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INTRODUCTION

Worldwide, the intensity and frequency of marine
uses is increasing, together with their demand for
sea space, which results in growing human pressures
on coastal and marine ecosystems (Halpern et al.
2008). Thus, there is an urgent need for integrated
and eco system-based management approaches that
enable a sustainable development of marine re sour -
ces while safeguarding marine environmental health
(Leslie & McLeod 2007, Ruckelshaus et al. 2008).
Place-based or spatial management such as marine

spatial planning (MSP) is seen to facilitate an ecosys-
tem-based management (Lackey 1998). MSP is an
integrated planning framework that informs man-
agement about the spatial distribution of activities in
the ocean in order to support current and future uses
of ocean ecosystems and maintain the delivery of
valuable ecosystem services for future generations in
a way that meets ecological, economic and social
objectives (Foley et al. 2010). National and interna-
tional policies and directives such as the EC Marine
Strategy Framework Directive (MSFD; Commission
E 2008) recognise this need to address human pres-
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sures in the marine environment and promote an
ecosystem approach to management by using tools
such as MSP. For instance, the national implementa-
tion of the MSFD comprises an assessment of human
pressures and their impacts on the marine environ-
ment, together with the specification of programs of
measures, such as management and mitigation mea-
sures or monitoring programs. Thus, future manage-
ment measures are in evitably linked to the spatial
management of human uses as it is defined in
national marine plans. Spatial management tools
such as MSP and ocean zoning are being developed
and implemented worldwide (Douvere & Ehler
2009). Based on growing in ternational experience,
practical guidelines for spatial planning already exist
(COM 2008, Ehler & Douvere 2009). However, these
general guidelines do not provide the scientific
means to evaluate the economic and environmental
consequences of spatial management options. Thus,
a number of authors have already addressed the lack
of integrated tools to assess the economic and envi-
ronmental risks of spatial management options
(Foley et al. 2010, Tallis et al. 2010, Olsen et al. 2011).

In general, spatial management options can result
in 2 types of conflicts, namely conflicts between hu-
man activities and the environment and conflicts be-
tween different human activities. The former type of
conflict requires an assessment of the risks of anthro-
pogenic activities, which vary in their intensities and
footprints on ecosystem components that are sensitive
to those activities. An increasing number of studies
has presented practical approaches for quantifying
the impacts of specific human activities or the cumu-
lative impacts of a number of activities on ecosystem
components (Halpern et al. 2008, Ban et al. 2010, Fo-
den et al. 2010, Stelzenmüller et al. 2010b). In the
context of marine planning, the impact of one human
activity on other activities is being studied to a lesser
extent. One example is a study by Berkenhagen et al.
(2010) in which the cumulative economic impacts for
the fisheries sector were analysed in relation to the
de velopment of offshore wind energy in the German
exclusive economic zone (EEZ). As yet, studies as-
sessing the risks of spatial management options by in-
tegrating more than one sector of human activity and
by analysing their potential impacts on each other
and on ecosystem components are lacking.

Current approaches in land use management for
defining and assessing spatial management options
en compass, for instance, multi-criteria analyses
(MCA) or spatial optimization techniques, such as
Pareto optimality (see Kennedy et al. 2008, Polasky et
al. 2008 and references therein). While the former ap-

proach requires a weighting of management ob jec -
tives, the latter eliminates the need for the prior spec-
ification of weights. Thus, in the marine environment,
an increasing number of case studies are concerned
with spatial optimization problems, for in stance, in
relation to the design of networks of marine protected
areas (Smith et al. 2008, Martin et al. 2009). GIS-
based tools, such as Marxan (Watts et al. 2009) or
Ecopath (Christensen et al. 2009), are used to find op-
timal locations based on defined constraints and tar-
gets. While those tools can support the development
of spatial management options, an evaluation of the
risks and consequences of those management options
are be yond their capability. However, a spatially ex-
plicit assessment of the risks of possible spatial man-
agement scenarios and related uncertainies is crucial
for the spatial and temporal allocation of human ac-
tivities, as is regulated in MSP. Thus, the classical
method of testing hypotheses provides, in general, a
poor basis for environmental management decision-
making as it lacks the ability to predict the conse-
quences of those hypotheses (Ellison 1996).

Bayesian Belief Networks (BNs) are models that
graphically and probabilistically represent correlative
and causal relationships among variables and can ac-
count for uncertainty (McCann et al. 2006). BNs have
been successfully applied to natural re source man-
agement to address environmental  management
problems and to assess the impact of alternative man-
agement measures (Varis et al. 1990, Marcot et al.
2001, Nyberg et al. 2006). A recent study by Stelzen-
müller et al. (2010a) combined GIS analysis and BNs
to support marine planning tasks by assessing ‘what
if’ scenarios for different planning objectives and re-
lated management interventions. Following this
methodological concept, we developed, in the present
paper, an integrated modelling framework to assess
the potential consequences of spatial management
options in the German EEZ of the North Sea and in
adjacent coastal waters. Moreover, the present study
aims to test the framework’s ability to combine the as-
sessment of the ecological and economic risks of spa-
tial management options in relation to 2 scenarios at
the resolution of fishing fleets. Such a characterisation
and quantification of risk is a crucial step in an eco-
logical risk assessment framework, which, in general,
comprises problem formulation, hazard identification,
risk analysis and risk characterisation (Hayes & Lan-
dis 2004, Landis 2004).

The MSP for the German EEZ is legally binding
and contains designated preference areas for a num-
ber of sectors, except fishing, together with special
areas of conservation (Natura2000 sites) (BMVBS
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2009). The plan specifies a number of high level
objectives, such as the promotion of offshore wind
energy use (installed capacity of 20 000 MW by 2030)
or the protection of natural resources by avoiding dis-
ruptions to and pollution of the marine environment.
However, the likely spatial expansion of offshore
wind energy development is beyond the boundaries
of designated preference areas. Further individual
wind farm licenses will be subjected to environmen-
tal impact assessments, and fisheries management
options are currently being assessed for Natura2000
sites (Pedersen et al. 2010). In spite of the imple-
mented marine spatial plan, this uncertain develop-
ment of offshore renewables generates a number of
future spatial management scenarios with different
economic consequences for the sectors in volved
(Fock 2011b).

