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ABSTRACT: Coastal upwelling systems can directly or indirectly affect the population dynamics
of marine invertebrates due to their influence on residual circulation patterns and biological pro-
duction cycles. In the present study we evaluated the influence of shelf winds and continental
runoff on settlement patterns of Mytilus galloprovincialis at 2 contrasting locations in an embay-
ment (Ria de Ares-Betanzos) located at the northern boundary of the Iberian—Canary current
upwelling system. We quantified settlement at 2 depths (1 and 6 m) every 15 d for a period of 2 yr
at an outer location (Miranda) with direct oceanic influence and at an estuarine dominated site in
the inner ria (Arnela). We explored the instantaneous and delayed (15 and 30 d) effects of the forc-
ing variables to infer their influence at different times in larval development. The results showed
a coupling between mussel settlement and the upwelling favourable season. Wind stress and
Ekman transport along the main axis of the ria affected mussel settlement patterns significantly.
Instantaneous and delayed responses showed the relevance of shelf winds at different larval
developmental stages. Inverse patterns were observed between the inner and outer location in
response to instantaneous winds. Onshore transport caused a decrease in settlement at Miranda,
while only intense offshore transport showed a detrimental effect on settlement at Arnela. With
regard to the 15 d delayed effect, maximum settlement abundances matched at both locations
with transport values around zero. The 30 d delayed effect on settlement abundance showed a
positive linear relationship with wind stress and Ekman transport at both locations. These relation-
ships might be directly related to physical transport processes or indirectly associated with food
availability and larval survival.
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INTRODUCTION

The life cycle of many benthic marine inverte-
brates, such as Mytilus galloprovincialis, involve a
pelagic larval stage, which in some cases can last
over a month (Levin & Bridges 1995, Caceres-
Martinez & Figueras 1998a, Grantham et al. 2003).
During this period, multiple physical and biological
processes determine the balance between mortality,
dispersal and retention within parental habitats
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(Eckman 1996, Pineda et al. 2009). Settlement plays a
strong role in the population dynamics of complex
life cycle marine invertebrates as the process linking
larval and benthic stages (Connell 1985, Menge
1992).

Survival during larval development and large-
scale offshore oceanographic processes are usually
considered main factors determining settlement
abundance (Pineda et al. 2009). Thus, coastal up-
welling systems have been studied recurrently
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because of their high productivity and the physical
mechanisms involved in along- and cross-shore
transport (Roughgarden et al. 1988, Wing et al. 1995,
Shanks et al. 2000, Guisande et al. 2001, Queiroga et
al. 2007, Broitman et al. 2008, Otero et al. 2008,
Morgan et al. 2009a).

In eastern-boundary upwelling systems, equator-
ward winds transport shelf surface waters to the
adjacent ocean and promote the uplifting of the cold
and nutrient-rich ocean waters from 150 to 200 m
depth to the surface, fertilizing coastal waters and
enhancing phytoplankton growth. When equator-
ward winds relax or rotate to poleward, circulation
patterns reverse producing downwelling along the
coast and warm, nutrient-poor surface ocean waters
occupy the shelf (Wooster et al. 1976).

Due to Ilimited larval swimming capacity
(£0.1cm s~! for bivalves; Chia et al. 1984, Young
1995), upwelling systems have traditionally been
considered as dispersive ecosystems, where larvae
are passively transported in the surface layer: off-
shore during upwelling events, and onshore during
downwelling episodes (Roughgarden et al. 1988,
Farrell et al. 1991). Larval retention in these regions
is frequently associated with local areas where coas-
tal and bottom topography interact with upwelling/
downwelling transport events, favouring larval accu-
mulation (Graham & Largier 1997, McCulloch &
Shanks 2003, Mace & Morgan 2006). However,
upwelling areas have been suggested as retentive
environments for some species (Poulin et al. 2002,
Shanks & Shearman 2009). Recent studies show that
dispersion models assuming simple advection of lar-
vae as inert particles overestimate larval exchange
among locations (Cowen et al. 2000, Becker et al.
2007). Vertical migrations between layers flowing in
opposite directions have been reported as a mecha-
nism that enables larvae to regulate along- and
cross-shore displacements (Poulin et al. 2002,
Queiroga & Blanton 2004, Shanks & Brink 2005,
Marta-Almeida et al. 2006). These mechanisms allow
the maintenance of larvae close to parental habitats
(Sponaugle et al. 2002) even in strong upwelling
regions (Morgan et al. 2009b) and along the open
coast (Shanks & Shearman 2009, Morgan & Fisher
2010).

The study of spatial and temporal settlement pat-
terns is a widely accepted indirect method for infer-
ring pre-settlement processes (Wing et al. 1995,
Ladah et al. 2005, Narvaez et al. 2006, Pfaff et al.
2011) despite some limitations due to differences in
the temporal span of both processes (Pineda et al.
2010, Pan et al. 2011). Combined studies of settlement

patterns and local oceanography are essential to infer
larval dispersal patterns and potential connectivity
pathways between populations (Dudas et al. 2009a).
This information will help us to understand the popu-
lation dynamics that would be the basis for the estab-
lishment of coastal marine reserves (Grantham et al.
2003, Mace & Morgan 2006) and, more generally, for
the development of strategies for ecosystem-based
management (Leslie & McLeod 2007). These strate-
gies are especially important for the management of
highly exploited species, such as the blue mussel in
Galicia, which totals 40 % of the European and 15%
of the World production (Labarta 2004).

