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ABSTRACT: Diseases are increasing in marine ecosystems, and these increases have been attributed
to a number of environmental factors including climate change, pollution, and overfishing. However,
many studies pool disease prevalence into taxonomic groups, disregarding host-species composition
when comparing sites or assessing environmental impacts on patterns of disease presence. We used
simulated data under a known environmental effect to assess the ability of standard statistical methods
(binomial and linear regression, ANOVA) to detect a significant environmental effect on pooled dis-
ease prevalence with varying species abundance distributions and relative susceptibilities to disease.
When one species was more susceptible to a disease and both species only partially overlapped in their
distributions, models tended to produce a greater number of false positives (Type I error). Differences
in disease risk between regions or along an environmental gradient tended to be underestimated, or,
even in the wrong direction, when highly susceptible taxa had reduced abundances in impacted sites,
a situation likely to be common in nature. Including relative abundance as an additional variable in re-
gressions improved model accuracy, but tended to be conservative, producing more false negatives
(Type II error) when species abundance was strongly correlated with the environmental effect. An
analysis of field data on bleaching from the Florida Keys, FL, USA, affirmed general results of model
simulations. Investigators should be cautious of underlying assumptions about species similarity in

susceptibility and species composition when interpreting pooled data on disease risk.
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INTRODUCTION

Disease incidence for many marine species has
increased in frequency over the past few decades, and
many factors including pollution, overfishing, and cli-
mate change have been hypothesized to contribute to
such proliferations (Harvell et al. 2002, Lafferty et al.
2004, Aeby et al. in press). While many studies assess
disease patterns for a single species (Bruckner &
Bruckner 2006, Gochfeld et al. 2006), species-specific
information is often challenging to analyze due to
insufficient sample sizes, and disease prevalence is
pooled to assess patterns for a larger taxonomic group
(e.g. Porter et al. 2001, Willis et al. 2004, Lips et al.
2006, Weil & Créquer 2009). Studies that disregard
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changes or differences in species composition, density
and disease susceptibility of host communities when
reporting disease prevalence can lead to erroneous
conclusions regarding patterns of disease risk
(Williams et al. 2010, Aeby et al. 2011). This can be
especially critical when the composition of susceptible
host populations has changed in response to past dis-
ease infections or bleaching mortality when base pop-
ulations grossly differ between sites or sampling units.

Coral diseases (Santavy et al. 2001, 2006, Sutherland
et al. 2004, Willis et al. 2004) have increased in fre-
quency over the past 4 decades, and are thought to be
a major cause of dramatic declines in coral abundance
(Aronson & Precht 2001, Patterson et al. 2002, Weil et
al. 2006, Bruckner & Hill 2009). Coral disease out-
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breaks are spatially and temporally variable, and likely
influenced by a variety of abiotic and biotic factors,
including elevated sea temperatures (Gil-Agudelo &
Garzoén-Ferreira 2001, Jones et al. 2004, Selig et al.
2006, Bruno et al. 2007), sedimentation (Voss & Ri-
chardson 2006), pollution (Kaczmarsky et al. 2005),
and nutrients (Bruno et al. 2003). Mass bleaching
events, in which coral lose their symbiotic algae, have
also caused extensive coral mortality in recent decades
(Hoegh-Guldberg 1999, Hughes et al. 2003, Wilkinson
2008). Mass bleaching events can be predicted by sus-
tained periods of elevated sea temperatures (Liu et al.
2005) and may be exacerbated by elevated solar radia-
tion (Gleason & Wellington 1993, McField 1999) or
diminished by storm events (Manzello et al. 2007).
Both coral disease and bleaching patterns are influ-
enced by different species susceptibility and host den-
sity (Bruno et al. 2007, Aeby et al. 2011), even though
disease and bleaching outbreaks have been observed
to coincide (Jones et al. 2004, Miller et al. 2006, Muller
et al. 2007, Brandt & McManus 2009).

