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ABSTRACT: Reliable estimates of in situ phytoplankton growth rates are central to understanding the
dynamics of aquatic ecosystems. A common approach for estimating in situ growth rates is to incu-
bate natural phytoplankton assemblages in clear bottles at fixed depths or irradiance levels and mea-
sure the change in chlorophyll a (Chl) over the incubation period (typically 24 h). Using a modelling
approach, we investigate the accuracy of these Chl-based methods focussing on 2 aspects: (1) in a
freely mixing surface layer, the cells are typically not in balanced growth, and with photoacclimation,
changes in Chl may yield different growth rates than changes in carbon; and (2) the in vitro methods
neglect any vertical movement due to turbulence and its effect on the cells' light history. The growth
rates thus strongly depend on the incubation depth and are not necessarily representative of the
depth-integrated in situ growth rate in the freely mixing surface layer. We employ an individual
based turbulence and photosynthesis model, which also accounts for photoacclimation and photo-
inhibition, to show that the in vitro Chl-based growth rate can differ both from its carbon-based in
vitro equivalent and from the in situ value by up to 100 %, depending on turbulence intensity, optical
depth of the mixing layer, and incubation depth within the layer. We make recommendations for
choosing the best depth for single-depth incubations. Furthermore we demonstrate that, if incubation
bottles are being oscillated up and down through the water column, these systematic errors can be
significantly reduced. In the present study, we focus on Chl-based methods only, while productivity
measurements using carbon-based techniques (e.g. *C) are discussed in Ross et al. (2011; Mar Ecol
Prog Ser 435:33-45).
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INTRODUCTION

The relevance of marine phytoplankton as a food for
the pelagos and as a potential sink of atmospheric
carbon is widely recognised. Marine phytoplankton
stands at the base of the pelagic food webs and may act
as a potential sink of atmospheric carbon. The ability to
determine reliably in situ phytoplankton primary pro-
ductivity and growth is crucial for understanding the
dynamics of aquatic ecosystems, for climate predic-
tions, and for the management of water quality. While
primary production measurements try to quantify the
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conversion of sunlight and inorganic substances into
organic compounds in units of grams carbon per unit
time and unit area or volume, the growth rates express
the increase in the phytoplankton population in units
of inverse time. Typical approaches for productivity
measurements include the *C and O, methods (Will-
iams et al. 1983), while growth rates are sometimes
inferred from the changes in total cell numbers (Rhee
& Gotham 1981, Kagami & Urabe 2001), or—more
commonly —total chlorophyll a (Chl) (Landry & Has-
sett 1982, Bienfang & Takahashi 1983, Calbet & Landry
2004) or taxon-specific pigments (Latasa et al. 1997).
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Current knowledge and technology do not permit us
to accurately determine the real in situ growth in nat-
ural cells that move freely through the water column. A
wide range of sophisticated in vitro methods have been
developed to measure phytoplankton growth rates at a
species or group level (Stolte & Garcés 2006). A com-
mon approach is to place a natural population into a
closed container (polycarbonate bottle or carboy) and
to determine the increase in phytoplankton Chl during
the incubation period (e.g. Bienfang & Takahashi 1983,
Furuya et al. 1986, Furnas 1990). Since this method
only delivers the net growth of the population, it was
further refined to the so-called dilution method
(Landry & Hassett 1982, Landry et al. 1995) to provide
additional information on the gross growth rate and
thus the grazing pressure (see Calbet & Landry 2004,
Behrenfeld 2010, Gutiérrez-Rodriguez et al. 2010, and
references therein).

The sampling bottles are often incubated at a single
fixed depth (light level), typically the same depth
where the samples were taken. Fixed-depth bottle
incubations do not necessarily provide a good repre-
sentation of the temporal and spatial variability in the
physical underwater environment, however, as phyto-
plankton is constantly being moved through the sur-
face mixing layer (SML) (Lewis et al. 1984b) and cells
become exposed to a wide range of light intensities
(see Fig.1 in Ross et al. 2008). Phytoplankton organ-
isms possess a number of mechanisms to cope with the
stresses imposed by fluctuating light (MacIntyre et al.
2000). Amongst the best understood of these mecha-
nisms are photoacclimation, which involves changes in
cellular pigment content, and photoprotection, which
involves reducing the efficiency of excitation energy
transfer from pigments to reaction centres (Falkowski
1983, Lewis et al. 1984a, Geider et al. 1998). Failure to
alleviate the light stress by photoacclimation and/or
photoprotection may result in photoinhibition of photo-
synthesis and, in extreme cases, cell death (Eilers &
Peeters 1988, Long et al. 1994, Behrenfeld et al. 1998,
Ross et al. 2008). These processes are relevant to as-
sessing phytoplankton growth from incubation experi-
ments, because the overall performance (growth) of a
cell, as well as the relationship between chlorophyll
synthesis, photosynthesis, and cell growth will vary
markedly with the cell's light history. One problem that
must be faced by the experimentalist is to determine at
which depth in the water column (e.g. at which light
level) to conduct an incubation in order to obtain accu-
rate measurements of the in situ growth rate.

The problem in using fixed-depth/irradiance bottle
incubation experiments to estimate the in situ growth
rate is thus 2-fold.

(1) Differences between growth rates estimated from
changes in chlorophyll concentration and carbon: A

sample of a natural phytoplankton population that is
taken from a single depth will contain cells with differ-
ent light histories and thus different photoacclimation
states (e.g. different Chl:C and different degrees of
photoinhibition). Very rarely will a particular cell be
fully adapted to the light intensity at the depth at
which it is found at a given instant in time (see Fig. 3).
By incubating cells at a fixed depth, their residence
time at the incubation depth is artificially increased,
which provides the opportunity to (1) photoacclimate
to the ambient light level, resulting in uncoupling of
chlorophyll synthesis from CO, fixation, (2) accumu-
late photoinhibitory damage if cells are incubated at
high light intensities too close to the surface, or (3)
repair photoinhibitory damage when incubated at low
light deeper in the water column. In general, it is there-
fore not justified to assume that phytoplankton growth
is balanced, i.e. that the increase in chlorophyll is
matched by the increase in carbon so that the former
may be used as proxy for the determination of the
carbon-based growth rate pc. Although most experi-
mentalists are aware of this problem (Brown et al.
2002, Latasa et al. 2005, Gutiérrez-Rodriguez et al.
2010) it remains difficult to provide an accurate quan-
tification of the associated error.

(2) The growth rate varies with incubation depth and
may not be representative of the entire SML: It is not
clear a priori, that cells incubated at a single fixed
depth (and thus at relatively stable light conditions)
should grow at a rate that is representative of the
entire layer. Particularly in coastal areas or estuaries,
where strong turbulent mixing in combination with
high light attenuation coefficients may subject the cells
to large and rapid changes in light intensity (e.g. Lizon
et al. 1998, Sharples et al. 2001, Moore et al. 2006, Ross
& Sharples 2007), or during deep mixing events in the
open ocean in winter and spring (e.g. Fig. 1 in Ross et
al. 2008, Woods & Onken 1982, Nagai et al. 2003), the
associated error can become quite large. Alternative
approaches have been devised which aim to alleviate
this problem by simulating the large-scale vertical dis-
placements due to turbulence by moving the incuba-
tion bottles up and down through the water column or
using on-deck incubators that expose the samples to
variations in light intensity (Marra 1978, Kohler 1997,
Kohler et al. 2001, Gocke & Lenz 2004). While both the
yo-yo technique and the linear incubator appear to be
promising approaches to overcome the limitations
associated with fixed-depth incubations, they both
come with the caveat that the choice of the amplitude
and period of the vertical oscillations/light variations is
an ad hoc decision which is often taken without much
prior knowledge of the in situ mixing conditions.

