each replicate plot down to a depth of 5 cm using a
60 cm3 syringe corer. Sediments were homogenized
and a 10 ml subsample was used for the grain size
analysis. Organic matter (OM) was removed from the
sediments by addition of a 50:50 bleach:water mix-
ture; large organic material was removed by hand.
After the sediment had completely settled and there
was no evidence of OM, the excess water was de -
canted; the samples were then rinsed with deionized
water and decanted 5 times to remove all bleach. A
5% sodium hexametaphosphate solution was then
added to each sample as a dispersant, and the grain
size analysis was then done on an LS 13 320 Laser
Diffraction Particle Size Analyzer (PSA; Beckman
Coulter). Approximately 0.5 to 1.0 ml of solution
was added to the PSA. The PSA reports grain size
distribution as % volume for particle diameters of 0
to 500 µm.
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Benthic chlorophyll

Five surface sediment samples were collected in
each plot to a depth of 1 cm with a 10 cm3 syringe
corer for analysis of benthic chlorophyll. Collected
samples were kept in the dark on ice until they were
frozen at −80°C immediately after returning to the
laboratory. Samples were later thawed and extracted
in a 45:45 methanol:acetone solution overnight in
the freezer after a 1 min sonication. Benthic chloro-
phyll was determined spectrophotometrically using
the equations of Lorenzen (1967).

Statistics

To test for differences between different-aged plots
all replicates were averaged within a plot, and then
an analysis of variance (ANOVA) was used, followed
by a Tukey test to determine which specific age cate-
gories were different. Individual tests of means
between bare and vegetated sediments were done
using the Student’s t-test, as noted. Differences were
considered significant at p < 0.05.

RESULTS

Eelgrass metrics

The density of shoots was the metric that changed
most significantly across the 9 yr age gradient. There
was an initial 4 yr lag in shoot density, with densities
ranging from 14.2 to 105.4 shoots m−2. Shoot densities
increased linearly in plots 6 to 9 yr after seeding,
from 249.3 to 616.7 shoots m−2, and were significantly
different from plots 1 to 4 yr after seeding (Fig. 1).
The average canopy height was lower for the 1 yr
plants than for all other ages, although there were no
significant differences in the canopy height for differ-
ent-aged meadows due to the high variability in the
1 yr meadows seeded and sampled in different years
(averages 22.01 to 29.10 cm for 1 yr meadows vs.
32.24 to 44.90 cm for 2 to 9 yr meadows).

The average total biomass shoot−1 varied both
within a given year and between meadows seeded in
different years (0.260 to 0.781 g dry weight shoot−1).
However, there were no significant trends in biomass
per shoot related to meadow age. The ratio of above-
to belowground biomass was also variable, and there
were no significant differences be tween meadows of
different ages. Variability within an age class was
higher for the 1 to 4 yr meadows than for the 8 to 9 yr
meadows.

Aboveground productivity, calculated as cm2 shoot−1

d−1, during the peak summer periods varied consider-
ably between meadows of different ages and be -
tween years when measurements were done, with
no trends in individual shoot productivity over time
since seeding (Fig. 2a). The higher productivity in the
7 yr old meadow compared to the 8 yr old meadow
was likely related to lower temperatures in 2009 that
caused lower shoot-specific productivity that year.
Aerial rates of aboveground productivity (cm2 m−2

d−1) increased with meadow age (Fig. 2b, p < 0.0001)
and showed a trend similar to the eelgrass density,
with an initial lag in productivity in the first few
years after seeding. Productivity was not significantly
higher until the meadows were 7 to 8 yr old.