Galicia is located at the northern boundary of the
Iberian—-Canary current upwelling system, where
upwelling-favourable northerly winds blow predom-
inantly from March to September (Wooster et al.
1976, Aristegui et al. 2009). The upwelling season is
characterized by intermittent northerly winds that
relax or even reverse to southerly with frequencies
from 10to 20 d (Alvarez-Salgado et al. 1993). Coastal
upwelling and downwelling episodes dictate the
residual circulation patterns as well as the primary
and secondary production cycles of the large coastal
embayments located on the Galician coast, collec-
tively known as ‘rias’ (Alvarez-Salgado et al. 2000,
Figueiras et al. 2002). The typical residual circulation
pattern of the rias is characterized by an outgoing
surface current enriched in river water and a com-
pensating ingoing bottom current enriched in shelf
waters. This circulation pattern intensifies when nor-
therly winds prevail and weakens when northerly
winds relax, and can even reverse to an ingoing sur-
face and an outgoing bottom current when southerly
winds are predominant (Alvarez-Salgado et al. 2000).
The wind-induced circulation of the rias can poten-
tially determine larval dispersal patterns as a result
of physical transport (Queiroga et al. 2007) or affect
settlement abundance indirectly due to its influence
on primary production and food availability during
larval development (Otero et al. 2008).

The objective of the present study was to determine
whether the settlement patterns of Mytilus gallo-
provincialis are influenced by shelf winds and conti-
nental runoff in different ways at 2 locations with dif-
ferent hydrographic characteristics in the Ria de
Ares-Betanzos. We evaluated settlement every 15 d
for a period of 2 yr at an outer location (Miranda) with
direct oceanic influence and at an estuarine domi-
nated site (Arnela) in the inner ria. Preferential
settlement depth was evaluated to infer larval vertical
distribution according to transport mechanisms. In
addition, we investigated delayed effects (15 and 30 d
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before settlement substrate deployment) of the forcing
variables on settlement, to infer the relevance of these
variables at different times of the planktonic life.

MATERIALS AND METHODS
Study area

The Ria de Ares—-Betanzos is a complex embay-
ment, formed by the estuaries of the Eume and Man-
deo Rivers, which converge in an outer area with
direct oceanic influence (Fig. 1). The surface area of
the ria is 52 km? and its total volume is 0.65 km?
(Alvarez-Salgado et al. 2011). The rfa is character-
ized by a mesotidal and a semidiurnal tide (Sanchez-
Mata et al. 1999). Commercial mussel production is
intensive in this ria (~10 000 t yr'!; Labarta 2004), but
mussel cultivation farms are concentrated on the
southern side of the ria (Arnela and Lorbé with 40
and 107 rafts respectively).

Between March 2006 and December 2007, larval
settlement was monitored in the inner (Arnela) and

outer (Miranda) Ria de Ares-Betanzos (Fig. 1). The
sampling site at Arnela is located in the Mandeo
River estuary area between the 5 and 10 m isobaths,
while the sampling site at Miranda is located
between the 20 and 25 m isobaths, in the area consid-
ered an extension of the continental shelf (Fig. 1).

Larval settlement

Settlement was monitored at each location at 1 and

6 m depths using 3 collecting ropes covered with
jute. Prior to their deployment in the field, collecting
ropes were kept for 30 d in seawater filtered through
a 100 pm mesh, renewing the water every 2 d to
allow for the development of an adequate biofilm but
preventing the occurrence of larval settlement (Porri
et al. 2006). Conditioned ropes were suspended from
a long-line where they remained for 15 d until they
were sampled and replaced by new collecting ropes.
Sampling consisted of the collection of 3 sub-samples
of known area (6 x 2 cm) from the jute covering each
collecting rope (3 replicates) at both depths (1 and
6 m). Samples were preserved in 70 %

o Iberian
11° W} peninsula

Mandeo
River

ethanol until their processing in the
laboratory. Sample processing con-
sisted of the detachment of settled
individuals using a 20 % bleach dilu-
tion (Davies 1974), and an ultrasound
bath for 5 min. Detached individuals
were then sorted using a sieve kit
with mesh openings between 125 and
355 pm, in order to facilitate their
counting on a binocular microscope.
The average size of individuals
retained was calculated by measuring
the length of the ante-posterior axis of
100 to 150 individuals for each repli-
cate and sieve size. Individuals
retained above 355 pm sieve size
showed a great variability in length,
which prevented distinction between
primary and secondary settlement
(Céaceres-Martinez & Figueras 1998a).
Therefore settlement magnitude (S)
was calculated as the number of set-
tlers on a <355 pm sieve per collector

1 km

T (ind. col.™}).