Thus, for the study area, we developed an inte-
grated modelling framework combining BNs and GIS
to assess the risks of possible spatial management
options in relation to 2 scenarios for international

fishing fleets, the vulnerability of plaice Pleuronectes
platessa to fishing and the revenues generated
within the study area. Those scenarios describe: (1) a
shift of resource distribution due to environmental
change and the assessment of spatial management
options under a defined management objective, and
(2) the spatial expansion of wind energy deve -
lopment with a related fishing effort allocation and
the prediction of ecological and economical risks.
Finally, we tested the capability of this approach to
support a risk assessment framework in the context
of marine spatial management under different base-
line conditions and management objectives.

MATERIALS AND METHODS

BN development

Our study area comprised the German EEZ of the
North Sea with its adjacent coastal waters (Fig. 1). In a
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Fig. 1. Study area with 7 m beam trawl sampling stations, estimated spatial distribution patterns of catch per unit effort (cpue)
of total plaice (upper panel), plaice Pleuronectes platessa ≥27 cm (lower, left panel), average (2000−2009) bottom salinity (psu)
(lower, middle panel) and temperature (C°) (lower, right panel). EEZ: exclusive economic zone; BS: bottom salinity; BT: bottom 

temperature
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GIS we superimposed a 3 by 3 nautical mile (n mile)
vector grid for the subsequent analysis. The grid size
was determined by the maximum resolution of fishing
effort data (see Fock 2008). This grid contained all the
attribute information necessary to populate the con -
ditional probability tables (CPTs) of the model nodes
(Fig. 2). The model nodes and associated data are
 described in more detail below (see Table 1).

Average bottom temperature and average 
bottom salinity

Bottom temperature and bottom salinity are envi-
ronmental predictor variables for plaice Pleuro nec -
tes platessa. From the ICES oceanographic database
(www.ices.dk/ocean/aspx/HydChem/HydChem.aspx)
we extracted sea bottom temperature and salinity
data for the years from 2000 to 2009 for the third quar-
ter of each year. Within the study area we interpolated
the annual temperature and salinity values on a high-
resolution grid (0.6 n mile or 0.01  decimal degrees),
using ordinary kriging (Cressie 1991). We summarised
the values on the 3 n mile vector grid to represent
 average bottom temperature and salinity.

Depth

The average depth is an environmental predictor
variable for plaice. For each grid cell we derived the
average depth (m) from the General Bathymetric
Chart of the Oceans (GEBCO) digital atlas (www.
gebco.net).

Sediment

We obtained sediment data from the Federal Mar-
itime and Hydrographic Agency and assigned each
cell to a sediment type (www.bsh.de). In total, we
allocated 17 sediment categories to the grid cells
which were comprised of 4 main sediment categories
(mud, M; fine sand, fS; medium sand, mS; and coarse
sand, cS) with different sorting categories ranging
from very poorly (vps), poorly (ps), moderately (ms),
well (ws) and very well (vws).

PlaiceTotal and Plaice≥27cm

For the study area, we extracted plaice catch data
from the third quarters of annual beam trawl surveys
from 2000 to 2009 (393 tows) using a 7 m beam trawl
with a towing time of 30 min with the German re-
search vessels ‘SOLEA I’ and ‘SOLEA II’ (see Fig. 1).
We also extracted, for each sampling station, the bot-
tom temperature and bottom salinity records. With
the help of a length–weight relationship (w [kg] = a
lengthb; a = 0.0069 and b = 3.1084; vTI data), we com-
puted catch per unit effort (cpue; kg per 30 min) for
total plaice catches (referred to as total) and for the
size class ≥27 cm (referred to as ≥27 cm), as 27 cm
corresponds to the minimum landing size of plaice.
To account for the inter-annual variability (p = 0.05) in
plaice catch data (total and ≥27 cm), we standardised
cpue data with the help of generalized linear models
(GLM) using the factor ‘year’ as a predictor variable.
As described in Stelzenmüller et al. (2007), we
derived calibration coefficients by back-transforming

FishingEffort

FEOtter FEShrimp

Catch

FEBeam

Sediment

Euro Vulnerability

PlaiceTotal Plaice ≥ 27cm

Average bottom temperature Average bottom salinity Depth

Fig. 2. Conceptual model showing the key variables used to predict the overall level of vulnerability of plaice Pleuronectes
platessa to fishing as a function of the total catch and catch per unit effort (cpue) of plaice ≥27 cm. Abbreviations defined in 

Table 1
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the parameter estimates (Quinn II & Deriso 1999) and
transformed cpue data by dividing the raw cpue by
the appropriate power coefficient (exponential func-
tion of GLM parameter estimate). We predicted the
average (2000 to 2009) spatial distribution pattern of
plaice with standardised and aggregated cpue data
with the help of regression kriging, a hybrid tech-
nique which combines regression techniques with
kriging of the regression residuals (see details of the
method in Hengl et al. 2007). Recent studies used this

modelling technique to estimate the spatial distribu-
tion pattern of commercial species such as plaice, sole
Solea solea and thornback ray Raja clavata (Maxwell
et al. 2009) or patterns of fishing effort density around
marine protected areas (Stelzenmüller et al. 2008).
This spatial modelling technique requires a number
of analysis steps. First, we assessed the relationships
be tween the cpue data of plaice (total and ≥27 cm)
and the environmental variables at the sampling lo -
cations using generalized additive models (GAMs)