Sediment metrics

Sediment OM varied significantly with time since
seeding (Fig. 3a, p = 0.001). Initially, for meadows
1 to 2 yr after seeding, there were no differences
between the sediment OM in the meadows and the
nearby bare sediments. There was an increasing
trend in %OM in meadows 4 and 7 yr after
seeding, and the OM was significantly higher in
meadows 9 yr after seeding. The accumulation of
OM in eelgrass-vegetated sediments resulted in a
doubling of OM in eelgrass meadows compared to
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Fig. 1. Zostera marina. Shoot density in replicate 0.2 to
0.4 ha plots of eelgrass meadows restored by seeding in suc-
cessive years, resulting in a chronosequence of sites from 1
to 9 yr since seeding. Symbols denote the sampling year,
and meadow age represents the time since seeding. Each
data point represents 60 to 280 shoot counts; error bars are
±SE. Different letters indicate significant differences be-
tween years. Shoot density increased slowly 1 to 4 yr after
seeding and increased significantly each year in meadows 

6 to 9 yr after seeding
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nearby bare sediments after 9 yr (mean ± SE: 2.35
± 0.13 vs. 1.39 ± 0.22).

Exchangeable ammonium concentrations in sedi-
ments showed a similar significant trend of increas-
ing concentrations with time since seeding (Fig. 3b,
p < 0.0001). Meadows 1 to 2 yr since seeding had
exchangeable NH4

+ concentrations similar to those
of nearby bare sediments, and there was a trend of
increasing concentrations in 4 yr meadows. Nine
years after seeding, exchangeable NH4

+ concentra-
tions had doubled in Zostera marina meadows com-
pared to bare sediments.

There were no significant trends evident in either
%C or %N in sediments as Zostera marina meadows
developed over time due to high variability both
within and between age classes. C concentrations
ranged from 0.23 to 0.47% C. N concentrations were
always low, near the detection limit, and averages

never exceeded 0.05% N. However, both the aver-
age %C and % N contents in the sediments of the
9 yr meadows were higher than nearby bare sedi-
ments (C: 0.467 ± 0.021 [mean% ±1 SE] vs. 0.227 ±
0.040, p < 0.004, N: 0.027 ± 0.002 vs. 0.008 ± 0.003,
p < 0.0001, Student’s t-test).

Sediment grain size distribution changed signifi-
cantly over time since seeding, with fining of the
 sediment as meadows developed. This is evident in
the PSA results, which showed a consistent decrease
in the % volume of sediment between 175 and 100 µm
diameter comparing bare sediments with sediments
from meadows 2, 3, 4, and 9 yr since seeding, and an
increase in the % volume of sediment between 0 and
60 µm diameter (Fig. 4a). Most of the sediment below
63 µm was coarse silt; only <0.5% of the total sedi-
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Fig. 2. Zostera marina. Rates of aboveground productivity in
restored meadows as a function of time since seeding. (a)
Productivity rates per shoot were variable from year to year
and did not change significantly over time, whereas (b) areal
productivity tracked patterns of shoot density. After 9 yr,
meadows had 20 times higher rates of aerial productivity
than 1 to 3 yr meadows. Error bars are ±SE; different letters 

indicate significant differences between years

Fig. 3. (a) Sediment organic matter and (b) exchangeable
ammonium concentrations in vegetated sediments in re-
stored Zostera marina meadows as a function of time since
seeding. Nearby bare, unvegetated sediments are repre-
sented as ‘0’ age. Error bars are ±SE; different  letters indi-
cate significant differences between years. Nine years after
seeding, sediment organic matter and exchangeable ammo-
nium concentrations in Z. marina-vegetated sediments had 

doubled compared to bare sediments
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ment volume was <31 µm (clay to medium silt). The
data from the PSA can also be binned to show the
 relative percent of the sediment volume in different
size categories (Fig. 4b). Sediments from all sites were

in the fine sand or smaller size classes (<250 µm).
Fig. 4b shows the consistent increase in the propor-
tion of the sediment of grain size below <63 µm (very
fine sand and silt) during meadow development and
a related decline in the proportion of the sediment of
grain size >125 µm (fine sand). There was no sedi-
ment in the medium and coarse sand size classes
(>250 µm).

Benthic chlorophyll

There was no significant trend in benthic chloro-
phyll concentrations with time during meadow de -
velopment, and concentrations in the Zostera marina
meadows were similar to those in adjacent bare sedi -
ments. Concentrations ranged from 11.9 to 16.9 mg
m−2 in the bare sediments and 12.0 to 26.3 mg m−2 in
the eelgrass-vegetated sediments.