T T
8.16°W 8.12°
Fig. 1. The Ria de Ares-Betanzos. (@) = sampling stations at Arnela and Mi-
randa; polygons = commercial mussel culture areas at Arnela and Lorbé. The
shaded area in the smallest inset is the 2° x 2° cell where the geostrophic winds
where calculated. Contour lines: depth (m). Modified from Alvarez-Salgado
etal. (2011)

Settlement synchrony among lo-
cations and depths was assessed
through cross-correlation (pyy(j)). Given
the autocorrelation structure of the
time series, the significance of cross-
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correlations was assessed based on 95% CI calcu-
lated for the ‘effective’ df (IN*; Pyper & Peterman
1998), estimated through the equation:

1 1 2<¢(IN-)) . .
NOoNTNY N Pul) () (1)

j=1
where Nis size of the time series and pyy (j), pyy (j) are
autocorrelation coefficients of settlement in locations
x and y for a delay j.

Cumulative settlement per year was calculated as
the sum of the annual counts per replicate (collector
rope) to estimate average and standard deviation
(SD) at each location and depth. A factorial repeated
measures ANOVA was performed to assess the effect
of the factors location (Arnela and Miranda), depth
(1 and 6 m) and year (2006 and 2007) on the accu-
mulated settlement. Fisher's LSD test was used as a
post-hoc test.

Environmental variables

Continental runoff to the Ria de Ares—Betanzos is
mostly a combination of the discharges of rivers
Eume and Mandeo (Fig. 1). The flow at the mouth of
the Mandeo River (with a total drainage basin of
456.97 km?) was estimated from the volume at the
nearby gauge station of Irixoa (that controls
248.21 km? of the drainage basin) provided by Augas
de Galicia (Galician Government), by applying Hor-
ton's proportional law (Strahler 1963). The volume of
the Eume River is a combination of regulated and
natural flows. Daily volumes of the Eume reservoir,
which regulates 376.20 km? (80% of the drainage
basin), were provided by ENDESA S.A., the company
in charge of its management. The natural component
of the Eume River flow was estimated from the flow of
the Mandeo River by again applying Horton's Law,
considering that the drainage basin not regulated by
the reservoir is only 94.04 km?2 Daily continental
runoff to the Ria de Ares-Betanzos (Qp, m® s7!) was
calculated as the sum of the Eume and Mandeo flows.

Wind stress (14, T,) and Ekman transport (-Qy, Qy)
due to regional shelf winds were roughly estimated
from wind speed and direction according to the
methodology described by Bakun (1973) adapted for
the Iberian Peninsula by Lavin et al. (1991):

Ty =Pa- CpIVI- Vi Ty =pA'CD'|V|'Vy (2,3)
TY TX

~Q,=- Q,=— 4,5

* pw - f Y pw - f ( )

where p, is air density (1.22 kg m~ at 15°C), Cp, is an
empirical dimensionless drag coefficient (1.4 x 107%),

fis the Coriolis parameter (9.946 x 107 s~* at 43° lati-
tude), pw is sea water density (~1025 kg m™), V’, Vi
and V, are the average daily modules, westerly and
southerly components of the geostrophic wind in a
2° x 2° cell centred at 43°N, 11°W, representative of
the study area. Average daily winds were estimated
from atmospheric surface pressure charts, provided at
6 h intervals by the Spanish Institute of Meteorology.

T, T, were rotated 30° clockwise to produce
longitudinal (t;) and transversal (1) components of
the wind stress to the main axis of the Ria de
Ares—Betanzos (Fig. 1). Longitudinal (-Q) and trans-
versal (Qr) components of the Ekman transport were
also obtained from tr and 71, respectively. Positive
values of —Qq indicate an offshore Ekman transport
and negative values an onshore Ekman transport,
while positive and negative values of Qr indicate dis-
placement of the surface layer towards NE and SW
respectively. Given that —Q; is proportional to T+ and
Qr is proportional to 11, only —Q; and Q1 will be used
as explanatory variables. Therefore, —Q; will be a
proxy to both the effect of a transversal wind stress
and a longitudinal Ekman transport and Qr a proxy
to the effect of a longitudinal wind stress and a trans-
versal Ekman transport.

Daily values of Qg, —Qr and Qr were condensed to
15 d averages to match settlement sampling fre-
quency (15 d). Seasonal patterns in these environ-
mental variables were analyzed by means of general
additive models (GAMs), as implemented in the
mgcv library of R (R Development Core Team 2010).

GAMs allow the exploration of non-linear func-
tional relationships between dependent and expla-
natory variables, fitting predictor variables by
smooth functions (Guisan et al. 2002). The general
model form of a GAM is:

E(Y):oc+ifj(Xj)+s (6)
j=1

where E(Y) is the estimated value of the response
variable, o is the population intercept, X; are the
covariates and f; are the smooth unknown functions
estimated for each covariate (Wood 2006).

To test the influence of the environmental vari-
ables (Qgr, —Qr and Qr), seasonal cycles (day of the
year) and depth on settlement GAMs were built.
Depth was included as a factor (1 and 6 m). Contin-
uous variables were considered as smoothed terms
in the model and estimated with thin plate regres-
sion splines. Settlement data were characterized by
many zero-valued observations and a long right tail.
Zero-inflated data is a common feature in species
abundance studies, which prevents the use of com-



Ekman transport (m2 s-1)

Continental runoff (m3 s-1)

Peteiro et al.: Mussel settlement in an intermittent upwelling region 115

The model selection protocol was
repeated using explicative variables

lagged by 1 and 2 sampling intervals,
in order to investigate delayed effects
of the forcing variables on settlement.

The instantaneous response (lag 0)
and time-lagged response (lag 1 and
2 sampling intervals) models were
compared by percentage of variability
explained and their BICs, to select

the most explicative effects on settle-
ment magnitude.