Node Description States

FishingEffort Sum of total hours fished per 3 n mile grid cell in 2008 by German, 0−33; 33−100; 100−200; 
Dutch and Danish beam and otter trawlers potentially catching 200−700; 700−3400
plaice Pleuronectes platessa ≥27 cm

FEBeam Total hours fished per 3 n mile grid cell in 2008 by German, 0−0.4; 0.4−6; 6−30; 30−110; 
Dutch and Danish beam trawlers 110−1330

FEOtter Total hours fished per 3 n mile grid cell in 2008 by German, 0; 0−1.9; 1.9−5; 5−17; 17−575
Dutch and Danish otter trawlers with a mesh size ≥80 mm

FEShrimp Total hours fished per 3 n mile grid cell in 2008 by German, 0; 0−1.3; 1.3−3.9; 3.9−16; 
Dutch and Danish beam trawlers fishing for brown shrimp 16−414
with a mesh size 16−31 mm

Catch Total German, Dutch and Danish landings (kg) of plaice ≥27 cm 0−40; 40−500; 500−2500; 
in 2008 per 3 n mile grid cell derived from logbook data 2500−7000; 7000−44000

Euro Total catch of plaice ≥27 cm multiplied by the average market 0−80; 80−1100; 1100−5000; 
price per kg in 2008 (1.89 €) 5000−13000; 13000−90000

Sediment Sediment data obtained from the Bundesamt für Seeschifffahrt und Sms, cSvws, cSws, fSms, fSps, 
Hydrographie (Federal Maritime and Hydrographic Agency, fSvps, fSvws, fSws, Mms, 
www.bsh.de) with 17 sediment categories: mud (M), fine sand (fS), Mps, mSms, mSvps, mSvws, 
medium sand (mS) and coarse sand (cS) with different sorting cate- mSws, Mvps, Mvws, Mws
gories ranging from very poorly (vps), poorly (ps), moderately (ms),
well (ws) and very well (vws) sorted

Average bottom Annual bottom temperature (C°) distributions (www.ices.dk) were 11.3−12.7; 12.7−13.7; 
temperature estimated with ordinary kriging (Cressie 1991) and averaged from 13.7−14.3; 14.3−15; 15−16.3

2000 to 2009 for each 3 n mile grid cell

Average bottom Annual bottom salinity (psu) distributions (www.ices.dk) were 10.5−24.2; 24.2−26.2; 26.2−28; 
salinity estimated with ordinary kriging (Cressie 1991) and averaged from 28−29.2; 29.2−31.5

2000 to 2009 for each 3 n mile grid cell in every grid

Plaice≥27cm Log(cpue + 1) of plaice ≥27 cm per 3 n mile grid cell predicted with re- 0−0.6; 0.6−0.9; 0.9−1.4; 
gression kriging (Hengl et al. 2007) using aggregated and standardi- 1.4−1.8; 1.8−2.4
sed 7 m beam trawl catch data (2000−2009, third quarter of each year)

PlaiceTotal Cpue of plaice per 3 n mile grid cell predicted with regression kriging 0−4; 4−8; 8−11; 11−15; 15−30
(Hengl et al. 2007) using aggregated and standardised 7 m beam 
trawl catch data (2000−2009, third quarter of each year)

Vulnerability A relative measure of the vulnerability of plaice ≥27 cm to beam and 0 (State 0, no); >10.12 (State 1, 
otter trawling within the study area defined as: very low); 3.45−10.12 (State 2, 

low); 1.67−3.45 (State 3, medi-
um); 0.38−1.67 (State 4, high); 
<0.38 (State 5, very high)

with the first term reflecting the modelled relative proportion of 
plaice ≥27 cm (log 1 + cpue) within a grid cell (i ) and the second term 
showing the relative proportion of the total catch within a grid cell

Depth The average depth (m) for each grid cell was derived from the 12–26; 26–36; 36–40.4;
General Bathymetric Chart of the Oceans (GEBCO) digital atlas 40.4–44; 44–72
(www.gebco.net)

cpue

cpue

Total catch

Total catch
=1

n

=1

n
i

i

i

i∑ ∑

Table 1. Overview of model nodes, description of data collection and states. All model nodes reflect attributes from the 3 by 
3 n mile vector grid. cpue: catch per unit effort
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(Hastie & Tibshirani 1986). We assessed possible co-
linearity with the help of Pearson product moment
correlation between the cpue data and the environ-
mental variables (average bottom temperature, aver-
age bottom salinity and depth) and among the envi-
ronmental variables. For the GAM calculations, we
allowed for possible non-linear effects of the environ-
mental variables using natural splines (Venables &
Dichmont 2004) while controlling the risk of over-
 fitting by limiting the degrees of freedom. From the
full set of calculated GAMs, we selected the best
models by the lowest value of the Akaike information
criterion (Akaike 1973) and predicted the cpue of
total plaice and plaice ≥27 cm log(1 + cpue) for each
grid cell of a high-resolution grid (0.6 n mile) (re -
ferred to as trend maps). We corrected the spatial
GAM estimates by conducting a geostatistical analy-
sis of the GAM residuals, which is the second step in
the regression kriging process. We described the spa-
tial structuring of the GAM residuals using semivari-
ograms and  fitted the parameters of spherical models
(nugget effect, sill and range) with a weighted least-
squares fitting procedure (Cressie 1991). Afterwards,
we predicted a value of the residuals using ordinary
point kriging for each 0.6 n mile grid cell (referred to
as autocorrelation map). We then combined the re-
spective trend and autocorrelation maps to produce
continuous maps of the average distribution of plaice.
In a final step, we transferred the predicted cpue of
plaice (total and ≥27 cm) to our standard analysis grid
(3 n mile) within the GIS.