In the present study we employ a state-of-the-art
individual-based model of turbulence and phytoplank-
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ton growth, acclimation, and inhibition to compare the
Chl-based growth rates obtained from fixed-depth bot-
tle incubations with the carbon equivalent and the
growth rates obtained for a population that was freely
mixing in the SML. As it is currently not possible to
measure the in situ growth rate of a freely mixing
phytoplankton population non-intrusively, the use of a
model seems the best approach. The model consists of
2 components: (1) a Lagrangian turbulence module,
which provides the individual particle tracks and asso-
ciated light histories in response to turbulence mixing,
and (2) a biological module, which calculates the
growth rates based on the individual light histories,
taking into account photoacclimation and photoinhibi-
tion. The Lagrangian technique (Woods & Onken 1982,
Wolf & Woods 1988, Lizon et al. 1998, Broekhuizen
1999, Ross & Sharples 2007) seems a natural choice to
approach this problem, as its Eulerian counterpart can-
not provide the necessary information on the individ-
ual light histories. We simulate shallow and deep, tur-
bid and clear, turbulent and quiescent water columns
in order to quantify the differences between the
growth rates for a range of natural environments. We
propose remedies and recommendations for the exper-
imental protocol that will help to minimise the errors
associated with fixed-depth incubations. We also
examine the extent to which a vertically oscillating
bottle incubation can deliver more accurate estimates
of the in situ growth rates. In a companion paper (Ross
et al. 2011, this volume), we investigate how fixed
depth incubations affect estimates of primary produc-
tivity, which are usually based on C in a series of
incubations that are suspended at fixed depths
throughout the mixing layer.

METHOD

With the vertical being the key dimension for our
problem it is sufficient to employ a 1D vertical physical-
biological model. Each of the 2 main components (the
Lagrangian model and the biological module) is
described in more detail in the following sections.

All simulations run for a total of 5 d (4 d of spin-up
plus 1 d for measuring) and the particles are mixed
using an eddy diffusivity in combination with a ran-
dom walk approach (see below). In the runs which
simulate the fixed-depth bottle incubations, the turbu-
lent mixing is switched off at the beginning of the 5th
day and all particles remain ‘frozen' in place for 24 h.
We then compare the growth rates, both within each
depth bin and integrated over the entire layer, during
the incubation period to the growth rates from the
runs where particles were freely mixing on the 5th
day. Both sets of experiments that were run for each

scenario thus share the same 4 d spin-up and only dif-
fer on the last day.

Unless stated otherwise, all experiments used the
same peak mid-day incident irradiance of 650 W m2,
45% of which is considered to be photosynthetically
active radiation (PAR). This leaves a surface mid-day
PAR of about I, = 1200 pmol photons m™? s7! that
decreases exponentially with depth as

I(z) = I(z=0)e¥? = I(z=0) e )

where k is the PAR attenuation coefficient and z is the
depth (z < 0) in metres. The light availability thus
always depends on the product of k and —z, which is
the optical depth & We therefore express the vertical
dimension in our figures in terms of &. Over the course
of the light period (15 h per 24 h) the surface irradiance
I(z=0) was varied using a semi-sinusoidal modulation.

Note that the term surface mixing layer (SML)
denotes the isothermal or isopycnal layer which is
actively mixing, i.e. where the eddy diffusivity is con-
sistently higher than some background value. It is thus
a purely physical definition and does not imply that the
layer is fully mixed in a biological sense such that the
physiology would be homogeneous throughout the
layer. This would depend on the ratio of the physical
mixing time-scale versus the biological time-scales of
photoacclimation, -inhibition, and growth (see the dis-
cussion in Ross et al. 2011, Lewis et al. 1984b). While
most mixing layers will have mixing time scales (1) of
the order of hours to few days, we also found reports of
mixing layers with mixing time scales (t,,) of the order
of thousands of hours. In Table 1 of Gallegos & Platt
(1985), for instance, the diffusivity at a station in the
oligotrophic ocean was reported as 10~ m? s}, While
nothing is said about the depth of the SML, we would
obtain a mixing time scale of 2500 h for a shallow SML
of 10 m. Such a layer can only remain mixed if it is
overturned at night due to convective instabilities. For
scenarios with 1, > 100 h, we therefore simulated the
convective overturning by temporarily increasing the
eddy diffusivity K, from its 'normal’ daytime value to
102 m? s7! for 5 h each night. This was not necessary
for scenarios with 1, < 100 h, as the mixing was suffi-
cient to keep the biomass homogeneously distributed.
Table 1 contains a summary of the main model para-
meters and their standard values.

Lagrangian particle tracking. We represent phyto-
plankton using an individual based approach, i.e.
phytoplankton are not modelled as a concentration of
carbon or chlorophyll per unit volume (Eulerian
approach) but as individual cells that are moved freely
through the water column by turbulence. The advan-
tage of using a Lagrangian approach lies in its ability to
record the individual light histories of the cells, which
allows for a more accurate simulation of the photo-
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physiological response. The total number of Lagran-
gian particles in our simulations varied depending on
the total water depth. For simulations of shallow water
scenarios (H = 6 m), we used 8000 Lagrangian parti-
cles, while in deeper water (H = 60 m) we used 80 000.
This high number was necessary in order to obtain reli-
able statistics at each 1 m depth bin. We distinguish
between Lagrangian particles (the number of which
stays fixed) and phytoplankton cells (which are
allowed to divide and multiply). At the start of an
experiment, the Lagrangian particles are homoge-
neously distributed with depth, and each particle rep-

resents the same number of phytoplankton cells
(Lagrangian Ensemble approach). Over the course of
the experiment, the distribution of Lagrangian parti-
cles always remains homogeneous as we assume neu-
tral buoyancy.

Given that most diatoms have sustained sinking
speeds of <3 m d! (Eppley et al. 1967, Bienfang 1981,
Waite et al. 1997, Ptacnik et al. 2003), we decided to
neglect diatom sinking altogether, as tests with such
sinking velocities did not significantly alter our results.
Motility on the other hand, i.e. the ability for directed
swimming by dinoflagellates or coccolithophores,

Table 1. Model parameters and meaning of symbols used throughout the text. A list of the remaining model parameters for
the biological model can be found in Appendix 1 and Ross & Geider (2009, their Table 1). SML: surface mixing layer; PAR:
photosynthetically active radiation

Symbol Description Value Unit

atl Chl a specific absorption coefficient 6.56 m? gChl™

cr Amount of carbon in functional pool Variable gC cell™!

C Total amount of carbon in cell Variable gC cell!

Chl Amount of chlorophyll a in cell Variable gChl cell™!

D Depth of water column (model domain) Variable m

H SML thickness Variable m

I Light intensity Variable pmol photons m™2 57
I Light saturation parameter Variable pmol photons m™2 s7
k PAR attenuation coefficient Variable m!

k, Repair rate from photoinhibition 45x 107 st

ky Damage probability for photoinhibition 1.4 x 1077 -

K Turbulent diffusivity Variable m? s

Kig Background turbulent diffusivity below SML 1070 m?s!

Ky Mid SML turbulent diffusivity Variable m?s?