RESULTS
Environmental parameters

Fig. 2A shows the time series of
the fortnightly-averaged Ekman trans-
port longitudinal and transversal to
the main axis of the ria (-Qp and Q).
Seasonality explained 15.3% of the
total variance of -Qp, defining an
upwelling-favourable season (—Q > 0)
between day of the year 100 and 300

(April 9th and October 26th), and a
downwelling-favourable season (—Q
< 0) for the rest of the year (Fig. 3A).

There were no significant differences
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Fig. 2. Time series of (A) Ekman transport longitudinal (-Qp) and transversal
(Qr) to the main axis of the ria and (B) continental runoff of rivers Eume (QE)
and Mandeo (QM) during years 2006 and 2007 in the Ria de Ares-Betanzos

mon assumptions on data distribution for modelling
(Barry & Welsh 2002). Therefore, data were mod-
elled in 2 steps; first the association between the
presence and absence of settlement and the avail-
able covariates was modelled and second the rela-
tionship between abundance and the covariates,
conditionally on the presence of the organism, was
modelled (Barry & Welsh 2002). The presence-
absence data were modelled using a binomial distri-
bution with a logit-link. Over-dispersion on settle-
ment abundance data was accounted for using a
negative binomial distribution with a log-link func-
tion. Bayesian's information criterion (BIC) was used
to select the optimal set of variables for inclusion in
the models. Model validation included the verifica-
tion of homogeneity, normality and independence
assumptions (Zuur et al. 2009).

(Student's t-test, p = 0.109) between
the average (+ SD) —Q values for the
upwelling seasons of 2006 (0.07 + 1.09
m?s7!) and 2007 (0.20 + 0.94 m?s7!). In
addition, the coefficient of variation
of —Qr (Fig. 2A) was larger for the
upwelling season of 2006 (1600%) than for 2007
(480%). The parallel time course of the fortnight-
average longitudinal and transversal components of
the Ekman transport (Fig. 2A) does not allow differ-
entiation between the effect of the longitudinal wind
stress (proportional to Q) and the longitudinal
Ekman transport (—Qg) on the residual circulation of
the ria.

River discharge showed a marked seasonal
pattern that explained 38.0% of total variance
(Figs. 2B & 3B). The pattern of Qr was opposite to
that of —Qr, showing minimum values during the
upwelling-favourable season (Fig. 3). Continental
runoff was significantly higher (Student's t-test,
p < 0.005) and more variable in 2006 (average =
SD = 15.81 + 20.15m®s7!) than in 2007 (12.59 *
5.98 m37).
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Fig. 3. Seasonal patterns of environmental variables. Results
of general additive models showing the effect of variable
‘Day of year' on (A) longitudinal component of Ekman trans-
port (—-Qp) and (B) continental runoff (Qg). Dashed lines
show 95% CI, and tick marks along the x-axis below each
curve represent effect values where observations occurred

Settlement patterns

Settlement abundance showed a similar seasonal
pattern in 2006 and 2007, characterized by an initial
major peak followed by 2 to 4 peaks of smaller ampli-
tude during the upwelling-favourable season and
absence or residual settlement during the rest of the
year (Fig. 4). The regression model for settlement
presence—absence supported the strong seasonal
component of settlement (Table 1, Fig. 5). Season-
ality explained 64.1 % of the total deviance. Only the
inclusion of the factor depth, which showed a settle-
ment probability reduction of 0.18 at 6 m, improved
the fit (67 % of deviance explained).
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Fig. 4. Mytilus galloprovincialis. Average settlement abun-

dance (ind. collector™!) and SD in locations (A) Arnela at 1

and 6 m depth (Al and A6) and (B) Miranda at 1 and 6 m
depth (M1 and M6) during 2006 and 2007

Maximum cross-correlation coefficients between
locations showed settlement synchrony (r > 0.77 for
lag 0; Table 2) except in the case of Miranda at 6 m
depth, which showed higher correlations at lag -1,
indicating some delay in settlement (Table 2).

The repeated measures ANOVA showed signifi-
cantly higher settlement abundances in the outer-
most location, Miranda (Tables 3 & 4). Differences
in settlement magnitude between years were
detected only at Arnela, with a significant
decrease in settlement during 2007 (Tables 3 & 4).
Both locations showed higher settlement at 1 m
depth, but the significant interaction between
depth and location revealed greater differences
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Table 1. Mytilus galloprovincialis. Structure of the model

selected to describe settlement presence—absence. The in-

verse of the logit function has been applied to get the esti-

mated values and SE on the scale of actual probability.
edf: estimated degrees of freedom

Parametric coefficients
Parameter Estimate SE Z P

Depth: 6m -0.184 0.066 -3.803  0.0001

Smooth terms (non-parametric)

Parameter edf 12

p

101.9 <2x 10716
% Deviance explained: 67.0 %

Date 1.975
R? adjusted: 0.661

0.8

0.6

0.4

0.2

Settlement presence probability
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Day of the year

Fig. 5. Mytilus galloprovincialis. Results of the generalized

additive models showing the partial effect of the variable

‘day of the year' on settlement presence probability. Dashed

lines show 95% CI, and tick marks along the x-axis be-

low the curve represent effect values where observations
occurred

in settlement density between depths at Miranda
(Tables 3 & 4).

