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ABSTRACT: Diel vertical migration (DVM) is a common and conspicuous behavior amongst
planktonic organisms. In the case of dinoflagellates, both light and nutrients have been shown to
regulate DVM, although the role of predators (grazers) has been understudied. Here we report the
results of an experimental study using a system of ‘plankton mini-towers' to examine the DVM
behavior of the marine planktonic dinoflagellate Akashiwo sanguinea. A. sanguinea undertook a
pronounced reverse DVM (down during the night, up during the day) in both the absence and
presence of copepod predators (Acartia spp.). In the presence of copepods, however, the ampli-
tude of the DVM was enhanced, providing the dinoflagellate with greater spatial separation from
its mormally’ migrating predator. We briefly discuss the causes (cues) and ecological conse-
quences of predator-enhanced DVM in dinoflagellates.
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INTRODUCTION

Diel vertical migration (DVM) behavior is com-
mon and widespread among planktonic organisms
in marine, estuarine, and freshwater systems, and
can have profound consequences for pelagic eco-
systems, e.g. by modulating the vertical flux of
material and energy (Cushing 1951, Longhurst &
Harrison 1988, Mincks et al. 2000, Steinberg et al.
2000, Legendre & Rivkin 2002, Hannides et al.
2009, Bollens et al. 201la). DVM behavior is
thought to have a variety of both proximate and
ultimate causes (i.e. immediate cues and adaptive
significances, respectively). For mesozooplankton
such as copepods and cladocerans, it is now widely
held that predator evasion often plays a critical role
(Bollens & Frost 1989a,b, Lampert 1989, Bollens et
al. 1993, Hays 2003), although non-biological fac-
tors such as light, transparency, and UV radiation
can also have important effects (Forward 1988,
Ringelberg 2010, Williamson et al. 2011).
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Dinoflagellates also often undertake DVM, al-
though usually in a pattern that is opposite or reverse
to that of most zooplankton, i.e. they reside near the
surface during the day and at depth during the night
(Eppley et al. 1968, Blasco 1978, Cullen & Horrigan
1981, Ault 2000, Schofield et al. 2006, Jephson &
Carlsson 2009). A wide range of field, laboratory, and
modeling studies have shown that both nutrients and
light influence dinoflagellate DVM (Heaney & Fur-
nass 1980, Cullen & Horrigan 1981, Kamykowski
1981, MaclIntyre et al. 1997, Kamykowski et al. 1998,
Erga et al. 2003, Doblin et al. 2006, Ji & Franks 2007,
Ralston et al. 2007). However, the role of predators
(grazers) in triggering or enhancing DVM in dino-
flagellates has largely gone unstudied.

Here we report the results of a replicated and well-
controlled experimental study using a system of
‘plankton mini-towers' that have been successfully
deployed to study DVM in a range of other plank-
tonic organisms (Speekmann et al. 2000, Lougee et
al. 2002, Bochdansky & Bollens 2004, Clay et al. 2004,
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Ignoffo et al. 2005, Bochdansky et al. 2010, Brecken-
ridge & Bollens 2010). Again, the role of both nutri-
ents and light in regulating DVM in dinoflagellates
cannot be denied (see references above), but here we
test for the additional effect of predators (copepods)
on enhancing the DVM behavior of the dinoflagel-
late Akashiwo sanguinea.

MATERIALS AND METHODS
Culturing and collection of organisms

A clone of the dinoflagellate Akashiwo sanguinea
(strain no. SPMC 140) was obtained from Shannon
Point Marine Center, Anacortes, Washington, USA,
and maintained in a growth chamber at Washington
State University, Vancouver, Washington. The
growth chamber was set to 19°C and a 12:12 h
light:dark cycle using 400 W high pressure sodium
(HPS) lamps, 400 W metal halide lamps, and incan-
descent bulbs. Cells were cultured using sterile tech-
niques under an ultraviolet hood in 10 d cycles with
f/2 media (-Si) and 31 ppt artificial seawater (ASW:
autoclaved Milli-Q water and Instant Ocean® sea
salt).