Depth distribution

Seeds germinated in all plots along the depth gra-
dient (0.9 to 1.6 m MSL); survival rates of Zostera
marina shoots over time give an indication of the
maximum depth limit for Z. marina at this site. After
4 yr, for plots seeded in 2006, no shoots survived at
depths of 1.6 m MSL or greater (Fig. 5a). In addition,
plots between 1.5 and 1.58 m MSL all showed a
decrease in density, while density increased from 0
to 1750% in plots located at 0.9 to 1.5 m MSL depth
(Fig. 5b). Taken together, these results suggest a
threshold for survival related to light availability at
1.5 to 1.6 m MSL.

DISCUSSION

Habitat suitability

Habitat degradation is often a challenge for suc-
cessful restoration, since in most regions the decline
in seagrass has been attributed to multiple stressors,
including eutrophication, sedimentation, and toxicity
(Orth et al. 2006a, van der Heide et al. 2007). This is
not the case in the Virginia coastal bays; recent work
points to seed limitation rather than poor habitat
quality as the limiting factor for recolonization and
expansion of Zostera marina in the bays (Orth et al.
2012). The impressive areal expansion of the eelgrass
meadows in these coastal bays (Orth et al. 2012) and
the significant increase in eelgrass density de scribed
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Fig. 4. (a) Grain size distributions in Zostera marina sedi-
ments. Small graphs show decrease in the % volume of sedi-
ment between 175 and 100 µm diameter comparing bare
sediments with sediments from meadows 2, 3, 4, and 9 yr
since seeding, and an increase in the % volume of sediment
between 0 and 60 µm diameter. (b) Pooled grain size data for
the grain size categories: sand/clay (<63 µm), very fine sand
(63 to 125 µm), fine sand (>125 µm). There was no sediment 

coarser than 250 µm
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in the present study (up to 1750% in 4 yr) indicate
that conditions are conducive to rapid meadow
development. Nutrient loading to the coastal bays is
low (2.1 g N m−2 yr−1; Cole 2011), and is considerably
lower than most other coastal bay systems (McGlath-
ery et al. 2007). This is due to the low population den-
sity (<30 people km−2) in the rural watersheds, the
small ratio of watershed area to bay area, and the
regional land use. The watersheds are dominated by
forest and crop agriculture (corn, soybean, tomato);
poultry farms do not contribute significantly to N
loading as they do to other coastal bay systems in the
mid-Atlantic (Stanhope et al. 2009, Cole 2011, Gior-
dano et al. 2011).

Long-term data from the VCR LTER water quality
monitoring program from 1992 to the present indi-
cate that water quality parameters typically used to
assess habitat suitability for Zostera marina have
remained high and show no trends of decline over
a nearly 20 yr period (www1.vcrlter.virginia. edu/

home1/ ?q=data_wq). Average annual concentrations
of chlorophyll a (1 to 6 µg l−1), dissolved inorganic
N (1 to 7 µM), and dissolved inorganic phosphorus
(0.3 to 1.3 µM) from monthly mainland−inlet tran-
sects across the bays are well within the range that
can support growth of Z. marina in shallow shoals
(<2 m at mean low water [MLW]; Dennison et al.
1993, Moore et al. 1996, Greve & Krause-Jensen
2005). Previous work has shown that wind-driven
sediment suspension is the dominant factor influenc-
ing light availability in these coastal bays, and
accounts for periodic spikes in total suspended solid
concentrations (Lawson et al. 2007). Despite this vari-
ability, Lawson et al. (2007) showed that >60% of 1 of
the coastal bays (Hog Island Bay) was suitable for
seagrass growth based on light availability.