Regression models for settlement abundance
were performed for each sampling site because of
the interactions detected by the ANOVA analysis
(Table 4). They showed a strong seasonal pattern
in settlement abundances in both locations (77.7 %
and 76.4% of the total variability explained at
Arnela and Miranda, respectively; Table 5). The
inclusion of the factor depth in the model
decreased BIC values and increased the variance
explained at both study areas, but again a greater
increase in the amount of variance explained was
observed at Miranda (Tables 5 & 6). None of the

Table 2. Mytilus galloprovincialis. Cross-correlation coeffi-

cients showing settlement synchrony and delays between

locations and depths of study (Arnela and Miranda at 1 and

6 m depth; A1, A6, M1 and M6, respectively). Only the sig-

nificant correlation coefficients are detailed. The specific lag
for each coefficient is given in brackets

A1l A6 M1
A6 0.59 (lag -1)
0.93 (lag 0)
M1 0.54 (lag-1) 0.77 (lag 0)
0.85 (lag 0) 0.53 (lag +1)
0.51 (lag +1)
M6 0.56 (lag —-2) 0.53 (lag -2) 0.76 (lag -1)
0.81 (lag -1) 0.74 (lag -1) 0.85 (lag 0)
0.64 (lag 0) 0.67 (lag 0) 0.51 (lag +1)

Table 3. Mytilus galloprovincialis. Accumulated settlement
(average + SD) (ind. collector™!) through 2006 and 2007 in
each study location and depth

Site Depth (m) 2006 2007

Arnela 1 3582.0 + 303.7 2365.7 + 133.2
6 3154.3 + 375.5 1478.7 + 175.6

Miranda 1 4784.7 + 339.9 4182.0 + 380.1
6 2594.0 + 116.9 2309.3 + 250.4

Table 4. Mpytilus galloprovincialis. Repeated measures

ANOVA assessing the effect of factors Location (Loc; Arnela

and Miranda), Depth (1 and 6 m) and Year (2006 and 2007)
on accumulated settlement magnitude (ind. collector™)

Model Accumulated settlement
df SS F p

Loc 1 4057393 70.39 <0.001
Depth 1 10846081 252.77 <0.001
Year 1 4627060 47.59 <0.01
Loc x Depth 1 2833188 66.03 <0.01
Loc x Year 1 1934608 19.90 <0.05
Year x Depth 1 5891 0.053 0.829
Loc x Year x Depth 1 408726 3.671 0.128

models revealed a significant relationship between
continental runoff and settlement density using
instantaneous (lag 0) or lagged responses (lag 1
and 2 sampling periods). The longitudinal and
transversal components of the Ekman transport to
the main axis of the ria both showed a significant
effect on settlement abundances for instantaneous
and lagged responses, similar percentages of vari-
ance explained, BIC values (Table 5) and analo-
gous partial effects on settlement abundance. As
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Table 5. Mytilus galloprovincialis. Percentage of deviance explained and
Bayesian's information criterion (BIC) values from step-wise model selection
to describe settlement abundance in both study locations, assessing instanta-
neous (lag 0) and time-lagged effects (lag 1 and lag 2) of both Ekman transport
components (-Qp and Qr) using generalized additive models. dev. expl. =

deviance explained

Ekman transport and the longitudi-
nal wind stress (proportional to Qr)
can be invoked to interpret the
effect of —Q on the settlement pat-
terns.

With regard to the instantaneous

Arnela Miranda — effect of —Qr (~Qr.1ago) On settlement

Model % dev. % dev. abundance, the inclusion of this
expl. BIC expl. BIC variable increased the variability

Date 277 22005 76.4 23517 explained to 82.3% and 83.3% of
Date + Depth 78.5 21982 80.0 23208 the total variance at Arnela and
Date + Depth + -Qjag0 82.3 21824 83.3  2296.6 Miranda, respectively (Tables 5 &
Date + Depth + Qr.1ag0 83.5  2178.6 832 23022 6). The model showed a similar
pro ot SlsGrus B0 AT B3 ZE | sowonad paarn ot bih locatons
Date + Depth + Qring; 881 21445 925 22289 | (Fig. 6AB) but —Qeg0 showed op-
Date + Depth + ~Qp1ag1 +Qr.1ag1 89.9  2126.5 822  2317.0 posite effects on settlement abun-
Date + Depth + -Qq.jag2 81.8 2171.7 86.2 2253.7 dance at Arnela and Miranda
Date + Depth + Qr.jaq2 82.5 2163.5 83.9 2282.7 (Fig. 6C,D). At Arnela, —QL-lago
Date + Depth + —Qp jags +Qriaga 823 21798 86.1  2273.1 chowed an effoct on  setflomont

indicated above, this similarity can be explained
by the parallel time course of the longitudinal and
transversal components of the wind (Fig. 2A). The
inclusion of both variables simultaneously in the
models increased the BIC values in all cases
(Table 5) so models including just the longitudinal
component (-Qp) were selected because the BIC
value slightly decreased in most of the simulations

abundance for values above 0.5 m?
s™!. Above that threshold value, off-
shore transport (-Qp.aq0) showed an inverse rela-
tionship with settlement abundance (Fig. 6C). At
Miranda, onshore transport (-Qg.q0 < 0) showed a
detrimental effect on settlement magnitude. But
when -Qq .4 reached values around Om?s™’
increments in its magnitude did not show an effect
on settlement abundance (Fig. 6D). In addition, p-

values revealed a larger effect of -Qriuy at

(Table 5). In any case, both the longitudinal Miranda (Table 6).