A number of studies have examined associations
between environmental factors and temporal or spatial
patterns of disease or bleaching prevalence (e.g. Gil-
Agudelo & Garzén-Ferreira 2001, Kuta & Richardson
2002, Borger & Steiner 2005, Page & Willis 2006, Voss
& Richardson 2006, Aeby et al. in press). Studies to
look at patterns of disease or bleaching across broad
spatial or temporal scales often focus on pooled obser-
vations across all susceptible coral species (Goreau et
al. 2000, Porter et al. 2001, Weil & Créquer 2009, Zvu-
loni et al. 2009). Observations of coral disease or
bleaching prevalence are often reported in broad tax-
onomic groupings, based on coral cover (Bruno et al.
2007) or abundance by pooling species to genus or
family levels (Edmunds 1991, McClanahan et al. 2001,
Willis et al. 2004, Brandt & McManus 2009). In the
Indo-Pacific, where species diversity is high, it may not
be practical to classify corals to species level. However,
it may not be correct to assume that all species within a
single genus are equally susceptible to diseases (Aeby
et al. 2011). Similarly, species vary in their susceptibil-
ity to bleaching (McField 1999, Marshall & Baird 2000,
Floros et al. 2004, Yee et al. 2008), yet models to predict
bleaching events under elevated temperatures are typ-
ically derived from pooled observations of coral
bleaching across taxa (Berkelmans et al. 2004, Liu et
al. 2005, Maina et al. 2008). Combining data across
multiple host taxa may obscure independent disease
trends (Lafferty et al. 2004, Williams et al. 2010).

Statistical analyses of disease or bleaching patterns
relative to environmental gradients for pooled data
have inherent assumptions that the composition of
susceptible species is consistent between compared
study areas, an assumption that is not often tested

(Kuta & Richardson 1996, Bruno et al. 2007, Brandt &
McManus 2009). A key issue is whether sources of
environmental variation contributing to patterns of
disease prevalence across regions or along a gradient
are confounded with patterns in species composition.
For example, the variance associated with differences
in relative species abundances among different loca-
tions are difficult to separate from the factors tested
for association with temporal or spatial differences in
bleaching or disease prevalence (Williams et al. 2010,
Aeby et al. 2011). Unaccounted for variations in spe-
cies composition that are associated with environmen-
tal gradients may mask true patterns of disease or
bleaching. Some studies have acknowledged that
results from the analysis of pooled disease data could
be influenced by differences in the spatial distribution
among coral species (Borger 2003, Page et al. 2009).
Recognizing these issues, other studies have con-
ducted statistical analyses of bleaching prevalence
while considering weightings of species relative
abundances (McClanahan et al. 2007, Yee et al. 2008),
species richness, and evenness (Ward et al. 2006),
percent coral cover (Page & Willis 2006, Bruno et
al. 2007), or reef type (Berkelmans et al. 2004, Wool-
dridge & Done 2004). If adjustments are not made for
variation in species composition, actual effects due to
environmental gradients may be either over- or
understated, depending on the nature of species
abundance patterns and susceptibility.

In the present study, simulated communities were
generated using statistical models to investigate the
ability to detect significant environmental effects on
disease prevalence when species are pooled. Because
simulated communities were generated based on
known environmental effects, statistical model predic-
tions can be compared to these specified true effects.
Species were allowed to vary in their susceptibility to
disease (low vs. high) and their distribution (wide-
spread vs. narrow), either between 2 distinct regions or
along an environmental gradient. We generated simu-
lated data on pooled disease prevalence under various
species distribution and susceptibility scenarios, then
fit models to the simulated data to test for a significant
environmental effect on disease prevalence. We com-
pared models that only included an environmental
effect (ANOVA or simple regression) to those that also
included species abundance as a covariate (ANCOVA
or multiple regression). For each model and scenario,
we investigated the propensity for Type I or Type II
errors, i.e. false positives or false negatives, and the
accuracy of the predicted environmental effect relative
to the known true effect. We assessed the relevancy of
simulation results toward detecting regional differ-
ences in coral bleaching by analyzing field data from
the Florida Keys, FL, USA.
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METHODS