FishingEffort, FEBeam, FEOtter and FEShrimp

We combined German, Dutch and Danish VMS (ves-
sel monitoring system) and logbook data from 2008 to
calculate fishing effort and total catch (marketable
catch) within in each 3 n mile grid cell. Logbook data
are not defined on these fine levels, but it is a propor-
tional calculation to effort (see below). Original VMS
data consist of the vessel identification number, posi-
tion, speed and heading. We assessed the fishing ef-
fort for métiers (fleets) which catch plaice ≥27 cm as
target species and bycatch; these comprised beam
trawls fishing for brown shrimp with a mesh size of
from 16 to 31 mm (referred to as FEShrimp), beam
trawls with a mesh size of from 80 to 99 mm targeting
flatfish (referred to as FEBeam) and demersal otter
board fishing for flatfish with a mesh size of from 80 to
99 mm (referred to as FEOtter). We also aggregated
the total fishing effort of those fleets (referred to as
FishingEffort). We categorised the VMS data into sig-

nals indicating ‘fishing’ and ‘not fishing’ with the help
of the individual vessel speed. The position of each
vessel was then allocated to the 3 n mile grid cells (i.e.
100 fine rectangles per ICES rectangle), and the time
interval between 2 positions was summed up to the
amount of fishing effort spent per grid cell (hours fish-
ing). Since the time interval between each position
can be up to 2 h, there is a considerable amount of
‘unseen’ activity by each vessel. We took this uncer-
tainty into account following the method developed
by Fock (2008), whereby each registration was sub -
stituted with a discrete set of positions with a high
probability of vessel presence.

Catch and Euro

We derived the total catch from plaice landings in-
dicated in the logbook data. We aggregated landings
according the international VMS data and calculated
the total catch (kg) for 2008. The total catch was dis-
tributed proportionally to the effort to each 3 n mile
grid cell and multiplied by the mean price (1.89 €) of
plaice of German landings in 2008 to calculate the
revenue (referred to as Euro) gained per grid cell.

Vulnerability

To reflect the pressure of the fishing activities on the
plaice population, we constructed a measure of vul-
nerability which reflects, at a given location, the rela-
tive local pressure of fishing on the resource in relation
to its estimated spatial distribution. Thus, we defined
the vulnerability (V ) of plaice ≥27 cm to fishing as:

(1)

with the first term reflecting the ratio of cpue on
plaice ≥27 cm (log 1 + cpue) within a single grid cell
i and the cpue cumulated over all cells. These cpue
data refer to surveys and therefore better represent
the abundance. The second term indicates the same
ratio for commercial catches. The lower the coeffi-
cient is, the higher the vulnerability for plaice
≥27 cm. We then categorised the vulnerability values
to 6 vulnerability states using quartiles: State 0 = no;
State 1 (>10.18) = very low; State 2 (3.45 to 10.18) =
low; State 3 (1.67 to 3.45) = intermediate; State 4 (0.38
to 1.67) = high; State 5 (0.04 to 0.4) = very high.

Our vulnerability index Vi reflects the overlap of
population and catches, but it can also be interpreted

Vi
i

i

i=
=∑

cpue
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Total catch
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in terms of fishing mortality: 

(2)

as:
(3)

with pplaice,i being the occurrence of plaice within a
cell, Fplaice as the fishing mortality for the entire stock
and fi as the local fishing mortality (Rijnsdorp et al.
2006).

We used the Netica software system (www.norsys.
com) (see details in Spiegelhalter & Dawid 1993 on
the inference algorithm implemented in Netica) to
develop the BN model and combined the in- and out-
put files with the GIS vector grid. The BN model
(Fig. 2) represents the vulnerability of plaice ≥27 cm
to fishing and the revenues generated from plaice
catches within the study area as a function of fishing
effort and the average distribution pattern of the
resource, which is, in turn, influenced by the envi-
ronmental variables bottom temperature, bottom
salinity and depth. Fishing effort and the environ-
mental variables are parent nodes and are consid-
ered to be independent of each other. Each parent
node has different discrete states (e.g. temperature
or depth categories) with an associated probability of
occurrence. The FEBeam, FEOtter and FEShrimp,
reflecting the fishing effort (hours fished) of the dif-
ferent métiers, are child nodes of the fishing effort
node. Further, the vulnerability node is defined as a
child node of the total catch node and the resource
node (plaice ≥27 cm). The revenue node is a child
node of the total catch node. The child node total
plaice is influenced by the total catch node and the
plaice ≥27 cm node, while the sediment node show-
ing the sediment categories affected by fishing is a
child node of the fishing effort node.

One of the advantages of using BNs is that empirical
data, as well as expert opinion, can be used to define
the prior probabilities. For the present study, however,
we built the prior probabilities for each node in our
model based on GIS data and not on expert opinion.
Thus, the model reflects the current level of ‘evidence’
for relationships, and the data were used to populate
the conditional probability tables (CPTs).

BN sensitivity and performance assessment

We conducted a sensitivity analysis and assessed
the overall performance of the BN. First, we evalu-

ated the sensitivity of the vulnerability node to the
influence of the parent nodes by calculating the vari-
ance reduction (Marcot et al. 2006). Next, we tested
the performance of the model by removing the obser-
vations for the vulnerability node and a subsequent
calculation of the maximum-likelihood state. This
allowed us to estimate the Type I error rate (%) by
comparing the predicted beliefs of the unobserved
vulnerability node with the true values for the vul-
nerability node and to evaluate the classification suc-
cess rate using the spherical payoff index (see
detailed description in Marcot et al. 2006):

(4)

where MOAC is the mean probability value of a
given state averaged over all cases and ranges from
values of 0 to 1 (1 being the best model performance),
PC is the probability predicted for the correct state, Pj

is the probability predicted for state j and n is the
number of states.