Table 6. Structure of the models selected to describe settlement abundance in Arnela and Miranda locations according to instan-
taneous (lag 0) and time-lagged (lag 1 and lag 2) effects of —-Q_. edf: estimated degrees of freedom. dev. expl. = deviance explained

Lag Parametric coefficients —— Smooth terms (non-parametric) — R?2 % dev.

and site Parameter Estimate SE Z P Parameter edf x? P adj. expl.

Lag 0

Arnela Intercept 3914 0.068 57782 <2x 10716 Date 9.774 984.2 <2x107'® 0736 823
Depth6m -0.341 0.099 -3.453 5.5x10™* ~Qriago 3173 13.7 6.4x107

Miranda Intercept 4356 0.064 68.21 <2 x 10716 Date 8.813 11255 <2x107'® 0592 833
Depth6m -0.621 0.093 -6.70 2.0 x 1071 ~Quiago 22023 16.0 6.4 x 107

Lag 1

Arnela Intercept 3.766  0.054 69.869 <2 x 10716 Date 8.952 12255 <2x107'® 0827 89.4
Depth6m -0.315 0.076 -4.147 3.4x107° ~Qriag 11888 1792 <2x107'°

Miranda Intercept 4196  0.046 91.73 <2 x 10716 Date  13.400 1568.7 <2x107'6 075 93.2
Depth6m -0.572 0.062 —-9.22 <2 x 10716 ~Quigi 16610 2628 <2x 1071

Lag 2

Arnela Intercept 3.912 0.069 56.890 <2x 1076 Date 8.886 870.6 <2x107'® 0664 81.8
Depth6m -0.330 0.100 -3.289 0.001 —Qt.1ag0 1 8.3 0.004

Miranda Intercept 4325 0.060 72.06 <2x 10716 Date 9.557 11428 <2x 107  0.604 86.2
Depth6m -0.635 0.086 -7.349 1.99 x 107'° —Qriago  0.969 59.5 1.2x 107
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According to the percentage of the total variability
explained and the BIC values, the models that best
describe settlement patterns in both locations included
the average —Qp during the 15 d previous to the
deployment of the collectors (—Qq.j441; Table 5). These
models explained 89.4 % and 93.2% of the total vari-
ance at Arnela and Miranda, respectively (Tables 5 &
6). These models again showed a strong seasonal pat-
tern which placed settlement during the upwelling-
favourable season (Fig. 7A,B). In addition, maximum
settlement abundances matched in both locations with
values of —Q around 0 m?s™! during the fortnight pre-
vious to the deployment of the collectors (Fig. 7C,D).

The models that included the longitudinal transport
with a 30 d lag (-Q..ag2) explained 81.8 % and 86.2 %
of the total variance at Arnela and Miranda, respec-
tively (Tables 5 & 6). Again the seasonal effect led to
settlement within the upwelling-favourable season
(Fig. 8A,B). Settlement abundance increased linearly
(estimated df ~ 1; Table 6) with —Q.j542 values in both
locations (Fig. 8C,D), but p-values again showed a
larger influence of —Q 1,4, at Miranda (Table 6).

Fig. 9 illustrates the differences between settle-
ment time series observed and predicted at Arnela
and Miranda using instantaneous or lagged response
models.
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DISCUSSION

The time series of Mytilus galloprovincialis settle-
ment in the Ria de Ares-Betanzos showed a strong
seasonal pattern in both study years (Figs. 4 & 95).
Settlement was concentrated during the upwelling-
favourable season (late spring to early autumn),
which was characterized by the prevalence of north-
easterly winds and a low river inflow (Figs. 2 & 3).
Seasonality alone can explain most of the variability
recorded, not just in the presence of settlement
(Table 1) but also in mussel abundance (Table J5).

Settlement abundance is characterized by an initial
major peak followed by several peaks of decreasing
magnitude (Figs. 6 to 8).

Temporal patterns characterized by several settle-
ment peaks are usually related to either the synchro-
nized spawning of gametes and subsequent simul-
taneous development, the occurrence of common
transport episodes that cause a massive arrival of
larvae to settlement locations, or a combination of
both processes (Pineda 2000).

Mytilus galloprovincialis can release and fertilize
gametes during the whole year at intermediate
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latitudes, although massive spawnings are con-
centrated between early spring and summer
(Snodden & Roberts 1997, Céaceres-Martinez &
Figueras 1998b, Suarez et al. 2005). Although
previous studies in the Ria de Ares-Betanzos de-
scribed a single spawning event in mid-summer
(Villalba 1995), our results showed the largest
settlement densities in the spring. This pattern
agrees best with the reproductive cycle described
in the Southern Galician rias (Villalba 1995) and
harmonizes larval development with the upwelling
season.