Simulated data. Discrete regions: We simulated data
on disease prevalence for sites within 2 discrete
regions, reflecting, for example, a control region and
an impacted region. Sites are considered the sampling
unit, such as a transect or quadrat, with N replicate
sites per region. We simulated a community of 2 spe-
cies, which varied in both their susceptibility to disease
(Fig. 1la,c,d) and their distribution between the 2
regions (Fig. 1b,d,f). Each species was assumed to
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have some baseline or minimum disease susceptibility
in the control region (p; o), defined as the mean proba-
bility of species i being infected with disease in the
control region. In general, we assume one species is
more susceptible to disease infection (p; ¢ > p20). We
examined 3 possible abundance distributions for each
species 1, determined by their mean abundance per
site (4;)) in each region j (control: j = 0; impacted: j = 1):
uniformly abundant across both regions, correspond-
ing to a widespread distribution(4; o = A, 1); more abun-
dant in the control region, corresponding to a narrow
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Fig. 1. Probabilities of disease along an environmental gradient for a more susceptible species (p;; black lines) and a less suscepti-
ble species (p,; grey lines), and the observed pooled probabilities of disease across species (pPpooleai dashed lines) for alternative
abundance distributions in which: (a,b) the most susceptible species is more abundant at highly impacted sites, (c,d) the 2 species
are similarly abundant along the gradient, and (e,f) the most susceptible species is more abundant at non-impacted sites. Symbols
indicate probability of disease and abundance for the case of 2 discrete regions: control (squares) and impacted (triangles)
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distribution (A4;, > A;;); or more abundant in the
impacted region, also corresponding to a narrow distri-
bution (A; o < A;,). Varying the distribution of each spe-
cies gives several different scenarios for species com-
position between regions. For example, both species
may be widespread (Fig. 1d) or the more susceptible
species may be more abundant in either the control
(Fig. 1f) or impacted region (Fig. 1b), while the distrib-
ution of the less susceptible species is the opposite.

In the impacted region, individuals of each species
are assumed to have an additional probability of dis-
ease infection above their baseline susceptibility in the
control region. Because probabilities are constrained
between 0 and 1, we used a sigmoidal logistic model to
simulate the probability of disease incidence (Fig. 1a).
This nonlinear model can be written as a linear equa-
tion by rewriting the probability in terms of the odds
that an event occurs, which is the probability an event
occurs relative to its converse, and taking the natural
log (Quinn & Keough 2002). We can then simulate an
increase in the log-odds of disease infection between
the control and impacted regions as:

m(M) = 1n(ﬂ)+meegion (1)
1_pi, Region 1_pj'0

where p; ;is the probability of disease infection for each
species i (i = 1, 2) in either the control (region = 0) or
impacted regions (region = 1), p; ( is the baseline sus-
ceptibility of each species in the control region, and m
is the known increase in the log-odds of disease for an
individual present in the impacted region. Eq. (1)
defines the mean log-odds of disease infection in the
control or impacted regions, with the variability in dis-
ease incidence at replicate sites within each region dis-
tributed around this mean.

To generate random communities, we drew the total
number of individuals of each species i at each site
within each region j from a Poisson distribution, with
mean abundance given by A;;. The
number of infected individuals was
then drawn from a binomial distribu-
tion, with mean probability of infection

ln( Ppooled Region ) _
1-DPyooted, Region

: A Region (2)
Po+P: x Region +f, | Region T A2 Region
where B are the estimated model coefficients giving
the baseline disease risk (B), the additional risk due to
the impacted region (B;), and the effect of relative
abundance as a covariate (f3,).

We assessed our ability to detect significant differ-
ences in disease prevalence between regions when
species susceptibilities were different by generating
simulated data under 2 cases: species with similar
(p1,0 = P2,0) or different (p;,o > p,,0) baseline susceptibil-
ities to disease in the control region. We also assessed
the effects of species compositional differences
between regions by varying the distribution of the 2
species. We used 7 distribution scenarios for the 2 spe-
cies, in which each species had a mean abundance of
A;; =40 in its preferred region and A;; = 20 in its less
preferred region (Table 1). In 3 of the scenarios, spe-
cies completely overlapped: both widespread (WW),
both more abundant in control region (CC), or both
more abundant in impacted region (II). In 2 scenarios,
species were partially overlapped with the less suscep-
tible species widespread and the most susceptible spe-
cies more abundant in either the control (CW) or
impacted region (IW). There were also 2 scenarios
where species were minimally overlapped with the
most susceptible species more abundant in either the
control (CI) or impacted region (IC), and the less sus-
ceptible species having the opposite distribution. In a
separate set of simulations, we further narrowed the
distribution of the most susceptible species (IW, CW)
by reducing the abundance in the non-preferred
region from A;; = 20 to A;; = 1. For all simulations,
each of the 2 regions consisted of 20 sites. For each
combination of parameters, we ran 500 simulations
and fitted models to each set of simulated data.