Sediment characteristics and local hydrodynamics
in the Virginia coastal bays are also conducive to
Zostera marina growth. The sediments are low in
OM (<2.5%) and are well below the average organic
content suggested to generally limit seagrass growth
(5%, Barko & Smart 1983, Koch 2001), although some
Z. marina sediments have organic content as high as
16% (Koch 2001). Highly organic sediments typically
have high concentrations of sulfides and ammonium,
and low oxygen levels associated with decomposi-
tion, that may limit plant growth un less plants oxy-
genate the rhizosphere sufficiently to counteract the
negative effects (Goodman et al. 1995, Lee & Dunton
2000). Grain size also influences the accumulation of
sulfides and ammonium and the depletion of oxygen
in sediments (Holmer & Nielsen 1997, Franke et al.
2006) because permeable sediments facilitate the
exchange of overlying water column with porewater,
which oxygenates the sediments (Huettel et al. 2003,
Precht & Huettel 2003). The bare sediments we stud-
ied had ~80% sand, and after 9 yr the eelgrass-vege-
tated sediments had ~75% sand, both well within the
range of sand content found in healthy seagrass
meadows (Koch 2001). Current and wave conditions
were also sufficient to induce porewater exchange
(Table 1; Hansen &  Reidenbach 2012).

Recovery trajectories

We expected to observe an initial lag phase after
seeding before rapid meadow development occurred
based on the reproductive phenology of Zostera
marina in this region. Seedlings typically flower and
produce seeds in their second year and thereafter,
and those seeds that germinate and survive then
again produce seeds after 2 yr. Our data clearly show
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Fig. 5. Zostera marina. (a) Shoot density as a function of wa-
ter depth at mean sea level, and (b) changes in shoot density
for plots seeded in 2006 after 4 yr. Negative values represent 

a loss of shoots between 2007 and 2010
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this initial 4 yr lag in newly seeded meadows and a
linear increase in shoot density in meadows 6 to 9 yr
since seeding. This pattern is analogous to the trends
in recovering Z. marina meadows observed on larger
spatial scales in Chincoteague Bay and Chesapeake
Bay, where there was an initial lag of several years
before meadow expansion increased rapidly, and is
likely a general pattern for this region (Orth et al.
2010). The other plant and sediment parameters that
changed over the 9 yr period, including areal Z.
marina productivity and sediment organic and NH4

+

concentrations, also showed the same lag response in
recovery, as these changes were strongly influenced
by shoot density.

The recovery trajectory in the Virginia coastal bays
is slower than that observed for Zostera marina
meadows restored by transplanting in other regions.
Evans & Short (2005) showed that functional equiva-
lence (with reference to natural meadows) of habitat
structure based on shoot density, canopy height, and
leaf area index was achieved after 3 yr, which is the
typical time frame for monitoring programs (Evans
& Short 2005). Other studies of restoration by trans-
planting have also shown similarly fast recovery of
habitat structure and specific faunal communities
(Fonseca et al. 1996a,b, Leschen et al. 2010), but Bell
et al. (2008) found that percent cover of transplanted
Halodule wrightii took more than 3 yr to reach 100%
coverage equivalent to reference areas. Though per-
haps slower to recover, an obvious advantage of the
seeding technique we used is the large area that can
be restored (>1700 ha in this study after 9 yr; Orth et
al. 2012). Specific recovery rates for seed-based res -
to ration will likely depend both on the seed density
used and the landscape context (e.g. proximity to
adjacent meadows). The high rates of areal expan-
sion of the eelgrass meadows in the Virginia coastal
bays suggest that disturbance was not a significant
factor limiting the success of restoration, as has been
shown in other systems (Fonseca 2011, Valdemarsen
et al. 2011).