Marine management scenarios

With the help of the BN-GIS framework we ex -
plored possible management options under a defined
management objective in case of environmental
change and assessed potential consequences of a spa-
tial management scenario for the fishing fleets, the
vulnerability of the plaice population and the revenues
in the area of interest. Thus, after building and testing
the BN as described above, we used it to infer the be-
haviour and response of the variables to different sce-
narios. We defined 2 marine management  scenarios
which included the setting of objectives and predicted
the consequences of those objectives. We defined the
current state as the baseline or ‘do-nothing’ scenario.

Scenario 1

What management targets for fisheries are re -
quired to maintain the current vulnerability of plaice
in the case of environmental change? We defined the
maintenance of the current average vulnerability of
plaice to fishing as the management objective. We
simulated an increase in the relative average bottom
temperature in our study area of 0.5°C with now 10%
of the area being in State 1, 12% in State 2, 13.7% in
State 3, 31.4% in State 4 and 32.9% in State 5.
We then predicted the responses of the variables and

MOAC c
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n
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the potential consequen ces for the vul-
nerability of plaice. Afterwards we used
the BN model to predict a possible
 management intervention for the total
fishing effort to maintain the current
average measure of vulnerability of
marketable plaice.

Scenario 2

How does the vulnerability of mar-
ketable plaice change after the devel-
opment of offshore wind energy and a
related displacement of fishing effort?
One of the high level German manage-
ment objectives for the EEZ of the North
Sea is an installed capacity of offshore
wind energy of 20 000 MW by 2030. We
used the current application areas for
wind energy development (provided by
the Bundesamt für See schifffahrt und
Hydrographie [BSH]; www.bsh.de) and
reallocated the current fishing effort
with the help of a set of simplified dis-
placement rules (see Fig. 3). Although
fishermen’s behaviour is likely much
more complex, we reset the fishing ef-
fort for grid cells within the wind energy
application areas to zero and redistri -
buted the same amount of fishing effort.
In the GIS we constructed 3 buffer rings
(3, 10 and 15 km) around the application
areas and redistributed the fishing effort
of each fleet with 70% of the respective
effort to the 3 km buffer area, 20% to
the 10 km buffer area and 10% to the 15
km buffer area. Further cells where no
fishing activity occurred in 2008 were
excluded from the redistribution of
 activities. This displacement scenario
should account for the fact that fishermen tend to fish
very close to closed areas such as marine protected
areas or fishing closures (e.g. Murawski et al. 2005,
Stelzenmüller et al. 2008).

RESULTS

Baseline scenario

The complete derived model describing the rela-
tionships between fishing effort, total catch of plaice,

environmental parameters and the distribution of the
resource is presented in Fig. 4. For each node repre-
senting a continuous variable a weighed mean (the
mean value weighted by the probability of occur-
rence) and a Gaussian standard deviation is shown.
Thus, we computed an expected mean of 546 h fished
in total by international fishing fleets. Also 20.2% of
the surface area has been fished from 0 to 33 h in total
by international fishing fleets. The baseline scenario
also revealed that there is a 19.4% chance of catching
from 0 to 40 kg of plaice ≥27 cm within any given grid
cell. The revenue node (Euro) showed that there is a
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Fig. 3. Spatial distribution patterns of the total international fishing effort
(FE) in 2008 of the beam trawl fleet (FEBeam) and shrimper fleet (FEShrimp)
(left panels) and respective fishing effort displace-ment scenarios (right

panels)
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22.2% chance that any given gird cell
would generate between 80 and 1100 €

from German plaice landings in 2008.
The expected revenue was 12 100 € with a
standard deviation of 21 000 €. A further
42.8% of the fishing activities took place
on very well sorted fine sand (fSvws) and
26.5% took place on well sorted fine sand
(fSws). Under current fisheries manage-
ment and the predicted spatial distribu-
tion of the resource, we computed a likeli-
hood of 8.4% that a grid cell experienced
a vulnerability of 0 (State 0) and a 26.4%
chance of being in the vulnerability State
4 (high).

BN sensitivity and performance 
assessment

Table 2 shows the results of the sensi-
tivity assessment of the BN model as the
computed variance reduction for the vul-
nerability node. The total catch of plaice
had the greatest influence followed by
the revenue of plaice. The revenues
ranked high due to the significant corre-
lation with the catch values. In terestingly,
the fishing effort of the beam trawlers re-
duced the variance by 9.4%, while the to-
tal fishing effort reduced the latter by only
3.92%. The environmental variables were
the least influential ones. The calculation
of the Type I error rate revealed a slightly
increased value of 25.6% for the vulnera-
bility node. However, the classification
success rate (spherical payoff), which
ranges from 0 to 1, with 1 being best
model performance, indicated a relatively
accurate model for predicting vulnerabil-
ity with a value of 0.8. The confusion ma-
trix provided in Table 3 indicates the ac-
curacy of the beliefs of the vulnerability
node predicted by the BN model using
the data described in Table 1.

Scenario 1

The consequences of the simulated
increase in weighted average bottom
temperature from 13.9 to 14.4°C are dis-
played in Fig. 5a. Under this environ-
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mental change scenario the weighted average vul-
nerability for plaice increased slightly from 2.61 to
2.64 caused by a marginal decrease in surface area
(or number of cells) in the vulnerability States 0, 2, 3
and 4 and a concurrent increase in surface area in
States 1 and 5. This increase in the average vulnera-
bility is not significant as it is still within the confi-
dence limit of the standard deviation. However,
under the management objective of maintaining the
current expected value of vulnerability, one possible
management intervention would be to increase the
surface area (or number of cells) in fishing effort
State 1 by 20% and State 2 by 16%, together with a
reduction of the surface area in fishing effort State 3
by 8% and States 4 and 5 by approximately 14% (see
Fig. 5b). This possible intervention reflects a reduc-
tion of the weighted average international total
annual hours fished per grid cell (equals 30 km2) by
60% (from 546 to 197 h), with the FEBeam being
affected most (from 167 to 87 h). The consequences
for revenues would be a possible de crease in the
expected mean catch by 840 to 5430 kg, with an asso-
ciated decrease in mean revenue per grid cell area of
1500 € (given constant prices).