Table 1. Abundance distributions (4;;) used to generate the 7 species-

distribution scenarios illustrated in Fig. 3

given by p;; in each region (Eq. 1). We
kept track of the number of individuals Scenario Species 1 Species 2
of each species and the total number of desig- Preferred Control Impacted Preferred Control Impacted
diseased individuals at each site. Dis- nation distribution  (A; o) (Ag1) distribution (A, ) (Az1)
ease prevalence was pooled across Ic Impacted 20 40 Control 40 20
species to obtain the fraction of dis- W Impacted 20 40 Widespread 40 40
eased individuals at each site. Ob- I Impacted 20 40 Impacted 20 40
served disease prevalence was then fit ww Widespread 40 40 Widespread 40 40
by models which included region ce Control 40 20 Control 40 20
Y . g cw Control 40 20  Widespread 40 40
(0, 1), as well as the relative abundance CI Control 40 20 Impacted 20 40
of the species at each site as variables:
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Environmental gradient: In addition to 2 discrete
regions (Fig. 1, symbols), we also allowed susceptibil-
ity and abundance to vary along an environmental gra-
dient (Fig. 1, lines). The environmental gradient could
represent a specific environmental variable, such as
temperature or chemical concentration. For consis-
tency with the case of discrete regions, we assume sites
occur along a continuous linear environmental gradi-
ent, standardized to range from control (X = 0) to
highly impacted conditions (X = 1). Similar to the dis-
crete case (Eq. 1), log-odds of disease for each species
increase linearly along the environmental gradient as:

ln( P ): ln( Pio )+mX (3)
1-pi(X) 1-p;,

where baseline probabilities of disease risk under con-
trol conditions (X = 0) are given by p; o for each species
i. In both the discrete region case and the environmen-
tal gradient, m represents the size of the effect, the
only difference being whether the predictor variable is
discrete (region) or continuous (X).

In contrast to the discrete region case, where species
mean abundance was fixed within each region, in the
gradient case, we allowed species abundances to
increase or decrease linearly along the gradient. Each
species i was assumed to have a linear distribution in

abundance along the environmental gradient A;(X) =

A; o+ o;X, with an abundance of A; ; at one end of the
gradient and a slope ranging from —o; to +o; defining
whether the species abundance is negatively, posi-
tively, or not correlated with the environmental vari-
able X.

Random communities were generated by drawing
the total number of individuals of each species i at
each of 40 sites along gradient X from a Poisson distri-
bution, with mean abundance given by A;(X) The
number of infected individuals was drawn from a
binomial distribution, with mean probability of infec-
tion given by p;(X) in Eq. (3). We examined how the
ability to detect a significant environmental effect
depends on the difference in baseline susceptibility
(P10 — P20) and the disparity in species overlap
(04 — 0p), where o, is the slope of each species abun-
dance along the environmental gradient. For each
species, we varied o, from —40 to 40 and A; , from 0 to
40, in combinations that maintained a maximum
abundance of 40 individuals and did not allow nega-
tive abundances. The disparity in distribution then
ranged from -80 (Species 1 decreases in abundance
along the gradient, oy = —40; Species 2 increases, 0, =
40) to 80 (Species 1 increases in abundance along the
gradient, o, = 40; Species 2 decreases, o, = —40). We
examined 3 cases of differential susceptibility, none
(P1,0 = P2,0 = 0.12), medium (p; o = 0.27, py o = 0.12),

and high (p;, ¢ = 0.5, py,o = 0.12). For each combination
of parameters, we ran 500 simulations and fitted mod-
els to each set of simulated data.

Statistical methods. Regression models: Environ-
mental effects between regions or along a gradient in
simulated data were estimated using linear regression,
logistic regression, and beta-binomial regression mod-
els (McCullagh & Nelder 1989). Unlike linear regres-
sion, logistic and beta-binomial regression have
assumptions that the underlying probability distribu-
tion is binomial (presence/absence of disease) rather
than normal. Furthermore, beta-binomial regression,
unlike standard logistic regression, accounts for colo-
nies being clustered within independent sites. Colo-
nies within a site cannot be considered independent
because they experience the same local site conditions,
and can be expected to respond similarly. The fitted
beta-binomial model has 1 additional parameter,
which measures the degree of correlation within a
cluster, or overdispersion, and provides a correction to
the amount of variability explained by the model. Lin-
ear and logistic regressions were implemented using
the package 'glm’, and beta-binomial regressions were
implemented using the package ‘aod’ in the statistical
package R (www.r-project.org).