Kt Turbulent diffusivity at surface boundary 0.1K,, m? s

peell Max. cell-based C production Variable gC cell's!

pcht Max. Chl-based C production (with inhibition) Pchl gC gChlts

Pshl Max. Chl-based C production (without inhibition) 3.3x107° gC gChl™' st

PE o« Mazx. carbon-based production at a given N:C Variable st

z Particle position <0 m

oShl Initial slope of the P-I curve (without inhibition) 6.3 x 107° gC m? (gChl pmol photons)™!
At Model time step 1-6° S

g Error between g and p fneub Variable %

€, Error between p5* and p@xed Variable %

Omax Max. quantum yield of photosynthesis 0.96 x 1076 gC (pmol photons)™!
Om Achieved quantum yield when inhibited Variable gC (pmol photons)™
pincub - x_derived growth rates from incubations Variable da!

urxed  x_derived depth-integrated growth rates from turbulent water Variable dat

Mt,.x  Max. prop. of Callocated to light harvesting 0.33 -

oc Chl:C ratio of cell Variable gChl gC™*

0f Chl:C ratio for functional pool only Variable gChl gC™*

(6f)max Max Chl:C ratio in light-harvesting pool 0.28 gChl gC™*

v Proportion of functional PSII reaction centres 0<9<1 -

Opsit Absorption cross-section of PSII 1.5 m? (pmol photons)™
€ Optical depth within water column Variable -

EsmL Optical depth of the surface mixing layer Variable -

Tm Mixing time scale of surface mixing layer Variable h

“Depending on the value of K,
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could potentially alter our results as different swim-
ming strategies may lead to highly inhomogeneous
particle concentrations (turbulence permitting) and
thus growth rates different from those obtained for a
homogeneously distributed population. As any choice
of swimming strategy (phototactic, geotactic, etc.)
would have to be made arbitrarily, we omitted motility
from our analysis. Because the main goal of this work
was to evaluate whether vertical mixing by turbulence
can be neglected for the determination of growth rates,
i.e. whether a fixed depth bottle incubation delivers
results that are representative of a freely mixing water
column, we could also neglect factors such as nutrients
or grazing, as their absence or presence would have
the same effect on both the stranded and freely mixing
populations. We also did not concern ourselves with
other sources of error, such as bottle effects, which
have already been addressed elsewhere (see Furnas
2002, for a review).

The one-dimensional (vertical) particle-tracking
model is based on Ross & Sharples (2004). Vertical pro-
files of the eddy diffusivity, K(z) (m?s™') (see below), in
combination with a random walk approach were used
to provide the random, turbulent mixing of Lagrangian
particles. At each time step, At, a particle was moved
from its present position, z,, to its new position, z,,,
using:

1 1/2
2K|z, +§K (zH)At)At

Zpu = Z,+ K(z,)At +R

—_— 1‘
deterministic term

random term
(2)
where K’ = dK/dz. R is a random process of zero mean
and variance r (e.g. r= 1/3 for R e [-1, 1]). The top and
bottom boundaries were reflecting according to

—Zpu Jif 2,4 >0

Z“*lﬁ{ 2H+z if 7,1 <—D )
n+1 4 n+l

where H is the depth of the SML and D is the total

depth of the water column.

We created a physical environment based both on
observational (e.g. Sharples et al. 2001) and modelling
results (e.g. Ross & Sharples 2007) of a turbulent SML,
which fulfils all necessary requirements for use with
the random walk in terms of differentiability, steadi-
ness, and reflecting boundary conditions (cf. Ross &
Sharples 2004). The resulting diffusivity profile is con-
stant throughout most of the mixing layer. The transi-
tional areas where the diffusivity is allowed to de-
crease in a continuous and differentiable fashion
towards the top and bottom boundaries are designed to
deliver a time step greater than 1s in the random walk
while keeping the error below 1% (cf. Ross & Sharples
2004). The profile is constructed as follows:

K(z)=
Kot + (K~ Kyu)[1-1.57%%] for02z>-H/2 [
Koy + (K= Ky [1- 1.5 ] for ~H/2 > z 2 (-H) [1]]
Kypg for z<-H [LIT]
(4)

where Ky is the background diffusivity in the stratified
area below the SML, and K, is the near surface diffu-
sivity, which was set to between 20 and 90% of the
mid-SML value K, depending on the profile. The
Roman numerals in Eq. (4) denote the 3 different seg-
ments of the profile: [I] top half of SML, [II] lower half
of SML, and [III] below the SML (cf. Fig. 1).

We tested a wide range of environmental scenarios
using different combinations of attenuation coeffi-
cients, mixing layer depths, and turbulent eddy diffu-
sivities. The physical environment can be charac-
terised using 2 important parameters, namely the
mixing time scale, 1, and the optical depth of the SML,
Esme, which are given by:

2

Tn= ——

where His the SML depth and K, the maximum (mid-

SML) eddy diffusivity. Fig. 2 provides a visual repre-

sentation of the effect of different mixing time scales
on the change of a particle distribution with time.

Biological model. The biological model used in the
simulations is based on the RG' model in Ross & Geider
(2009). Rather than being solely carbon-based, the bio-
logical model employs the cell as the basic unit, which
is a more natural choice for use in individual-based
modelling approaches such as this one. The model dif-
ferentiates between a nitrogen-containing functional
carbon pool and an energy reserve pool, which does

and &g = Hk (5)

0 — A
Seé;mentl
= : :
g e - ] osmL
; Segment Il
: : __y
Hp T ;-‘-‘
Segment llI :
-D
Kbg Ksur‘f Km
Eddy diffusivity

Fig. 1. Example diffusivity profile where the Roman numerals
denote the 3 different segments from Eq. (4)
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not contain nitrogen. The cell-specific light-saturated
photosynthetic rate is assumed to scale with the size of
the functional pool, and the light-limited photosynthe-
sis rate with the cellular chlorophyll content. The
model has been validated against data from light shift
experiments on Skeletonema costatum (Anning et al.
2000, Ross & Geider 2009) and the values of the growth
and acclimation parameters we use in this study are
representative of this diatom. As we are not concerned
about absolute growth rates but content ourselves with
comparative analyses, the results presented in this
study are insensitive to small changes in these parame-
ter values and are therefore deemed to be valid for a
wider range of phytoplankton species. Although we
made some modifications to the RG' model and added
new equations to account for photoinhibition, most of
the model equations are unchanged. We therefore do
not re-iterate the entire model description but limit our

(©) 1,,=100h

Fig. 2. Effect of the mixing time scale t,, on the vertical particle distribu-
tions over the course of time. The top row shows the initial conditions at
time t = 0, the middle row is after 30 min into the simulation, and the bot-
tom row shows the particles after another 5.5 h, i.e. 6 h after the start of the
experiment. The particles were assigned a certain marker and colour
depending on their initial position in the water column

(d) t,,=1000h

description to the new and modified parts of the model.
A complete set of the biological model equations,
including the unchanged parts from the original RG!
model, is contained in Appendix 1 (see Ross & Geider
2009 for additional information).