Spawning in many invertebrate and fish species
occurs primarily during the upwelling-favourable
season suggesting some kind of advantage for larval
development (Guisande et al. 2001, Shanks & Eckert
2005, Otero et al. 2008, Morgan et al. 2009b, Otero et
al. 2009). Although upwelling systems have been tra-
ditionally considered as dispersive environments
(Roughgarden et al. 1988, Broitman et al. 2008), sev-
eral studies have reported simple behaviours in dif-
ferent species of invertebrate larvae, for example the
maintenance of a preferential depth, which allows
for high larval retention close to parental habitats
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(Sponaugle et al. 2002, Shanks & Brink 2005, Morgan
et al. 2009b). In the present study, preferential settle-
ment of Mytilus galloprovincialis at 1 m depth was
observed (Tables 1, 3, 4 & 6), which suggests a higher
concentration of competent larvae at the surface.
Several studies have shown a highly variable vertical
distribution for bivalves, which is species-specific
(Shanks & Brink 2005) and dependent on the larval
developmental stage (Dobretsov & Miron 2001, Mor-
gan & Fisher 2010). The differences among studies
regarding the vertical distribution of mussel larvae in
the water column (Dobretsov & Miron 2001, Alfaro &
Jeffs 2002, McQuaid & Phillips 2000, Morgan et al.
2009a) might be related to the dependence between
vertical position and physical or biological disconti-
nuities in the water column (Metaxas 2001, Shanks et
al. 2003), as well as to the local topographic and
hydrodynamic characteristics of each study area.
Although in the present study settlement at 1 m was
more probable and abundant at both locations, we
also observed a greater difference in settlement
magnitude between depths at Miranda (Tables 3, 4 &
6). The topography and shallowness of Arnela (Fig. 1)
may favour the action of local wind-stress from the
surface to the bottom, allowing for a more homoge-
neous larval distribution in the water column in spite
of significantly higher concentrations at the surface.

From a dispersive point of view, preferential depth
at the surface may facilitate the onshore transport by
different transport mechanisms like onshore coastal
winds, sea breeze or internal waves (Shanks 1995).
Larval concentration at the surface would also favour
larval displacement to the shelf during active
upwelling events and return to the coast during the
subsequent upwelling relaxation or downwelling
episodes (Roughgarden et al. 1988). Villegas-Rios et
al. (2011) suggested that the subtidal circulation in
the inner part of the Ria de Ares-Betanzos is positive
independently of the coastal winds, but they reported
an increase in average flushing time during down-
welling events with regard to upwelling episodes. A
reversal of the circulation might occur in the outer
part of the Ria de Ares-Betanzos in response to south-
westerly coastal winds, as has been suggested for
other Galician rias (Alvarez-SaIgado et al. 2000,
Piedracoba et al. 2005). Settlement delays detected in
Miranda at 6 m depth might support the presence of
reversed circulation events only in the outer ria.
Although continental runoff may be a factor modu-
lating flushing times and subtidal circulation in the
Ria de Ares-Betanzos (Alvarez-Salgado et al. 2011,
Villegas-Rios et al. 2011), no significant effect of this
variable on settlement was detected in the present

study. Nevertheless, the regression models obtained
showed that —-Q had a significant instantaneous and
also delayed effect on the settlement magnitude of
Mytilus galloprovincialis (Tables 5 & 6). The parallel
time course of the longitudinal and transversal com-
ponents of the coastal winds does not allow us to iso-
late the effect of the longitudinal Ekman transport
(caused by transversal shelf winds) from the effect of
the longitudinal wind stress (caused by longitudinal
shelf winds). Therefore, —Q should be interpreted as
a proxy for regional scale circulation conditions.

Upwelling at our latitudes consists of a succession
of moderate to intense wind stress and relaxation
cycles occurring every 10 to 20 d (Alvarez-Salgado et
al. 1993). This high frequency of upwelling episodes
might constrain our capacity to relate a specific event
with a settlement pulse because of the fortnightly
sampling frequency of settlement densities.

With regard to the instantaneous effect of —Q (-Qy.
lago) an inverse result on settlement magnitude was
observed at the inner (Arnela) and outer (Miranda)
locations (Fig. 6C,D). Intense offshore transport
during the sampling interval, due to both longitudinal
wind stress and Ekman transport, showed a detrimen-
tal effect on settlement magnitude at Arnela (Fig. 6C).
On the contrary, settlement abundance decreased at
Miranda when onshore transport prevailed (Fig. 6D).
Prevalence of onshore transport enhanced the settle-
ment at the inner part of the ria (Arnela) and reduced
it at the outer part (Miranda), suggesting that larvae
are mainly delivered from the inside of the ria. This
pattern is consistent with the spatial distribution of
reproductive adults, which are concentrated on the
southern shore of the Ria de Ares-Betanzos (107 mus-
sel rafts in Lorbé and 40 in Arnela; Fig. 1). Differences
in the relevance of —Qq 40 On settlement between
locations (p-values; Table 6) would support the hypo-
thesis that differential larval supply is determined by
differential wind forcing between the outer (Miranda)
and inner (Arnela) ria. Since Miranda is located in the
outer ria, its hydrodynamics might be more influenced
by shelf wind stress and the coastal upwelling—down-
welling regime, as reported in other Galician rias
(Alvarez-Salgado et al. 2000, Piedracoba et al. 2005).