For each simulation, using beta-binomial regression
or logistic regression models, we evaluated whether
the log-odds of pooled disease risk were significantly
different between regions or along the environmental
gradient, and estimated the predicted size of the effect
(m) by the slope of the regression. Similarly, linear
regression was used to determine whether the fraction
of diseased individuals was significantly related to the
environmental variable, which, in the case of discrete
regions, is equivalent to analysis of variance (ANOVA).

When observations of disease prevalence are pooled
across species, the observed response depends on the
relative abundances of species within a site (Fig. 1).
We, therefore, compared models with only an environ-
mental effect to models in which relative species abun-
dance was included as an additional covariate in mod-
els (Eq. 2). We also evaluated 2 other metrics of species
composition as model covariates (total species abun-
dance and species presence/absence), but, overall,
models with relative species abundance performed
better (not shown).

The beta-binomial model is expected to perform bet-
ter when mean disease susceptibilities (pjregion) Vary
between sites within a region, such that susceptibilities
within a site are more similar than those between sites
(i.e. within-site correlation would be expected), a situ-
ation which is likely to occur in nature. Therefore, to
demonstrate the improved performance of the beta-
binomial model, we compared model accuracy using
the beta-binomial regression model, a logistic regres-
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sion model, and a linear regression model in 2 cases:
(1) using a between-site variability in disease suscepti-
bility of ¢ = 0, in which the mean baseline disease sus-
ceptibility (p; o) was the same across all sites within a
region, and (2) incorporating between site variability
by drawing the mean baseline susceptibility (p; o) for
each site k from a normal distribution with mean p;,
and a standard deviation of ¢ = 0.5. It is expected that
the logistic model, which treats individual colonies as
independent experimental units, would overstate the
level of significance of effects resulting in inflated
Type I error rates. Normal theory linear regression
models are expected to perform better than logistic
regression, because each sampling station is treated as
an experimental unit, but may be less efficient than
beta-binomial regression because the model is not
informed by the number of colonies sampled within
experimental units.

Model accuracy: Model accuracy was assessed
through comparison of power curves. We varied the
true effect (m) of either the impacted region (Eq. 1) or
the environmental variable (Eq. 3) from 0 to 3, and
examined the fraction of simulated data sets for which
the effect of region was significant (p-value < 0.05). For
m = 0, there is no additional disease risk in the im-
pacted site or along the environmental gradient, such
that one expects a low detection rate of a significant
region effect, i.e. a Type I error rate of approximately
5%. For sufficiently high m, there is an additional dis-
ease risk in the impacted region or disease risk
increases along the environmental gradient, such that
one expects a high detection rate of a significant
region effect, i.e. with power to detect a region effect of
approximately 95 % and a Type II error rate of approx-
imately 5%. We also evaluated model accuracy in
binomial regressions by comparing the true region
effect or slope along the environmental gradient used
to generate simulated data (m) to the predicted region
effect given by the estimated model coefficient (By;
Eq. 2).

Field data example. We evaluated the applicability
of model simulation results to field data by using coral
bleaching data for the Florida Keys to evaluate
whether the probability of coral bleaching differed
between 2 regions subjected to differing levels of
anthropogenic stress. Local anthropogenic stressors
may reduce coral resistance to bleaching (West & Salm
2003). Reefs in the upper Florida Keys region are in
close proximity to land, and are subjected to potential
anthropogenic stress from pollutant runoff. Reefs in
the Dry Tortugas and New Grounds, in contrast, are
open oceanic and distant from land-based sources of
pollution.