We extend the RG! model from Ross & Geider (2009)
to account for photoinhibition using a similar approach
as in Cianelli et al. (2004) except that we apply the
inhibition primarily to the initial slope of the photo-
synthesis-light curve, a“?, and only once the damage
becomes more substantial also to the maximum cell-
based carbon production, P$L. The proportion of still
functional reaction centres, ¥, depends on the damage
probability, k; and the recovery rate, k,, of the D1 pro-
tein as (cf. Han 2002, Cianelli et al. 2004):

peell (¢max )—1

—ky0psy [0|1—
dg a Opsn ( 1M Chl

)+k,(1—13) ,if I>0
dt
k,(1-9) ,if I=0
(6)
where opgyp is the absorption cross-section of
Photosystem II (PSII), a® the Chl specific
absorption coefficient and ¢,,,, the maximum
quantum yield of photosynthesis (Table 1).
The values chosen for k; and k, from Table 1
are based on Cianelli et al. (2004), while the
values for 6pgyy and ¢, are based on Suggett
et al. (2009) and Maclntyre et al. (2002),
respectively. The value of a®™ was deter-
mined experimentally for Thalassiosira
pseudonana (Ross & Geider 2009). The para-
meter ¥ describes the proportion of still func-
tional PSII reaction centres (RCII) (0 <9< 1)
with the extremes of ¥ = 1 corresponding to
zero inhibition (i.e. all centres are functional)
and the theoretical value of ¥ = 0 corre-
sponding to 100 % inhibition (with no func-
tional centres remaining). We expect the
probability of photoinhibition (per photon
absorbed) to be greater when photosynthesis
is light saturated and almost all of the reac-
tion centres are closed than when photosyn-
thesis is light limited and almost all of the
reaction centres are open. This is expressed
by the term

Ia“MChl

in Eq. (6) which is a proxy for reaction centre
closure. The denominator is the rate of light
absorption by the cell (photons per cell per
unit time) and the numerator is the rate of
use of photons for photosynthesis.

When the maximum quantum efficiency of
photosynthesis, 0.y is determined by the

cell -1
(1_P (Pmax) )
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maximum quantum efficiency of PSII, we expect the
initial slope of the photosynthesis-light curve, o™, to
be given by:

ofhl = ¢ aChl = ¢ 9aCh = aChl y (7)

Hence instead of Eq. (14) from Ross & Geider (2009) we
obtain the following modified equation for the cell
based production:

peell — peell [1 el IaChlch]/P,%%l}()] (8)

Previous work suggested that photoinhibition not
only affects the initial slope o“® but also the light satu-
rated maximum production P$l (Behrenfeld et al.
1998). We implemented this by changing Eq. (15) from
Ross & Geider (2009) to the following minimum condi-

tion: pF_CF
Pl =MIN{ "%
PeMChl

max
where CFand Chlare the amounts of functional carbon
and chlorophyll per cell, respectively. Pk, is the maxi-
mum carbon-based production at a given nitrogen-to-
carbon (N:C) ratio and P is the maximum Chl-based
carbon production at a given inhibition level:

PSM = P9 (10)

max

C)

Implicit in Eq. (9) is the assumption that control of the
light saturated photosynthesis rate may lie either in the
light-reactions (e.g. in the photosynthetic electron
transfer chain) or the dark-reactions (e.g. in the Calvin
cycle) of photosynthesis. Light saturated photosynthe-
sis is often limited by the dark-reactions (Sukenik et al.
1987). However, when PS8 Chl < Pk, CF, the light reac-
tions will be limiting. Control of the light-saturated
photosynthesis is likely to be transferred from the
dark-reactions to the light-reactions as a consequence
of photoinhibition. Falkowski (1981) calculated a theo-
retical maximum value for P2 of 24 gC (gChl)™ h™! for
ambient water temperatures of 25°C. Given that photo-
synthetic electron transfer reactions have a Qi, of
about 2 (Raven & Geider 1988), the value can be scaled
for environmental temperature: so at 15°C it would be
12, whereas at 5°C it would be 6 gC (gChl)™* h™. In our
model we used a value of P, =12 gC (gChl)™ h™',
The parametrisation of the effect of photoinhibition
of the light saturated photosynthesis in Eq. (9) is based
on the observation that phytoplankton possess an
‘excess' PSII capacity (Behrenfeld et al. 1998). The first
part in Eq. (9) is identical to Eq. (15) from Ross & Gei-
der (2009) and describes the light saturated photo-
synthesis in the absence of photoinhibition. Hence, ini-
tially, PSS will not be affected as the product PL, CF
will be lower than PSIChl Once photoinhibition
increases, however, the proportion of functional RCII,
9, will decrease, as will also P$# (Eq. 10). This para-
metrisation is consistent with the observation that the

quantum efficiency is decreased by damage to PS II
(Oquist et al. 1992), and Eqs. (8) & (9) are loosely based
on Fig. 1 of Behrenfeld et al. (1998).

Quantification of errors. For the analyses we focus
on comparing the Chl-derived growth rate from fixed-
depth bottle incubations, u®, with its carbon-derived
equivalent, uic“C“b, and the carbon-based growth rate in
the freely mixed water column, p#*¢¢, which we will
refer to as the in situ growth rate. In accordance with
the interests of experimentalists, we consider the
depth-averaged carbon growth rate in the SML, which
is denoted by the overbar in p®*¢d, The 2 different
errors to be considered are thus €;, the error due to
using Chl as a proxy for measuring growth, and &,, the
error due to arresting the cells at a single fixed depth

during the incubation:

incub __yyincub
Sl(z) — I"LChI (.Zm)cubuc (Z) .100%
g™ (z)|
and I p— (1)
incu __ mixe:
£,(z) = Hch"(2) EC—.100%
nese

where the growth rates are calculated from:
m(X(z,tl)) 1
X(z,ty)) /T

_ 12
ZiX(z,tl)] ] (12)

Ux(z) =

and

=ln| =% "——|=
x {Z:;X(z,to) T
with T = t; —{, being the incubation period (24 h).
Simulating the yo-yo approach. One question which
may be interesting for experimentalists is whether
changes in the experimental protocol, e.g. by oscillat-
ing the incubation bottles vertically through the SML,
can mitigate some of errors observed in fixed depth
incubations. In order to address this question we used
the same model setup as before, with the exception
that the cells are not arrested at fixed depths during
the 24 h incubation period, but the cells within a partic-
ular depth bin are collectively moved up and down
through the water column at a pre-determined velocity
Wyo-yo- 1he choice of wy,.y, is to some extent arbitrary
and was based on the standard deviation (SD) of the
random walk which increases with time as (Ross &

Sharples 2004):
P : S(t)=2K,t (13)
To obtain some estimate of X at longer time scales we
evaluated Eq. (13) for ¢ = 1 h. This yields the SD in
metres of a distribution of particles that was originally
located at a point source z = 0. In order to convert this

into a velocity we used

Y(t=1h)
Wyoyo = O.SST (14)

For the example of 107 m? s™' this yields Wyoyo =
4.6 m h™', The scaling factor of 0.55 in Eq. (14) resulted
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from tests with a range of environmental conditions.
Particularly in experiments where the diffusivity was
low, we noticed that without the scaling factor, Eq. (14)
would overestimate the vertical velocities, yielding a
vertically too homogeneous growth rate compared to
the mixed conditions. The choice of this scaling factor
is based on a best fit analysis for a range of experi-
ments to minimise the errors in the shape and magni-
tude of the growth rates. For water columns where the
turbulence is high, an overestimation of wy, y, is not
too critical, as the growth rate is already homogeneous
with depth and the magnitude of the growth rate is not
affected by an overestimation.