Assessing the time to achieve functional equiva-
lence of restored areas ideally involves reference
sites that are of similar scale, located in similar condi-
tions, and within close proximity (Addy 1947, Palmer
et al. 1997, Craft et al. 2003, Simenstad et al. 2006,
Bell et al. 2008, Fonseca 2011). These requirements
were not possible to find for the restored Zostera
marina meadows in the Virginia coastal bays; we ini-
tially followed Z. marina meadows in Chesapeake
Bay and in southern-most coastal bay near the mouth
of Chesapeake Bay. We eventually abandoned these
as reference sites, as they were exposed to different

environmental conditions than our restored sites (e.g.
nutrients, hydrodynamics). Instead we use the trajec-
tories to show the development of ecological function
(or structural proxies for function) over time with the
expectation that these characteristics will reach an
asymptote, reflecting some long-term persistence,
with natural fluctuations related to environmental
variability or disturbance. These kinds of long-term
studies are not common in seagrass meadows, and
have been done in salt marshes on a 5 to 25 yr time
frame (Zedler 1996, Tyler & Zieman 1999, Craft et al.
2002, 2003, Evans & Short 2005). After 9 yr in the Vir-
ginia coastal bays, none of the eelgrass or sediment
parameters we monitored have reached an asymp-
tote, indicating that a decade or more is required to
restore key functions in restored Z. marina meadows
by seeding, even in a region with high habitat suit-
ability. It is possible that low N concentrations in
the Virginia coastal bays limit the rate of seagrass
meadow development, as has been shown for restored
marshes (Zedler 1996).

Ecosystem services

In this study we focused on 3 ecosystem services
(functions) that eelgrass habitats provide: primary
productivity, C and N sequestration, and sediment
deposition. The conceptual diagram in Fig. 6 summa-
rizes the changes we observed. We found that shoot
density was the primary driver of areal rates of pri-
mary productivity, as there were no differences in
productivity rates per shoot. As the meadows devel-
oped over time, productivity increased nearly 20-
fold, from an average of 13.2 cm2 m−2 d−1 in the first
3 yr after seeding to 246.5 cm2 m−2 d−1 in 7 to 8 yr
old meadows. This latter rate accounts for significant
year-to-year variation related to temperature, and is
comparable to rates reported for mature Z. marina
meadows (Dennison & Alberte 1982). There were no
differences in biomass per shoot, and areal biomass
tracked changes in density, which agrees with the
 literature review of Olesen & Sand-Jensen (1994),
who showed that the maximum summertime leaf bio-
mass of different populations of Z. marina did not
vary with density. They suggested that self-thinning
was not an important phenomenon in natural Z.
marina meadows, presumably because the period of
high leaf biomass was too short for negative feed-
backs to occur. The densities in our meadows may
not have approached the point where shoots would
be expected to undergo density-dependent growth
due to reduced light availability.
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C and nutrient sequestration is an important, and
relatively understudied, ecosystem service of sea-
grass meadows and other productive coastal habitats
(Keith et al. 2009, Duarte et al. 2010, Kennedy et al.
2010, Donato et al. 2011). We calculated differences
in the C and N concentrations in unvegetated sedi-
ments and 9 yr Zostera marina meadows as a first-
order estimate of the accumulation of C and N stand-
ing stocks in Z. marina meadows, assuming that
the bare sediment represented the initial condition
(Fig. 7). Sediment standing stocks were determined
from measures of %C, %N, and bulk density in sur-
face sediments to a depth of 5 cm. Vegetated sedi-
ments stored more than twice as much C (278.9
 versus 138.7 g m−2) and 3 times more N (16.2 vs. 5.1 g
m−2) than unvegetated sediments. Sediments com-
prised a larger pool of stored C and N than vegeta-
tion, similar to what is observed for salt marsh
ecosystems (Craft et al. 1988, Morris et al. 2002,
Chmura et al. 2003). Including the C temporarily
stored in Z. marina biomass during this period
of maximum production, eelgrass habitats stored 3
times the C and over 4 times the N compared to
unvegetated sediments. We are continuing this work
to determine annual accumulation rates of C in sedi-
ments, but these initial estimates clearly demonstrate
the potential role of seagrass restoration in increas-
ing C and N sequestration in shallow coastal eco -
systems (Irving et al. 2011).