Field surveys were conducted at permanent sam-
pling stations along the Florida Keys reef tract from the

Upper Keys (25°N, 80°W) to the Dry Tortugas (24° N,
83°W). Site locations, characteristics, and survey
methods are detailed elsewhere (Santavy et al. 2001,
2006). Survey sites were randomly selected from areas
known to contain hard coral bottom, approximately 5
to 10 km offshore. Sites ranged in depth from 1 to 23 m,
and contained at least 5% live coral cover. Coral colo-
nies were counted within the 2 m circular band located
from 8 to 10 m from the center of each station, with a
total survey area per station of 113 m? Surveys were
conducted from 7 August to 12 September 1998, dur-
ing a period of elevated water temperatures when a
mass bleaching event was occurring.

We pooled bleaching observations across species to
determine the total number of bleached colonies per
survey station. We compared the probability of coral
bleaching between 2 regions, the Upper Keys (9 sta-
tions) and Dry Tortugas/New Grounds (18 stations),
using beta-binomial regression. We compared model
results with region as the only independent variable, to
models in which species relative abundances were also
included. We used stepwise AIC (Aikaike information
criterion) to determine which species to include in
models (Burnham & Anderson 2002). To better under-
stand results for pooled species bleaching, we also
examined the probability of bleaching for individual
coral species in separate beta-binomial regressions
conducted for each species.

RESULTS
Regression models

In general, linear, logistic, and beta-binomial mod-
els produced similar power curves, where the proba-
bility of detecting significant differences in disease
risk between regions increased with strength of the
known effect (m) used to generate simulated data
(Fig. 2a). When between-site variability in suscepti-
bility was low within each region (¢ = 0), power
curves for each of the 3 types of regression models
were similar, with detection of significant region
effects slightly lower in the linear regression model
than either logistic or beta-binomial regression
(Fig. 2a). However, the beta-binomial regression
model performed best when mean susceptibility was
variable among sites within a region (6= 0.5; Fig. 2b).
The logistic regression model had a high rate of false
positives (Type I error), detecting significant effects of
region at rates >20 %, compared with the nominal 5%
stated false positive rate, when effects were absent
(m = 0). We focus the rest of our results on beta-bino-
mial regressions, noting that results were similar or
worse for other types of regression models.
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Fig. 2. Fraction of simulations in which significant differences
between impacted and control regions were detected for logis-
tic, beta-binomial, or linear models, including both region and
relative abundance as model variables. Baseline susceptibility
among sites was either: (a) fixed mean within a region (¢ = 0)
or (b) variable among sites within a region (¢ = 0.5). Simulation
parameters were such that Species 1 was more susceptible to
disease (py,0 = 0.27, py,o = 0.12) and more abundant in the con-
trol region (A; o = 40, A;; = 1), and Species 2 was uniformly
distributed across regions (A, o = Ay 1 = 40)

Species composition between regions

When species had similar baseline disease suscepti-
bilities (p1,0 = ps,0), the distribution of each species
across the 2 regions only had minor impacts on our
ability to detect significant differences between re-
gions using beta-binomial regression (Fig. 3a; Table 1).
The ability to detect significant differences between
regions was highest when both species were widely
distributed with similar abundances in both impacted
and control regions (WW). Detection of significant dif-
ferences between regions was slightly lower when one
or both species were limited in their distribution, with
reduced abundance in either control (CC) or impacted
regions (II).

When the 2 species differed in their baseline disease
susceptibilities (p; ¢ > ps o), species distribution greatly
affected the detection of significant differences
between regions (Fig. 3b; Table 1). In cases where the
2 species overlapped in distribution as either wide-
spread (WW), both more abundant in control region

a Same baseline susceptibilities

b Different baseline susceptibilities

Scenario
IC
— -w
I
—WWw
—CC
— -CW
----Cl

Fraction of simulations with region significant

1 15 2
Known region effect (m)

Fig. 3. Fraction of simulations in which region was significant
for simulations when: (a) Species 1 and 2 have equal baseline
disease susceptibility (p;,o = p2,0 = 0.12) or (b) Species 1 is more
susceptible than Species 2 (p;,o = 0.27, p; o =0.12) for 7 combi-
nations of species distributions (see Table 1 for scenarios)

(CC), or both more abundant in impacted region (II),
power curves where the 2 species differed in baseline
susceptibility (Fig. 3b) were only slightly different from
the ideal scenario in which both species were wide-
spread with equal baseline susceptibility (Fig. 3a).
However, cases where the 2 species only partially
overlapped in their distribution produced large Type I
and Type II error rates (Fig. 3b).