Scenario 2

The BN model predicted the beliefs for all states of
the total catch and vulnerability nodes based on the
defined fishing effort reallocation after the closure of
the wind farm application areas to fishing (Fig. 6).
The predicted distribution of the catches showed a
rather homogenous increase of catches around the
areas closed for fishing. The arithmetic mean of
catches under Scenario 2 is approximately 3000 kg
higher than under the baseline scenario. The pre-
dicted pattern of the most probable vulnerability
states showed a decrease in the surface area in the
vulnerability State 5 and an increase in the surface
area in States 2 and 4. A closer examination of the
spatial distribution patterns of predicted vulnerabil-
ity states showed, for instance, for State 2 a general
increase in the number of cells in the north-eastern
part of the study area under Scenario 2 (Fig. 7). In
Fig. 8 the surface area per vulnerability state is com-
pared between the baseline scenario and Scenario 2.
Thus, the predicted consequences or costs of Sce-
nario 2 were that 12% of the surface area would
experience an impairment of vulnerability. In con-
trast, the benefit would be that approximately 17% of
the surface area would experience a lower level of
vulnerability compared to the baseline scenario and
71% of the surface area would not experience any
change.

DISCUSSION

We assessed the risks of possible spatial manage-
ment options for the vulnerability of plaice Pleuro -
nectes platessa to fishing and the fisheries’ economic
viability in the German EEZ of the North Sea and its
adjacent coastal waters in relation to 2 scenarios. In
the context of a risk assessment framework the spa-
tial predictions of plaice cpue, fishing effort, total
catch and revenue, and plaice vulnerability corre-

spond to the risk analysis step, where
the likelihood of the exposure to a
hazard and its likely effects are
described.

Our spatial models of plaice cpue
represent only average estimates of
the plaice distribution in the third
quarter of each year between 2000
and 2009, and the data on fishing
effort are only from 2008; thus, the
results are limited to a relative inter-
pretation. However, they suffice for
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Node Variance reduction (%)

Catch 57.50
Euro 54.10
PlaiceTotal 14.20
FEBeam 9.43
FishingEffort 3.92
Plaice≥27cm 2.39
FEOtter 2.06
FEShrimp 0.84
Sediment 0.18
Average bottom temperature 0.17
Average bottom salinity 0.17
Depth 0.07

Table 2. The variance reduction reflects the sensitivity of the
vulnerability node to the findings of the parent nodes. For 

abbreviations, see Table 1

Actual vulne- State 0 State 1 State 2 State 3 State 4 State 5
rability state

0 22 31 0 0 0 0
1 4 279 28 0 0 0
2 0 7 177 2 0 0
3 0 1 110 13 61 0
4 0 0 19 9 345 2
5 0 0 4 0 41 91

Table 3. Confusion matrix showing the accuracy of the beliefs of the vulnera-
bility node predicted by the Bayesian Belief Network (BN) model using the 

data described in Table 1
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constructing a measure of the relative
vulnerability of plaice to fishing as an
indicator of the sensitivity of an
ecosystem component to human pres-
sures. Here, we followed the general
concept of vulnerability reflecting the
ratio between an effect indicator and
an exposure indicator (see a detailed
review by De Lange et al. 2010 of the
methods to assess sensitivity and vul-
nerability). Recent studies by Fock
(2011a) and Fock et al. (2011) showed
that such a measure of vulnerability
(i.e. the risk of an ecosystem com -
ponent) can also be ex pressed as a
relative measure accounting for the
 negative and positive effects of distur-
bance such as fishing.

Our presented measure of vulnera-
bility does not reflect the condition of
the plaice population and its general
vulnerability to fishing, instead it
reflects a static measure built on the
ratio of 2 proportions. As already indi-
cated, our proposed spatial Vi can also
be interpreted in relation to fishery
mortality, allowing for a more general
assessment of vulnerability of fish
populations to fishing. Thus, the vul-
nerability index Vi may be applied in
cases where full ecological risk ana -
lysis cannot be parameterised. It
may also be applied to stocks for
which analytical assessments are not
available.

We presented 2 different scenarios
to test the capability of our approach
to assess the consequences of spatial
management options and to resolve
those risks spatially. In other words,
such an assessment corresponds to
the risk characterisation step of a risk
assessment framework. The first sce-
nario simulated an increase in the
average bottom temperature of 0.5°C
and showed one possible manage-
ment option under the management
objective of maintaining the expected
average vulnerability. Although this
scenario reflects a rather hypothetical
set up, the results highlighted the
importance of specifying the manage-
ment regulations of fishing activities

207

A
ve

ra
g

e 
b

o
tt

o
m

 t
em

p
er

at
ur

e
11

.3
 t

o 
12

.7
12

.7
 t

o 
13

.7
13

.7
 t

o 
14

.3
14

.3
 t

o 
15

15
 t

o 
16

.3

10
.0

12
.0

13
.7

31
.4

32
.9

14
.4

 ±
 1

.2

FE
B

ea
m

0 
to

 0
.4

0.
4 

to
 6

6 
to

 3
0

30
 t

o 
11

0
11

0 
to

 1
33

0

19
.6

19
.7

20
.8

19
.2

20
.7

16
7 

±
 3

30

FE
O

tt
er

0 0 
to

 1
.9

1.
9 

to
 5

5 
to

 1
7

17
 t

o 
57

5

43
.9

14
.1

12
.9

15
.0

14
.1

44
.1

 ±
 1

20

FE
S

hr
im

p
0 0 

to
 1

.3
1.