RESULTS

While an Eulerian model always has uniform physi-
ologies in each depth bin as it implicitly averages over
the individuals, the Lagrangian counterpart can pro-
vide much more detailed information, including the
amount of heterogeneity within a 1 m depth element
due to cells with different light histories having been
mixed together by turbulence. When the cells are
freely mixing, weak turbulence (Fig. 3a) leads to a dis-
tribution of Chl:C that is rather heterogeneous, both
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vertically and also within a depth bin. At high turbu-
lence intensities (Fig. 3b), Chl:C is more uniform, both
within and between depth bins, as the cells do not have
enough time to acclimate to any particular light level.
While Fig. 3a provides a good example of a surface
mixing layer that is not mixed in the biological sense,
Fig. 3b shows a surface layer that is not only mixing but
also mixed, with little vertical heterogeneity in the
physiology.

When the cells are kept at fixed depths to simulate
the bottle incubation, their residence time at each light
level is greatly increased, allowing them to acclimate to
the ambient light. As a result, the vertical heterogeneity
in ChlL:C is increased, while only a small heterogeneity
is maintained within each depth bin (Fig. 3c,d).

Growth rates

Throughout the SML, but particularly near the sur-
face, the 2 growth rates, uBg® and p2<*, differ con-
siderably from one another (Fig. 4). Near the surface
piEeub is lower than u2U", due to photoacclimation, and
¢, is negative there (Fig. 4b,d,f,h). In samples incu-
bated at high light, Chl synthesis is reduced while
carbon uptake remains high, which causes a shift in
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Fig. 3. Relative abundance of different Chl:C ratios, 6% [gChl (gC)™!] for different depths in an optically shallow mixing layer

(Esme = 2.7), using 2 different mixing time scales, T, (cf. Eq. 5). The presence of many colours at a particular depth indicates a great

physiological heterogeneity of the phytoplankton population in terms of their Chl:C ratio, while differences in the colour distrib-

ution between the surface and bottom indicate vertical heterogeneity (due to insufficient mixing). (a,b) distribution at 17:30 h on

the day prior to the 24 h incubation, i.e. where the cells are still allowed to move freely; (c,d) distribution at 17:30 h on the day of
the 24 h incubation during which the cells had been kept at fixed depths
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the distribution of Chl:C ratios (Fig. 5). The same argu-
ment can be used to explain why ¢; turns positive at
greater depths where low light conditions lead to an
increased Chl synthesis in combination with a reduced
carbon uptake. For e, we find the opposite trend,
with p® overestimating in situ growth (ug2*ed) near
the surface and underestimating it at depth. This is
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trivial, as it reflects the different light availabilities at
different depths.

Although the errors at the individual depths can be
considerable, reaching 50 to 100 % (Fig. 4d), the differ-
ences between the SML-integrated growth rates W
remain small (Table 2). Particularly for & 2 4, the in
vitro growth rate, uisi® significantly underestimates
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Fig. 4. Growth rates and associated errors for different scenarios. The vertical resolutions for the output were 1 m and 3 m for the
shallow (H = 6 m) and deep (H = 60 m) cases, respectively. Panels (i) to (1) show the effect of maximising photoinhibition by
tripling the damage probability k; and increasing the noon irradiance to 850 W m™2. The dashed vertical lines show the value for
uzixed wwhich we use as representative in situ SML growth rate, i.e. the ‘truth’ in respect to which we calculate €,. The numeric

values for pgixed

and the other depth-integrated growth rates are shown in Table 2
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Fig. 5. Distributions of Chl:C for 2 different mixed layers which represent (a) a coastal setting (from Fig. 4a) and (b) an open ocean

setting (cf. Fig. 3 for explanation of the colours and bars). The vertical resolution in (a) and (c) is 1 m and in (b) and (d) it is 3 m.

Although both SMLs differ in depth, attenuation coefficient, and turbulent mixing intensity, they have the same values for the
mixing time scale (t,, = 100 h) and optical depth (Esy = 5.4). As a result, both SMLs show equivalent distributions of Chl:C

the in situ carbon based growth rate p**d, By compar-
ing the different growth rates for a range of environ-
mental scenarios (Fig. 4) we generally find that W =
nZxed (Table 2).

For completeness, we also show the growth rate cal-
culated from the increase in cell numbers, [l.p. In gen-

eral, Uen(z) differs from the carbon-based equivalent,
and also shows more variability in the vertical. Due to
its dependence on the cell cycle it is a slightly coarser
measure of growth rate, as the timing of cell division
relative to the end of the incubation period could sig-
nificantly alter the results. Nevertheless, the depth-

Table 2. Depth-averaged growth rates for the scenarios shown in Fig. 4. The last 2 rows have triple k; and I, = 850 W m™2. 1,, is

in hours; units for the remaining environmental parameters can be found in Table 1

Fig. 4 Environmental parameters Growth rates (d )

H K k Tm S WETT wEES pE uER uggt  ughe
a 6 1074 0.9 100 5.4 0.62 0.60 0.68 0.59 0.61 0.60
c 6 1072 0.9 1 5.4 0.49 0.53 0.62 0.54 0.58 0.44
e 60 1074 0.09 10* 5.4 0.73 0.70 0.78 0.70 0.70 0.68
g 6 1074 0.45 100 2.7 0.84 0.83 0.86 0.83 0.77 0.78
Growth rates for a deep SML with same values of 1, and &gy as in Fig. 4a
- 60 1072 0.09 100 5.4 0.61 0.60 0.68 0.59 0.61 0.60
Using triple ky and I, = 850 W m~2
i 6 107 0.9 100 5.4 0.51 0.48 0.51 0.48 0.50 0.48
k 6 1072 0.9 1 5.4 0.49 0.52 0.52 0.52 0.51 0.69
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integrated rates typically give an acceptable approxi-
mation of the in situ values (Table 2).

Sensitivity to optical depth and mixing time scale

A reduction in the mixing time scale 1, produces
a more homogeneous water column (Figs. 3b & 6b),
which in turn amplifies the differences between the
freely mixing and static incubation, yielding slightly
larger errors ¢; and €,. An increase in the mixing time
scale, on the other hand, means that the cells have a
higher residence time at each depth, which allows
them to adapt better to the ambient light level. In such
a low turbulence scenario, arresting the cells in place
during the fixed-depth bottle incubation thus repre-
sents only a small change to the freely mixing condi-
tions (compare the mixed and incubated conditions in
Fig. 6¢) and the error ¢, is reduced (Fig. 4e,f). However,

€, remains large, which is to be expected given the ver-
tical heterogeneity in p°. The fact that the cells are
better adapted to their light environment and thus less
inhibited at greater depths (Fig. 6¢ vs b) also results in
higher depth-integrated growth rates (u&%°d and
uzixed which reach 0.7 d! for 1, = 10* h, compared to
0.6 d! for 1,, = 100 h, and 0.54 for 1, = 1 h (Table 2).
With everything else left unchanged, a reduction in
turbulence thus results in a water column that is more
productive.

If we use the same mixing time scale as in Fig. 4(a)
but halve the attenuation coefficient, thereby halving
Esmr, the result is a significant reduction in the errors,
in particular, €, (Fig. 4g,h). Having made the SML more
transparent to light means that the base of the SML
receives relatively high light intensities (the location of
the 1% light level for the simulations in Fig. 4(a-f) is
now the location of the 10% light level). The weaker
light gradient produces a weaker vertical gradient in
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Fig. 6. Value of the photoinhibition parameter ¥ for the simulations from Fig. 4
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Chl:C and a smaller heterogeneity within a particular
depth bin (cf. Fig. 3a). As a result, although the error ¢;
is still of the order of O(20-30 %), the more important €,
has almost disappeared, which means that u25** is now
a much better approximation of the in situ growth rate
u@ixed jrrespective of the depth at which the incubation
takes place. Despite photoinhibition extending to the
base of the SML (Fig. 6d), the high light availability
throughout the SML results in higher overall growth
rates (Table 2).