When the more susceptible species was more abun-
dant in impacted sites (IC, IW), there was a high rate of
false positives (Type I error) in which significant differ-
ences between regions were erroneously detected
(Fig. 3b). The error rate increased when the distribu-
tion of Species 2 was changed from widespread (IW) to
the opposite distribution of Species 1 (IC). The error
rate also increased as the more susceptible species
became more highly limited in its distribution (IW:
Fig. 3b, A; o = 20 when rare; Fig. 4a; A;( = 1 when
rare). Indeed, the predicted difference between
regions in such cases was much greater than the
known value (m) used to generate simulated data
(Fig. 4b). In the control region, the pooled disease
prevalence is dominated by the lower susceptibility of
Species 2, whereas the higher susceptibility of Spe-
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distribution to either: (a,b) impacted regions (IW; A; o =1, A;; = 40) or (c,d) control regions (CW; A, ( = 40, A;; = 1), or in which

(e,f) species have the same baseline susceptibilities (p; o = 0.12, py o = 0.12), but Species 1 is limited to control regions (CW). Spe-

cies 2 is equally abundant in both regions (A, , = A, 1 = 40). Power curves (a,c) give the fraction of simulations in which differ-

ences between regions were significant, and fitted lines (b,d) give the relationship between the known (m) and predicted size (B,)
of the effect

cies 1 contributes more strongly in the impacted
region, thus overestimating the true difference in dis-
ease risk between regions.

Error rates were also high when the more suscepti-
ble species, Species 1, was more abundant in the con-
trol region and Species 2 was either widespread (CW)
or had the opposite distribution to Species 1 (CIL:
Fig. 3b). The error rate was further exaggerated as the

more susceptible species became more highly limited
in its distribution (CW: Fig. 3b; A; ¢ = 20 when rare;
Fig. 4c; A; o = 1 when rare). The difference in disease
risk between regions was significant for a high fraction
of simulated datasets, even when the known true dif-
ference was very low (m ~ 0). In fact, the predicted dif-
ference between regions was actually the opposite of
the true value, such that disease prevalence was pre-
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dicted to be higher in the control region (Fig. 4d). In
the control region, the pooled disease prevalence is
dominated by the higher susceptibility of Species 1,
whereas the lower susceptibility of Species 2 con-
tributes more strongly in the impacted region. This
creates an underestimate of the known region effect,
and the estimated effect might even be negative
depending on the size of m.

Relative abundance as a covariate

In general, incorporating relative abundances as an
additional explanatory variable in beta-binomial re-
gressions greatly improved the Type I error rate,
reducing the fraction of false positives (Fig. 4a,c). On
average, predicted differences in disease risk between
the 2 regions for models with abundance as a covariate
more closely matched known values of m (Fig. 4b,d).
There was greater variability, however, in the esti-
mated region effect between simulations in models
with both region and abundance. In cases where sus-
ceptibilities were similar between species, there was a
greater rate of false negatives in models with abun-
dance when species were narrowly distributed
(Fig. 4e,f). In such circumstances, models with or with-
out abundance gave reasonable estimates of m on
average, but significant differences between regions
were detected as much as 60% less often, when the
true difference between regions was moderate (m = 1).
In cases where a species distribution was limited to a
particular region, then region and abundance were
highly correlated, and region provided little additional
explanatory power when abundance was also in the
model.

Distribution along a gradient

To generalize results from discrete regions, we
allowed species disease susceptibilities and abun-
dances to vary linearly along an environmental gradi-
ent. For regressions which only included the environ-
mental effect as a variable, model accuracy depended
strongly on 2 factors: the difference in baseline suscep-
tibilities between the 2 species and the disparity in
species distributions (Fig. 5a). Disparity in distribution,
quantified as the difference between the slopes of the
2 species abundances along the environmental gradi-
ent (o4 — o), had little effect on model accuracy when
species had similar sensitivities. However, as the dif-
ferences in species susceptibilities increased (p;, >
P2,0), regressions with only the environmental effect
tended to over- or underestimate the known environ-
mental effect (m). The error was increasingly strong as
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2 4 Disparity in
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eNone ’9,—
14 | eMedium Lo °
oHigh -~ O
9 o‘(of"g © ©
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Fig. 5. Model accuracy (predicted effect f; — known effect m)
for simulations in which species abundances varied linearly
along a gradient from control to impacted sites fitted with
models of: (a) the environmental variable alone or (b) the
environmental variable + abundance. Slopes o; ranged from
—40 to 40 for each species (see Fig. 1), with the disparity in dis-
tribution given by the difference between the slopes (o, — o).
Disparity values for the discrete cases from Table 1 are
labeled (CI, CW, WW, IW, IC, see Table 1 for scenarios). The
difference in baseline susceptibilities between species was
none (py,¢9 = Pa,0 =0.12), medium (p; o = 0.27, py o = 0.12), or
high (p;,0 = 0.5, py o = 0.12). Points for each combination of
slopes are means across 500 simulations