The presence of dense seagrass
meadows can im prove local water
quality by attenuating wave energy
and near-bed currents, increasing
particle deposition, and reducing sed-
iment suspension (Ward et al. 1984,
Fonseca & Fisher 1986, Gacia et al.
2002, Hendriks et al. 2008, Gruber &
Kemp 2010). We show significant fin-
ing of the sediments in eelgrass mead-
ows as shoot densities increased over
time, indicating that finer (clay/ silt)
particles were being deposited and
retained within the meadows. These
results are consistent with a study
conducted concurrently showing that
the restored Zostera marina meadows
reduced near-bottom current veloci-
ties by 70 to 90% and wave heights by
45 to 70% compared to nearby unveg-
etated sediments and that expansion
of the meadows has changed the
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Fig. 6. Zostera marina. Conceptual diagram of the measured changes in struc-
tural and functional characteristics over time of restored meadows in the Vir-
ginia, USA, coastal bays. Arrows represent sediment suspension or deposition
and show that sediment stability increases with meadow development.  The
relative proportions of sand and silt fractions change with meadow develop-
ment (indicated by size of circles), with a fining of the sediments over time. The
size of the circles for organic matter (OM) and NH4

+ concentrations indicates
that both pools increase as meadows develop over time. The same is true for 

rates of productivity (Prod)

Fig. 7. Calculated accumulation of (a) C and (b) N in restored
Zostera marina habitats determined by comparing vegetated
sediments of meadows 9 yr after seeding with bare, unvege-
tated sediments. C and N temporarily bound in eelgrass 

aboveground biomass is also shown. Error bars are +SE
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seafloor from being an erosional to a depositional en-
vironment (Hansen & Reidenbach 2012). In addition,
water clarity measurably im proved in the South Bay
meadows as Z. marina became denser from 2002
to 2010 (Orth et al. 2012). Sediment OM and ex -
changeable NH4

+ also were twice as high in 9 yr
meadows compared to 1 to 3 yr meadows, indicating
that the restored eelgrass meadows are important
repositories of OM, some of which accumulates as
discussed above, and some of which is decomposed
in situ. Given the consistently low water column
chlorophyll concentrations, it is likely that either re-
suspended benthic microalgae from nearby un -
vegetated areas or eelgrass detritus are the largest
contributors to the OM accumulation in these eelgrass
meadows. This agrees with what Gacia et al. (2002)
found for a Posidonia oceanica meadow where ben-
thic diatoms and filamentous algae dominated the or-
ganic particle flux to seagrass sediments, except dur-
ing times of phytoplankton blooms.

Depth limits and future trajectories

The positive feedback of Zostera marina on sedi-
ment stability and light availability is strong enough
to induce depth-dependent bistable dynamics in
these shallow coastal bays, with the 2 states being a
Z. marina meadow and bare, unvegetated sediments
(Carr et al. 2012). Our experimental data show that
restored eelgrass did not survive at 1.6 m MSL, and
that densities declined at water depths below 1.5 m
MSL. These field results match remarkably well with
the model results of Carr et al. (2012) that identify
1.6 m MSL as the ‘tipping point,’ or maximum depth
that can support expanding  seagrass meadows under
current conditions in this system. The model indi-
cates the bistable range to be 1.6 to 1.8 m MSL,
where either Z. marina meadows or the bare sedi-
ment state could exist, depending on initial densities
and environmental conditions (e.g. temperature).
Modeling of future climate change scenarios sug-
gests that meadows in the bistable range have lim-
ited resilience and that increases in water column
temperatures would push a meadow past a critical
bifurcation point to a bare sediment state from which
recovery would not be possible (Carr et al. 2012).
In effect, this would decrease the depth limit of Z.
marina and reduce the suitable area for eelgrass
expansion in the coastal bays. Changes in tempera-
ture and/or wave exposure associated with future cli-
mate change may also influence the minimum depth
limit of Z. marina in this system, pushing the mead-

ows to deeper waters and ‘squeezing’ the suitable
habitat to a narrower depth range. By continuing
field monitoring of restored meadows, and incorpo-
rating mechanistic studies of habitat effects on pro-
ductivity and minimum light requirements of Z.
marina and modeling, we can achieve a better under-
standing of the potential for continued recovery in
the region.
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