Although the regression model that includes
—Q.1ag0 helps to understand differences in settlement
patterns between locations, the model that best
describes settlement abundances in the ria included
the average —Qp during the 15 d previous to the
deployment of the collectors (-Qg..q1). Settlement
magnitude at both locations showed an optimum
for —Qp1.q1 values around 0 m?* s (Fig. 7C,D) and
pointed out the importance of the intermittency of
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longitudinal transport on settlement abundance of
Mytilus galloprovincialis. The succession of active
upwelling (offshore transport) and relaxation (on-
shore transport) periods allows for an optimal bal-
ance between the supply of nutrients for phyto-
plankton, growth of plankton in general and coastal
retention of primary production (Figueiras et al.
2002, Otero et al. 2008, Villegas-Rios et al. 2011). The
intermittence of these episodes might affect settle-
ment patterns, both indirectly through feeding pat-
terns determining larval development and survival,
and directly by limiting larval dispersal through the
modulation of residence times and bottom shelf
inflow in the ria. In this way, the decrease observed
in settlement magnitude in 2007 compared with 2006
(Tables 3 & 4) might be related to the lower varia-
bility of —Qp during 2007 (Fig. 2A). Recent works
pointed out the relevance of frequency and variabil-
ity of upwelling episodes in recruitment dynamics of
diverse invertebrate species (Guisande et al. 2001,
Otero et al. 2008, 2009, Pfaff et al. 2011). In addition,
several studies have shown lower recruitment rates
in areas with persistent downwelling (Menge et al.
2003) or upwelling conditions (Navarrete et al. 2005,
Broitman et al. 2008, Dudas et al. 2009b, Smith et al.
2009) compared to geographical areas characterized
by intermittent upwelling.

In relation to the 30 d delayed effect of —Qg
(~Qr.1ag2) ON settlement abundance, a direct relation-
ship between both variables was observed (Fig. 8C,D).
Increases in larval settlement associated with posi-
tive values of —Qp during early larval stages (30 to
45 d before settlement) suggest that offshore trans-
port associated with upwelling events is not limiting
the larval supply to the ria. Several studies have
reported similar results (Morgan et al. 2009a, Shanks
& Shearman 2009, Morgan & Fisher 2010) and also a
positive relationship between settlement and up-
welling intensity (Pfaff et al. 2011). Different strate-
gies have been suggested to avoid advection during
upwelling events (Queiroga & Blanton 2004, Shanks
& Brink 2005, Morgan et al. 2009b, Shanks & Shear-
man 2009). In addition several mechanisms other
than downwelling episodes (i.e. local winds, sea
breeze, internal waves) have been described as
effective for returning larvae to the coast (Shanks
1995). Although, the relationship between -Qq g2
intensity and settlement is more relevant at Miranda
(p-values; Table 6), the same pattern was observed
at the inner location (Arnela), less influenced by
shelf winds. This suggests an indirect relationship
between -Qri.y2 and settlement abundance. The
prevalence of upwelling favourable winds could

develop a front across the mouth of the bay which
might contribute to larval retention into the estuary,
as has been previously observed in different estuar-
ies (McCulloch & Shanks 2003). The positive rela-
tionship at both locations would also suggest that the
preponderance of upwelling episodes during the
early larval stages (30 to 45 d before settlement)
enhances their survival because of food availability.
Almost 100 % of the limiting nutrients are provided to
the Ria de Ares-Betanzos by shelf bottom waters dur-
ing upwelling events, enhancing the net ecosystem
production between 5 and 7 times in comparison to
downwelling episodes (Villegas-Rios et al. 2011).
The increase in larval survival/settlement might be
related to the fertilization of coastal waters during
the upwelling season, which enhances primary and
secondary production in the system (Guisande et
al. 2001, Otero et al. 2008).

Changes detected in the coastal wind regime off
the NW Iberian Peninsula during the last 40 yr indi-
cate a reduction of 30% in the duration of the
upwelling-favourable period and a 45 % reduction in
its intensity (Alvarez-Salgado et al. 2008). Based on
the results of the present study, these changes in the
wind regime could have a direct influence on the set-
tlement of Mytilus galloprovincialis, as has been sug-
gested for other commercial species with life cycles
adapted to the seasonality of coastal upwelling in the
NW Iberian Peninsula (Sardina pilchardus: Guisande
et al. 2001; Octopus vulgaris: Otero et al. 2008, 2009).

In summary, the results of the present work illus-
trate the link between mussel settlement and the
northeasterly winds prevalent during the upwelling
favourable season. The positive effect of coastal
upwelling events during the early planktonic life
(—Qrag2) SUggests a relevant role of coastal water fer-
tilization for larval survival. The relevance of inter-
mittent offshore transport/upwelling episodes during
larval development (—Q..41) Seems to be related to
the equilibrium provided between food supply and
larval retention in the ria. At the end of larval de-
velopment, longitudinal transport (—~Qg.iag0) Showed
certain effects on the regulation of transport and
meta-population connectivity, modulated by local
hydrography and larval behaviour. The increasing
evidence of many invertebrate species with life
cycles highly adapted to coastal upwelling (Cury &
Roy 1989, Guisande et al. 2001, Shanks & Eckert
2005, Otero et al. 2008, Morgan et al. 2009b, Shanks
& Shearman 2009, Pfaff et al. 2011) highlights the
need for understanding ecosystem responses to
changing environmental conditions and developing
effective management and conservation strategies.
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