Wild copepods were collected at high tide from Ya-
quina Bay, Oregon, USA (24 May 2010) and the
lower Columbia River estuary in Astoria, Oregon
(20 September 2010) with vertical tows of a 73 pm,
0.5 m diameter ring net. Back in the laboratory, adult
female copepods of the genus Acartia were sorted
from the net zooplankton and acclimated for 1 d to
experimental temperature and salinity conditions
(19°C, 31 ppt).

Experimental design and setup

Two separate 24 h experiments (25 to 26 May
2010 and 21 to 22 September 2010) were performed
using a set of 2 columnar tanks as described by
Bochdansky & Bollens (2004), where the control
tank contained only dinoflagellates and the treat-
ment tank contained dinoflagellates plus copepods.
Experiments tested for the effects of light (diel
cycle) and copepod predators (presence/absence)
on the vertical distribution of Akashiwo sanguinea.
This set of 2 m tall (6 cm deep x 8 cm wide) tanks
allowed for high-resolution sampling of vertical
distribution of dinoflagellates using an external
fluorometer, and of copepods using an automated,
continuously recording video microscope. Three

vertical fluorescence profiles, consisting of point
collections at 10 cm intervals, were taken manually
at midnight and midday with a Wet Labs Handheld
DFLB fluorometer, and from these, a single average
vertical fluorescence profile was calculated. A pan-
ning video microscope system, consisting of an
infrared camera and diode mounted on a vertically
traveling cradle, connected to a VCR, was used to
determine cm-scale vertical distributions of cope-
pods every hour.

Suspended 20 cm above each tank were 400 W
HPS lamps on a 12:12 h light:dark cycle. Light in-
tensity was controlled using neutral density
screens, and diffusers were placed between the
HPS lamps and the tanks to mimic light quality in
an aquatic environment. Light intensity was set
within the ranges for Akashiwo sanguinea de-
scribed by Matsubara et al. (2007); mean + SE
surface intensity was 116.7 + 15.53 pmol m™2 s7!
(n = 4) and mean bottom intensity was 4.7 +
0.29 pmol m~2 s™! (n = 4). The HPS lamps, video
microscopes, and VCRs were controlled through a
set of programmable switches linked to a desktop
computer running an automation program. Nutri-
ents (PO, = 2 pM, NOj; = 53 pM) were homoge-
nously distributed and were similar to concentra-
tions found in Monterey Bay, California, USA
(Ryan et al. 2010).

Acartia spp. are known omnivores that are capable
of feeding on dinoflagellates (Rollwagen Bollens &
Penry 2003, Gifford et al. 2007). Our preliminary
feeding experiments showed that Acartia readily fed
on Akashiwo sanguinea and produced fecal pellets
as a result, consistent with observations of other
calanoid copepods (Kang & Poulet 2000, Murray &
Marcus 2002). Expected dinoflagellate growth and
copepod grazing during the experiments were esti-
mated from Matsubara et al. (2007) and Kierboe et al.
(1985), respectively, and then prey (dinoflagellate)
and copepod abundances were chosen so as to mini-
mize the impact of grazing during the experiments
(e.g. a ~5% reduction of dinoflagellates), while still
maintaining natural predator densities of ~10 cope-
pods 171,

Cultured dinoflagellates at densities of ~2.15 x
10°% cells were gently mixed into the nutrient-rich
ASW and then, with the aid of a funnel, gently placed
into the treatment and control tanks until nearly full
(=180 cm depth). The experiments began 2 h later
(21:00 h), when adult female copepods (64 in Expt 1,
94 in Expt 2) were added with a small volume
(<50 ml) of ASW to the surface of each treatment
tank. Midnight sampling of dinoflagellates and cope-
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Fig. 1. Akashiwo sanguinea and Acartia spp. Diel vertical mi-
gration (DVM) of the dinoflagellate A. sanguinea and the
copepods Acartia spp. Mean (+1 SE) weighted mean depth
during midnight and midday of copepods (red diamonds), di-
noflagellates in the absence of predators (green triangles),
and dinoflagellates in the presence of predators (yellow tri-
angles). The copepods undertook ‘mormal’ DVM and the
dinoflagellates ‘reverse’' DVM, with the latter being enhanced
(i.e. of greater magnitude) in the presence of predators

pods occurred about 5 h later (02:00 h), and midday
sampling 12 h after that (14:00 h). A final water col-
umn total fluorescence reading was collected 24 h
after the initiation of each experiment (21:00 h on
Day 2), to allow for calculation of total grazing losses
over 24 h.