The results in Fig. 4(a,b) were obtained for a shal-
low (H = 6 m) and relatively turbid (k = 0.9 m™!) SML
representative of an estuary or coastal lagoon. The
optical depth of this SML was &g = 5.4 and the mix-
ing time scale 1,, = 100 h (Eq. 5), which renders the
water column vertically heterogeneous, both in terms
of Chl:C (Fig. 5a) and also the inhibition ¥ (Fig. 6a).
We found that experiments with identical values of
&y and T, delivered the same trends and magni-
tudes in the vertical Chl:C distribution, the resulting
growth rates and associated errors. E.g. moving from
the estuarine setting in Fig. 4(a,b) to an open ocean
setting with H = 60 m, the same values for &g and
Ty can be maintained by reducing the PAR attenua-
tion to k = 0.09 m™ and increasing the eddy diffusiv-
ity to K, = 102 m? s7! (see Table 2). The result is an
identical distribution of Chl:C (Fig. 5) and also identi-
cal distributions and magnitudes for the growth rates
and associated errors (not shown). Compared to the
diagrams in Fig. 3, the cells achieve higher values of
Chl:C in Fig. 5, as the water column was more turbid
in this experiment and thus the lower part of the
SML was more light limited.

(a) 18 -
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Photoinhibition

The simulations in Fig. 4a—h used a moderate value
for the photodamage probability, k, which yields min-
imum values for ¥ of about 0.4 in a freely mixing water
column with 1, = 100 h (Fig. 6a). The amount of inhibi-
tion generally decreases with increasing turbulence
(Fig. 6a,b) but extends deeper into the SML. In an
effort to maximise the photodamage, we repeated the
simulations from Fig. 4a,c with a 3 times higher dam-
age probability k; and an increased noon irradiance I,
The result is a higher photoinhibition (Fig. 6e,f) which
leads to a depression in the incubated growth rates
pcub (Fig. 4i,k). In the freely mixing water column, the
effect on u®**d is only noticeable in a moderately tur-
bulent water column (Fig. 4a,i) while in a highly turbu-
lent water column, p®*¢ js almost unaffected
(Fig. 4c,k). Because the carbon based growth rate is
more affected by the higher inhibition and due to the
lower depth-averaged growth rates, both €, and ¢, are
reduced near the surface and at depth except where
the growth rate becomes negative (Fig. 4j,1).

To generalise our findings, we repeated the above
experiments for a wide range of physical environments
and found that the vertical distribution and magnitude
of errors depends on the 2 parameters gy and Ty,
(Fig. 7a). &; and €, were generally small if the SML was
well lit, i.e. Egr 5 3. In these cases U delivered a
good approximation of the growth in the freely mixing
water column u2*¢d, ¢, was also small if the water col-
umn was very stable with low turbulence intensities
(T is very large) (Region I in Fig. 7a). For & 3 4, we
found that €, = —100 % irrespective of 1. As the SML
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Fig. 7. Summary of the general trends observed in the numerical experiments. The double-ended arrows in (b) indicate the
ranges where the respective errors are minimal. If &y S 6, €, is minimal near the mid-SML and ¢, slightly above. For more turbid
mixing layers these locations are shifted upward
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becomes more turbid and also more turbulent (Region
IIT in Fig. 7a) both errors can become very large. Near
the surface pi® typically underestimates the carbon
equivalent u&° (unless the inhibition is very high)
while overestimating the in situ growth rate u®*°d by
10 to 50%, depending on the environmental condi-
tions. ¢, is therefore typically negative near the surface
while g, is positive (Fig. 7b). The opposite is true for the
lower SML, where the signs of ¢, and €, change and the
magnitudes approximately double. The region where
we found the errors to be the smallest is near the mid-

SML (as long as Epig.sar S 4)-

Sensitivity to the incubation time

The results shown in Fig. 4 & Table 2 were obtained
for an incubation time of 24 h extending from midnight
till midnight on the last day of the simulations. One
might intuitively assume that errors could be reduced
by shortening the incubation time, i.e. the difference to
the in situ conditions would be smaller if the cells were
only stranded at fixed depths for a few hours rather
than the entire day. We found that the opposite holds
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true, at least for low to moderate levels of inhibition. If
the bottles are incubated for only 4 h from 10:00 to
14:00 h for instance (cf. Marra 1978), both the sign
and magnitude of the errors change significantly
(Fig. 8a—d). Compared to the 24 h incubations, the
depth averaged Chl-based in vitro growth rate p&5™ is
now only about half the in situ value u2**¢, By shorten-
ing the incubation time, and carrying out the incuba-
tion symmetrically around noon, we have biased our
measurements because the time of maximal irradiance
is also the time of maximal carbon uptake, while the
Chl:C ratio generally remains low. As a consequence,
uiBewb significantly underestimates u®*°¢ throughout
the water column. While &; maintains a similar distrib-
ution (negative near the surface and positive at depth),
the more important €, has turned negative throughout
the water column. If we induce a higher photoin-
hibition in the cells by tripling the damage probability
k4 and raising the noon irradiance to I, = 850 W m™2
(Fig. 8e—h), the errors are reduced and u™ now pro-
vides a good estimate of u®**? in mid SML (g, is very
small there). However, pls® still underestimates its
carbon equivalent by 10 to 15 %.
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Fig. 8. Corresponding results to panels (a—d) and (i-1) in Fig. 4, except that the incubation time was not 24 h but only 4 h from
10:00 to 14:00 h. The cell-based growth rate is not very meaningful for such short incubation times and has therefore been
omitted from this plot
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Fig. 9. Applying the yo-yo-approach to the scenario from Fig.

4c. Instead of incubating bottles at fixed depths, they were

cycled vertically through the SML using wy, , = 4.6 m ht
(cf. Eq. 14)

Yo-yo techniques

To test whether a yo-yo approach, in which the incu-
bation bottles are vertically moved up and down
through the water column, could reduce the associated
errors, we applied this approach to the scenario from
Fig. 4c, which falls into Region III in Fig. 7a and there-
fore delivers relatively large errors. The result is a dra-
matic reduction in both types of errors (Fig. 9). By oscil-
lating the sampling bottles up and down we were able
to maintain them in balanced growth and obtain fairly
accurate estimates of the growth rate in the freely mix-
ing water column.

In order to effectively reduce the errors, it is crucial
to choose an appropriate value for the oscillation veloc-
ity Wyo.yo. If the mixing time scale is low (in Fig. 9 1, =
1 h) an overestimation of wy,.,, is not too critical as the
high turbulence renders the SML fairly homogeneous
(Figs. 3b & 6b). However, an underestimation of wy,_y,
can produce significant errors (not shown).

DISCUSSION

Accurate estimates of phytoplankton in situ growth
rates are important for many applications, ranging
from global climate predictions to local management of
water quality. Using a modelling approach we ex-
plored the magnitude of potential errors associated
with the commonly used fixed-depth bottle incubation
method. While there are many different sources of
error associated with fixed-depth bottle incubations
(e.g. Furnas 2002), we focused our efforts on the quan-
tification of 2 particular types of errors:

(1) The first error (g;) accounts for the difference
between the commonly used Chl-derived growth rate

incub

uiBcP(z) and its carbon-derived equivalent p&c(z).
The discrepancy is related to the fact that the cells con-
tinuously photoacclimate and are typically not in bal-
anced growth.