3 
to

 3
.9

3.
9 

to
 1

6
16

 t
o 

41
4

53
.0

11
.8

11
.7

11
.4

12
.1

27
.6

 ±
 8

0

Fi
sh

in
g

E
ff

o
rt

0 
to

 3
3

33
 t

o 
10

0
10

0 
to

 2
00

20
0 

to
 7

00
70

0 
to

 3
40

0

20
.2

20
.5

18
.6

20
.8

19
.9

54
6 

±
 8

40

0 
to

 0
.6

0.
6 

to
 0

.9
0.

9 
to

 1
.4

1.
4 

to
 1

.8
1.

8 
to

 2
.4

24
.0

21
.1

22
.7

17
.3

14
.9

1.
08

 ±
 0

.6
3

P
la

ic
eT

o
ta

l
0 

to
 4

4 
to

 8
8 

to
 1

1
11

 t
o 

15
15

 t
o 

30

18
.7

23
.4

14
.7

20
.9

22
.3

10
.9

 ±
 7

.5
S

ed
im

en
t

m
S

w
s

fS
vw

s
m

S
vw

s
fS

w
s

M
vp

s
fS

m
s

m
S

vp
s

cS
m

s
M

m
s

fS
vp

s
cS

w
s

M
w

s
M

vw
s

M
p

s
fS

p
s

cS
vw

s
m

S
m

s

18
.3

42
.8

3.
91

26
.5

1.
18

1.
18

0.
59

0.
59

0.
44

0.
96

0.
89

0.
44

0.
44

0.
44

0.
44

0.
44

0.
44

C
at

ch
0 

to
 4

0
40

 t
o 

50
0

50
0 

to
 2

50
0

25
00

 t
o 

70
00

70
00

 t
o 

44
00

0

19
.4

21
.9

21
.4

17
.6

19
.8

62
70

 ±
 1

10
00

E
ur

o
0 

to
 8

0
80

 t
o 

11
00

11
00

 t
o 

50
00

50
00

 t
o 

13
00

0
13

00
0 

to
 9

00
00

19
.7

22
.2

21
.2

18
.2

18
.7

12
10

0 
±

 2
10

00

D
ep

th
12

 t
o 

26
26

 t
o 

36
36

 t
o 

40
.4

40
.4

 t
o 

44
44

 t
o 

72

19
.3

21
.5

19
.7

20
.7

18
.9

37
.5

 ±
 1

3

A
ve

ra
g

e 
b

o
tt

o
m

 s
al

in
it

y
10

.5
 t

o 
24

.2
24

.2
 t

o 
26

.2
26

.2
 t

o 
28

28
 t

o 
29

.2
29

.2
 t

o 
31

.5

20
.1

19
.9

20
.4

20
.4

19
.3

25
.7

 ±
 4

.9

Vu
ln

er
ab

ili
ty

0 1 2 3 4 5

7.
93

27
.3

12
.1

12
.7

26
.0

14
.1

2.
64

 ±
 1

.6

P
la

ic
e

   2
7c

m

F
ig

. 
5.

(c
on

ti
n

u
ed

 n
ex

t 
p

ag
e)

 M
od

el
 r

e s
u

lt
s 

of
 S

ce
n

ar
io

 1
af

te
r 

(a
) 

si
m

u
la

ti
n

g
 t

h
e 

in
 cr

ea
se

 i
n

 t
em

p
er

at
u

re
 a

n
d

 (
b

)
ad

ap
ti

n
g

 t
h

e 
to

ta
l 

fi
sh

in
g

 e
ff

or
t 

to
 m

ai
n

ta
in

 a
 w

ei
g

h
te

d
av

er
ag

e 
vu

ln
er

ab
il

it
y 

(±
S

D
) 

of
 2

.6
1.

 V
er

ti
ca

l 
li

n
es

 a
re

 2
5

an
d

 5
0

%
. 

G
re

y 
b

ox
es

 i
n

d
ic

at
e 

n
od

es
 w

h
er

e 
th

e 
va

lu
es

h
av

e 
b

ee
n

 
ch

an
g

ed
 

fo
r 

th
e 

re
sp

ec
ti

ve
 

sc
en

ar
io

s.
 

F
or

 
ab

b
re

vi
at

io
n

s 
an

d
 u

n
it

s 
of

 m
ea

su
re

m
en

t,
 s

ee
 T

ab
le

 1

a



Mar Ecol Prog Ser 441: 197–212, 2011

on the level of fishing fleets. In our
example, the beam trawl fleet was
affected most by the overall restriction
of the annual hours fished. In addition,
different fishing activities have differ-
ent impacts on the environment, which
is, in turn, the result of the catchability
of the gear used and its bottom contact
(Fock et al. 2011). The scenario results
also revealed changes in the relative
magnitude of pressure on the different
sediment categories due to changes in
fishing effort. Hence, future applica-
tions of the BN model could also ex -
plore scenarios of potential manage-
ment measures to achieve multiple
management objectives, such as the
reduction of pressure on certain sedi-
ment categories (which may reflect
certain benthos communities) and the
prevention of a certain state of plaice
vulnerability. In addition to a spatial
shift in plaice distribution, other ex -
pec ted impacts of such an environ-
mental change scenario may be seen
in a shift in fishing seasons due to pos-
sible changes in the spawning behav-
iour of plaice (Munk et al. 2009).
Although the effects of increasing tem-
peratures since 1989 on the quality of
plaice nursery grounds are not clear,
possible impacts may comprise a
 mismatch of benthic production and
energy requirements of 0-group flat-
fish (Teal et al. 2008). Thus, the inter-
national fleet targeting plaice in the
study area would need to adapt to such
changes. Leaving aside any potential
implication on fishing costs, the eco-
nomic consequences of changes in
seasonality will most likely influence
supply and demand dynamics and
therefore prices and revenues. Thus,
this scenario could be used further to
explore the effects of management
options on the level of fishing fleets
and to identify adaptation options
when pressures are added that cannot
be managed, such as climate change.