Subsequent taxonomic identification of these
copepods indicated that the vast majority were
Acartia (Acartiura) spp., but a few (5%) were
Acartia tonsa. The subgenus Acartiura consists of
a group of 3 species of copepods that cannot be
reliably distinguished, and thus
identification is typically left at the
subgenus level (Bradford 1976, Bol-
lens et al. 2011b). Both A. tonsa and

Statistical analyses

Weighted mean depths (WMDs) of copepods and
dinoflagellates in each tank at midday and midnight
of each experiment were calculated from video
counts and water column fluorescence profiles,
respectively, using the following equation (Bollens et
al. 1993, Rollwagen-Bollens et al. 2006):

wMp = 24i-Z) 1)

2(A)

where iis each depth sampled, A is the fluorescence
or copepod abundance value, and Zis the depth. The
WMDs of dinoflagellates at midday and midnight
(light effect), and in the presence and absence of
copepods (predator effect), were combined from the
two 24 h experiments, and were subsequently ana-
lyzed using 2-way analyses of variance (ANOVAs;
Type III sum of squares and o = 0.035).

RESULTS AND DISCUSSION

The copepods in our experimental tanks undertook
‘normal’ DVM (up at night, down during the day) in
response to a diel light cycle (Fig. 1). In contrast, the
dinoflagellate Akashiwo sanguinea undertook 're-
verse' DVM (down during the night, and up during
the day; Fig. 1, Table 1). Dinoflagellate DVM oc-
curred both in the absence and the presence of cope-
pod predators, but the amplitude of the migration
was greater (i.e. enhanced) in the presence of the
copepods (Fig. 1, Table 1, as evidenced by the signi-
ficant Light Condition x Copepods term). The
ANOVA indicated no significant copepod effect
alone (Table 1) because the direction of the dino-
flagellate response to copepods varied depending on
the presence or absence of light; dinoflagellates
moved higher during the day and lower during the
night, in a pattern that was reverse or opposite that of
the normally migrating copepods. That is, the pres-

Table 1. Akashiwo sanguinea. Summary of results of 2-way ANOVA of A. san-
guinea weighted mean depths. Significant p-values (<0.05) are shown in bold

A. (Acartiura) spp. have similar pat-
terns of 'mormal’ DVM (Schallek

Source

1942, Lance 1962, Stearns & For-
ward 1984, Bollens et al. 1992,
Kouassi et al. 2001), that is, up dur-
ing the night and down during the
day, and were therefore considered
suitable for our experiments.

Copepods

Error

Total

Light condition

1
1
Light condition x Copepods 1 83.60
4
7

S = 1.45046, R* = 98.57 %, R? (adj.) = 97.49 %

df Seq.SS Adj.SS Adj.MS F p
490.67 490.67 490.67 233.23 0.000
4.65 465 465 221 0211
83.60 83.60 39.74 0.003

8.42 842  2.10

587.34
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ence of copepod predators had the effect of enhanc-
ing or strengthening the reverse DVM of the dino-
flagellates, over and above the effect of light alone.
This resulted in the dinoflagellates experiencing
greater spatial separation from their predators during
both day and night. Although we cannot know the
exact amount by which dinoflagellate mortality is
reduced by this predator-evasion behavior, it has
been shown for zooplankton that only a very small
reduction in predation mortality is required to offset
the energetic costs of diel vertical migration (e.g.
Frost 1988, Ohman 1990).