(2) The second error (g5) accounts for the effect of
keeping the incubations at fixed depths (in stable light
conditions) and assuming that the obtained growth
rate corresponds to the entire mixing layer, i.e. it
describes the discrepancy between u%g*(z) and the
depth integrated growth rate achieved in the freely
mixing water column, p*d which, for the purposes of
this study, we considered to be the ‘true’ in situ growth
rate.

We showed that depending on the depth at which
the incubation takes place, both errors can be of the
same order of magnitude as the growth rate itself.
Some methods exist which can help alleviate (Gutiér-
rez-Rodriguez et al. 2010) or even completely avoid
(Calbet & Landry 2004) g, but they cannot remedy the
potentially more important €,. Even if we reduce ¢g;
completely, there is still a considerable error between
pleub and pxed (Fig, 4). €, can be reduced by either
oscillating the bottle through the SML (Fig. 9) or by
using more than one depth for the incubation (Table 2).

Our results have shown that both €, and &, can be
rather large for a wide range of environmental condi-
tions. In all tested scenarios (including the highly tur-
bulent ones), the best depth to carry out the fixed-
depth incubation (using only a single depth) was near
the centre of the SML, if—and only if —the optical
depth of the mid-SML, &.;4.smr, iS no larger than 4. If
Emia-smL > 4 the incubation should be carried out near
& = 3.5 to 4. If most of the SML lies within the euphotic
zone, and if the turbulence is low to moderate (i.e. if
the physiology throughout the SML is vertically het-
erogeneous, T, = 100 h) we found that a good approach
to reduce the errors is to carry out the incubation
experiment not only at a single depth but at a series of
depths throughout the SML and then calculate the
growth rate from this depth integrated increase in Chl,
which yields good agreement between p2*d and p&g®
(Fig. 4 & Table 2). Our results were quite insensitive to
small changes in the growth or photoacclimation para-
meters used in the model. Only for very high photo-
damage probabilities (k;) can the errors €; and ¢, be
reduced near the surface, as uptake of carbon is sup-
pressed due to lower photosynthetic efficiencies and ¢,
can change sign (Fig. 4i-1). For the range of parameter
values we tested, we did not find any significant effect
on g, at greater depths, however.

If the SML is more turbulent (e.g. if the distribution of
Chl:C ratios is fairly constant with depth, 1, < 10 h),
WBGP can significantly differ from pu®*ed (Fig. 4c,d) and
a superior approach to reduce g, is to oscillate the incu-
bation bottle through the layer (Fig. 9). Although our
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modelling approach showed that this yo-yo method
delivers far smaller errors, the problem remains that
we have no reliable method of estimating the oscilla-
tion velocity, the vertical amplitude, or the time course
of the oscillations (e.g. linear velocity vs. sinusoidal vs.
a more random movement). Eq. (14) represents an
empirical relationship which produced results that
were quantitatively in good agreement with those
obtained in normally mixed conditions but it requires
prior knowledge of the turbulence diffusivity in the
water column, which is often unknown. A wrong
choice may not increase accuracy.

In general, the conclusions are:

(1) The magnitude of €, decreases with increasing
mixing time scale 1, (Eq. 5) (Fig. 7a).

(2) The magnitude of both errors increases with
increasing turbidity of the water column (Egyp, Eq. 5)
(Fig. 7a).

(3) If the mixing layer is optically shallow and rela-
tively stable (low turbulence), then fixed-depth incu-
bations at optical depths 5 4 should yield good esti-
mates (errors g 20 %) of the growth rate in the freely
mixing water column (Fig. 7).

(4) If the water column is more turbid and/or more
turbulent, the best region to use fixed-depth bottle
incubations (error g 30 %) is near the centre of the sur-
face mixing layer, provided that this region has an opti-
cal depth of g4 (Fig. 7b).

(5) Reducing the incubation time from 24 to 4 h does
not necessarily lead to improved accuracy. For low to
moderate photoinhibition, a shorter incubation time,
especially if located symmetrically about noon, will
lead to a significant increase in the associated errors, in
particular ¢, (Fig. 8).

(6) One additional way to reduce the errors in highly
turbulent and turbid mixing layers is to vertically oscil-
late the incubation bottles through the water column
(yo-yo-method) which, by choosing an appropriate yo-
yo velocity and amplitude, can reduce the errors to g
15 % throughout the water column (Fig. 9b).

() We often found that pig® = p@E=xed (Fig. 4).
Although we are aware that logistic constraints often
do not permit this, we found that the best way to
reduce &, to negligible levels is to carry out the incuba-
tion experiments at several depths which cover the dif-
ferent light environments within the mixing layer.

Accuracy of yo-yo incubations

The yo-yo method was a viable alternative only if the
water column was turbulent enough so that the cells
showed a fairly homogeneous physiology throughout
the layer, and most of the mixing layer was within the
euphotic zone. If the layer is not very turbulent, the

success of this method is very sensitive to the choice of
the depth at which the sample is taken and at which
the oscillation is started. E.g. if we were to use the
yo-yo method in a shallow (H = 6 m) and turbid (k =
0.9 m™!) water column with an eddy diffusivity of
10" m? s7! (i.e. Wyoyo = 0.46 m h'') and if we start the
incubation at midnight, then cells that were originally
near the surface would already be at an optical depth
of about 1.5 by the time the sun rises. By noon the cen-
tre of the depth bin that was initially at the surface
would be at the base of the SML and only by the time
the sun was setting would the cells have returned to
the surface. Hence in such a scenario the cells that
started near the surface would have spent much of the
daylight hours at great optical depths where the light
availability is low (and vice versa for cells that start at
greater depths). If we start the yo-yo incubation at sun-
rise or noon, instead of midnight, the effect on the cells
is quite different, hence the high sensitivity of the
results to the timing of the incubation. Since the error
associated with fixed-depth incubations in water
columns that are optically shallow is quite low
(Fig. 4g,h), one could argue that in such environments
it is not necessary to use the yo-yo technique as the
fixed-depth incubations might already vyield suffi-
ciently accurate results. Even if the water column is
slightly more turbid, it may be worthwhile considering
whether the additional effort of installing an oscillation
mechanism might not be better spent on suspending a
series of bottles at different depths that are representa-
tive of the entire SML and which may deliver superior
results (uE*ed = nAHPy without the added complication
of having to choose the parameters for the yo-yo oscil-
lation.

All our results regarding the yo-yo technique should
be considered as preliminary. With our implementa-
tion of the method, we were able to show that oscillat-
ing the incubation bottles can have a positive effect in
certain situations, but not in all. Further investigations
into the yo-yo technique are necessary, however, so
that more detailed and quantitatively more sound rec-
ommendations for an adequate sampling protocol can
be made.