Our second scenario was explicitly
designed to test the framework’s capa-
bility for supporting the decision-mak-
ing process in marine spatial manage-
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ment. We used the current application areas for off-
shore wind farms as a basis for reallocating the inter-
national fishing effort which occurred in those areas
in 2008. A recent study by Berkenhagen et al. (2010)
estimated that the flatfish fishing grounds impacted
by the wind farm scenario previously provided about
50% of flatfish catches in the German North Sea.
This shows the importance of accounting for prefer-
ence areas in fishing in the development of spatial
management options. For this scenario our set of fish-
ing effort reallocation rules aimed to represent a lin-
ear decrease in fishing effort with increasing dis-
tance from areas closed to fishing (see Stelzenmüller
et al. 2008 and references therein). Yet fishermen’s
responses to areas closed to fishing are often more
complex and call for case-specific models, like the
bio-economic model for Mediterranean swordfish
by Tserpes et al. (2009) or individual-based models
which incorporate factors such as fuel prices or mar-
ket development (BEMMFISH 2005). The aggre -
gation of fishing vessels in smaller areas outside
closed areas could also lead to increased competition
and conflict (Shipp 2003). Moreover, the social con -
sequences of fishing effort allocations due to spa-
tial management measures could also comprise a

general interest of fishermen to in crease
fishing capacity due to in creased steam-
ing time, which stands in con trast to cur-
rent fisheries management practice
(Agardy 2010, Agardy et al. 2011 and
references therein). For the North Sea
only a few studies analyse the resource
distribution, spatial management, effort
allocation and economic as pects of fish-
eries separately or in pairs (Marchal et
al. 2002, 2007, Poos et al. 2009). As yet,
studies integrating all aspects are still
lacking. This highlights the fact that the
prediction of  fishermen’s responses to
management often re presents a knowl-
edge gap that hinders the construction of
more realistic sce narios which are cru-
cial for sound decision-making in eco -
system-based management.

Once improved knowledge on fishing
patterns and fishermen’s responses be -
comes available, such information could
be incorporated into our modelling
frame work; this would enable the inte-
gration of other relevant factors and their
relationships or other mo del outcomes
representing, for instance, the spatial
distribution patterns of fishing activities.

Future ap plications could also address the potential
cross-border consequences (economic and ecologi-
cal) of spatial management scenarios in the German
EEZ of the North Sea.

Both scenario outcomes reflect spatial management
options under assumed management objectives rather
than final solutions. Like any modelling  technique our
BN-GIS framework, constructed to des cribe complex
relationships between human ac tivities and sensitive
ecosystem components, is constrained by the available
data at the relevant spatial scale. Thus, interpretations
of the results are specific to the spatial scale of the
study area (see Marcot et al. 2006). Further, BN mod-
els require the full probability structure of the vari-
ables and their relationships, which is not a straight-
forward task in cases with poor data or which require
expert judgement. Also, there are limitations regard-
ing the level of complexity that can be consistently
 assessed by BN models (Marcot et al. 2006).

Any decision-making process in environmental
management requires both the assessment of proba-
bilities of certain outcomes (risk analysis) and the
consideration of a manager’s attitude to risk (risk
management) in order to validate the level of uncer-
tainty about whether or not a management decision
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Fig. 6. (a) Total catch (kg) derived from vessel monitoring system and log-
book data in 2008, (b) current vulnerability of plaice ≥27 cm to fishing
pressure, (c) the predicted distribution of total catch and (d) the most prob-
able vulnerability state of plaice ≥27 cm after the displacement of fishing
effort (Scenario 2) due to implementation of offshore wind farms (green 

in c,d)
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will lead to the desired outcome (see
Marcot et al. 2006 and references
therein). BNs can incorporate nodes
representing potential management
decisions or the utility of outcomes and
allow for a comparison of outcome val-
ues weighted by their relative probabil-
ities. Ultimately, to be of direct use for
decision-making in ma rine spatial man-
agement, BN models and related sce-
narios require clear management ob-
jectives. Ma rine spatial planning aims
to achieve multiple objectives by man-
aging human activities in space and
time; thus, assessing the risk of failing
to complete those objectives is an es-
sential component of adaptive manage-
ment (Douvere & Ehler 2009, 2010).

In summary, our results showed the
potential range of applications of the
spatially explicit and integrated model-
ling framework. One of the main ad-
vantages of this approach is the ability
to spatially examine the spatial pattern
of uncertainty related to spatial man-
agement options, which is crucial for
MSP. Further, to support the actual de-
cision-making process in spatial man-
agement, the modelling framework pre-
sented needs to be adapted to each case
according to the available data, spatial
scale and management objectives. For
instance, once the driving factors of
fishermen’s behaviour are known, more
realistic scenarios can be defined to as-
sess spatial management options in our
study area. Ideally, management objec-
tives also include a de finition of targets

and thresholds against which predicted changes can
be assessed. In other words, to adopt our proposed
vulnerability measure in a risk-management frame-
work, thresholds would be required reflecting the
maximum level of acceptable vulnerability of plaice to
fishing. We conclude that the approach presented
would be a useful tool in facilitating informed deci-
sions through the spatially explicit assessment of po-
tential risks and in relinquishing the related uncer-
tainty concerning spatial management options.
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Fig. 7. Example results for Scenario 2 on the assessment of changes in spatial
patterns of vulnerability states (black squares) after the closure of wind farm
application areas to fishing, together with a displacement of fishing effort.
Distribution of cells in the vulnerability States 2, 4 and 5 according to the
baseline scenario (left panels) and the distribution patterns of the predicted 

States 2, 4 and 5 in Scenario 2 (right panels) are displayed

Fig. 8. Relative comparison of surface area (km2) and vulner-
ability state between the baseline scenario and Scenario 2
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