The role of both nutrients and light in modulating
DVM in dinoflagellates has been the focus of many
previous field, experimental, and modeling studies.
That light attracts some dinoflagellates to the surface
during the day, and that the presence of higher
nutrients at depth can induce some dinoflagellates to
descend to depth during the night (e.g. below the
nutricline), has been well established (see references
in the 'Introduction’). What is new about our study is
that it implicates predator (grazer) evasion as an
additional factor influencing DVM in dinoflagellates.

Quenette (2010) performed similar experiments
as those reported here, but with one important dif-
ference: most copepod predators were cultured
rather than collected from the wild. Quenette
(2010) found a very strong effect of light on the
vertical distribution of Akashiwo sanguinea, but an
inconsistent effect of copepod predators. Indeed,
the results of Quenette (2010) led us to suspect that
wild copepods might behave (i.e. swim and mig-
rate) more naturally than cultured copepods, and
that the dinoflagellates might therefore be more
likely to respond to wild predators. The results
reported herein bear this out; in the presence of
wild, normally migrating copepod predators,
dinoflagellates enhanced their reverse DVM behav-
ior (Fig. 1, Table 1).

One obvious question that arises is whether depth-
specific grazing might, in and of itself, have caused
changes in the vertical distribution of the dinoflagel-
lates, i.e. by disproportionately removing cells at
one depth and thereby giving the false appearance
that the population of dinoflagellates moved to a dif-
ferent depth, farther away from the copepods.
Although we could not measure depth-specific graz-
ing losses in our plankton towers, we were able to
measure water column total losses due to grazing.
Grazing impact over the course of the experiments,
estimated using reduction in water column total fluo-
rescence over 24 h, was estimated to be 8.4 %. This
level of grazing can be applied to various vertical dis-

tribution patterns to test for the possible effects on
WMD. Whereas we observed an 8 cm change in the
WMD of the dinoflagellates in the first 5 h due to the
copepod treatments, the effect of grazing losses on
WMD would be far less than this, ranging from 0 (if
grazing occurred at all depths in proportion to prey
abundance) to a theoretical maximum of 2.9 cm (if
grazing losses were concentrated entirely within a
10 cm stratum at one end of the dinoflagellate distri-
bution and all remaining dinoflagellates occurred
within the 10 cm stratum at the opposite end of the
distribution). In all cases, the effect of grazing losses
on WMD (0 to 2.9 cm) are far less than the observed
effect of copepods on dinoflagellate WMD (8 cm). In
short, the low levels of grazing that occurred during
our experiments could not have caused the observed
changes in dinoflagellate distribution through cell
removal alone. Rather, dinoflagellates must have
sensed the presence of their predators and actively
moved away from them, i.e. they migrated to shall-
ower depths during the day and greater depths dur-
ing the night (Fig. 1) so as to evade their predators.

This in turns raises the question of how Akashiwo
sanguinea might sense the presence of copepods.
Chemoreception and mechanoreception, individu-
ally or in combination, are both possibilities. Dinofla-
gellates have been shown to use chemoreception to
detect prey (Buskey 1997) and predators (Burkholder
et al. 1995, Cancellieri et al. 2001) and to use mecha-
noreception to detect potential predators (White
1979, Anderson et al. 1988, von Dassow et al. 2005).
In crustacean zooplankton, there is now a rich body
of work on chemoreception of predator-released
kairomones (see reviews by Lass & Spaak 2003 and
Williamson et al. 2011), and to a lesser degree, of
mechanoreception of predator cues (e.g. Bollens et
al. 1994, Woodson et al. 2007). The question of how
A. sanguinea sense their copepod predators, how-
ever, remains open.

This newly reported behavioral response in dino-
flagellates, viz. predator-enhanced reverse DVM,
could have important ecological consequences at the
individual (physiological), population (growth and
mortality), community (predator—prey), and ecosys-
tem (flux) levels. Indeed, DVM behavior in dinofla-
gellates, when coupled with that of their predators
and other higher trophic levels, could result in a ‘cas-
cade of migrations' throughout the food web, with
important consequences for pelagic biogeochemical
cycling (Bollens et al. 2011a). In any event, both the
causes (cues) and ecological consequences of preda-
tor-enhanced DVM in dinoflagellates warrant further
investigation.
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