Turbulence parameterisation

In the present study we chose a rather simple para-
meterisation of turbulence, namely the eddy diffusivity
approach. As an additional simplification we decided
to prescribe the diffusivity profiles using analytical
equations (Eq. 4) rather than obtaining the values from
a k-emodel that calculates the diffusivity dynamically
from the external forcing and ambient water column
stability (e.g. Ross & Sharples 2007). As a result, our
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diffusivity profiles are fairly constant throughout the
SML (Fig. 1) and do not change with time. The discrete
output of eddy diffusivities obtained from a k-&¢ model
does not fulfill the necessary criteria for use with the
random walk equation (Eq. 2). As a result, the discrete
data need to be smoothed (e.g. using cubic splines) in
order to achieve the necessary continuity and differen-
tiability in the profiles (Ross & Sharples 2004). As the
diffusivity gradients are typically large near the SML
boundaries, the number of nodes for the spline also
needs to be quite large, yielding a high number of
coefficients to evaluate a large number of polynomials
for just 1 single profile which would change every 1 to
2 min. In tests with several such profiles we found that
the most important aspects of the diffusivity profile that
need to be captured are the gradients (towards the sur-
face and bottom) and the mid-SML amplitude. Any
other structure in the profiles is redundant, as it does
not have any significant effect on the biology. The
overall results presented in this study were thus not
affected by the simplified shape of the diffusivity pro-
files used.

We also tested the effect of a time-varying diffusivity
by examining 2 different scenarios: (1) a scenario
where the mixing is dominated by periodic (M2) tidal
turbulence, as would be the case in an estuary or shelf
sea, and where the diffusivity varied between K, (dur-
ing the ebb and flood flows) and 10 % of K, (during the
high and low water stand) (see for instance the bottom
mixed layer in Fig. 3c of Ross & Sharples 2007), and (2)
a scenario where the intermittency was largely due to
changes in the surface wind forcing and where the dif-
fusivity varied randomly between K, and 1% of K. In
both cases the impact on the errors was minimal and
did not warrant the inclusion of such effects in our
analysis.

A third simplification in our experiments was that the
SML depth was kept constant during the 5 d experi-
ments and did not show any periodic deepening at
night, even for the scenarios where we used convective
overturning (cf. Woods & Onken 1982, Barkmann &
Woods 1996). We therefore tested a scenario in which
the SML depth oscillated between -75 m and
—45 m (deepening at night associated with an increase
in K, and shallowing during the day) with the 1 % light
level being at about -51 m, and found that the overall
effect was a slight increase in ¢, in the top half of the
SML [O(20%)] but no significant effect on & or on
either error in the lower SML. We therefore expect our
results to hold up also in a more dynamic physical
setup.

While our results are obviously affected not only by
our treatment of turbulence, but also by our somewhat
idealised (and therefore tractable) treatment of both
photoacclimation and photoinhibition, it is neverthe-

less the first study of its kind to employ a relatively
sophisticated individual based model, both for the
physics and the biology, to address some of the prob-
lems associated with fixed-depth bottle incubations.
Due to our inability to measure in situ growth rates
non-intrusively in the real world, it could be argued
that a model is in fact the only viable approach avail-
able to us at present in order to undertake such a com-
parison. One of the challenges facing both modellers
and experimentalists is the possibility of interactions
between the processes that have different characteris-
tic time scales, so that a more fully integrated model
may need to be developed.
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Appendix 1. Biological model parameters (Table Al) and equations (Table A2). This section provides a summary of the main
biological model equations, containing the equations from Tables 3 & 4 from Ross & Geider (2009) in their modified version used
in this study, plus the additions for photoinhibition. See the model description in Ross & Geider (2009) for a more detailed
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explanation of each equation

Table Al. Biological model parameters

Symbol  Description Value Unit

a Factor by which dark N uptake rate is reduced 0.75 -

achl Chl a specific absorption coefficient 6.56 m? gChl™*

cr Functional C content Eq. (24) pgC cell™®

CR Reserve C content Eq. (25) pgC cell™

cT Total C content (functional plus reserve) CF+CR pgC cell™

Cts Functional C content required for cell fission 14 pgC cell™*

Ccho Subsistence level in functional pool 0.25 Ckg pgC cell™®

CR res C storage capacity to maintain cell through dark (24 — L)R&! pgC cell™

Chl Amount in chlorophyll a in cell Variable gChl cell™!

DIN Dissolved inorganic nitrogen concentration 500 mgN m™

I Light intensity Variable pmol photons m2 s7*
I Light saturation parameter Variable pmol photons m 2 s7!
k, Repair rate from photoinhibition 4.5 %107 st

Kn Half-saturation for N uptake 14 mgN m™

L Light period 15 h

N Cellular nitrogen Variable pgN cell™?

Py Scaling factor 1.5 -

peell Max. cell-based C production Variable gCcell'ts!

pehl Max. Chl-based C production (with inhibition) pel gC gChl™' st

pghl. Max. Chl-based C production (without inhibition) 33x 107 gC gChl™' st

PE.. Max. CF -based production at a given Q Variable st

PS Max. CT-based production at a given Q Eq. (19) st

Q N:C ratio of entire cell N/CT gN gC!

QF N:C ratio of functional pool (= Quay) 0.19 gN gC!

Quin Min. N:C ratio of entire cell when C® is maximal 0.05 gNgcC!

R&! Cell-based maintenance respiration 0.05 pgC (cell d)™

T Delay to complete cell division after reaching CFi; 2 h

VN« Max. N uptake rate Eq. (23) gN (cell d)™

oShl Initial slope of the P-I curve (without inhibition) 6.3 x 107 gC m? (gChl pmol photons)™!
At Model time step 1-6 s

Ormax Max. quantum yield of photosynthesis 0.96 x 1076 gC (umol photons)™
Om Achieved quantum yield when inhibited Variable gC (pmol photons)™
Mmax Maximum specific growth rate 1.15 d!

| E9 Max. prop. of CFallocated to light harvesting 0.33 -

O Proportion of functional PSII reaction centres 0<9<1 -

Gpsit Absorption cross-section of PSII 1.5 m? (pmol photons™)
0c Chl:C ratio of cell Chl/CT gChl gC!

0§ Chl:C ratio for functional pool only Chl/Ct gChl gC!

(0% ) max Max. Chl:C ratio in light-harvesting pool 0.28 gChl gC™!

(0F) max Max. Chl:C ratio in functional pool (09) max [ Thax gChl gC™!

4 Cost of biosynthesis 3.0 gC gN!
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Table A2. Biological equations

ToCh Chl % .
PCell =P]'[cl§.1)1 [1—6Xp(—%):| (15) dCF F if CR > Ct%res'
max =
dt | -Re! if CR=0 and CF >0, (24)
peell — MIN PraxCF (16) 0 otherwise
e PehlCh]
hl hl dCR Pce]l dCF VNC Rcell 25
(o — C —_— —_—— —
Pm _Pmax“3 (17) dt dt m ( )
24
Pfax = Pilmay —(1+4QF) (18) N
frmex g Z—Fn;ax(ef)mpg it C¥>CR_ and >0,
Pgax (old Pgax N
T = L etige T = getigC (19 %: g—anm(ef Jmax  if CR>CR and =0, (26)
—Reellgc if CR=0
O = §,,8 = 010, DM = A SHL D (20) » '
0 otherwise
Pel/g .
do —kdcpsﬂlﬁ(l—im)+k,(l—ﬁ) ifI>0 I I
T Ia®MChl (21) p= Tk[l—exp(—l—)] (27)
k. (1-9) ifI=0 K
n Cell division is triggered when CF > Cf,
dN F_ DIN g9 fis
—=VN= VmNax[ CIZ Q ] ( ) (22) after a delay fiq (28)
dt QF —Quy, | \DIN +xy
Cell death occurs when CF < CL,, (29)
24
XQFCF[l—a —+a] if I>0,
VN = Hma (1-a) L (23)
Al QFCT otherwise
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