the disparity in species distributions increased. When
the more susceptible species abundance decreased
linearly along the gradient from control to impacted
(—ay), and Species 2 had the opposite distribution (+0.,),
regression models tended to underestimate the envi-
ronmental effect. In contrast, models overestimated
the environmental effect when the more susceptible
species increased along the gradient with higher
abundance in impacted sites (+0;), with the error exag-
gerated as the distribution of Species 2 became
increasingly narrow in the opposite direction (—0).
Including relative abundance as an additional vari-
able in regressions improved model accuracy (Fig. 5b).
The estimated environmental effect was similar to the
known effect, regardless of species distribution or dif-
ferences in susceptibilities. However, when species
abundances were strongly correlated with the envi-
ronmental gradient (large oy; large loy, — o,l), significant
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environmental effects were harder to detect and esti-
mated as m = 0, thus underestimating the known
effect.

Results for the environmental gradient were compa-
rable to those of the case of discrete regions (Figs. 3
& 4), and lead to a number of generalizations (Table 2).
If susceptibilities are likely to be similar across species,
or species composition is likely similar between re-
gions or along the environmental gradient, then simple
regression or ANOVA to detect differences should be
sufficient. However, if species differ in susceptible and
composition is variable, then multiple regression or
ANCOVA including relative abundance as an addi-
tional factor should minimize potential under- or over-
estimates of the true environmental impact, as long as
there is not high collinearity between factors.

Field data example

The range of bleaching susceptibilities and species
abundance distributions used to parameterize model
simulations were similar to those observed in Florida
Keys field surveys. The percent of observed bleached
colonies per station ranged from 0 to 47 % across 14
species (Fig. 6a). Species mean abundances ranged
from <1 colony to 21 colonies per station (Fig. 6b), com-
pared to ranges of from 0 to 40 used in model simula-
tions.

We used beta-binomial regression to assess differ-
ences in the probability of coral colony bleaching
between the Upper Keys and Dry Tortugas/New
Grounds. When only regional differences were inclu-

ded in the model, we found significant differences
between the 2 regions, with a predicted higher rate of
bleaching in the Upper Keys (Fig. 6¢; Table 3). How-
ever, species composition varied substantially between
the 2 regions (Fig. 6b). In particular, communities in
the Upper Keys tended to be dominated by a species
that was frequently observed bleaching, Siderastrea
siderea, whereas Dry Tortugas/New Grounds stations
had a high relative abundance of a species that was
infrequently observed bleaching, Acropora cervicornis
(Fig. 6a). These differences in relative species abun-
dances contributed to an observed low rate of bleach-
ing in the Dry Tortugas and a high rate of bleaching in
the Upper Keys when species were pooled (Fig. 6¢).

Including relative species abundances into models
greatly reduced the predicted difference between
regions, such that the difference between regions was
no longer significant (Table 3). Differences in the rela-
tive species abundance alone explained the differ-
ence in pooled observations of bleaching. Four spe-
cies (Acropora cervicornis, Colpophyllia natans,
Montastraea annularis, and M. cavernosa) were
included in the best fit model through stepwise AIC.
A fifth species (Siderastrea siderea) was not included
in the regression because of high collinearity with the
region effect (Pearson correlation coefficient, r =
0.729). Furthermore, we analyzed individual species
bleaching rates and found that only 2 of 14 species
showed significant differences in bleaching between
regions (Dichocoenia stokesii, m = 22.2, p = 0.007; M.
cavernosa, m = 3.4, p-value < 0.0001), affirming our
assessment that overall bleaching rates did not differ
between regions.

Table 2. Summary of results for analyzing pooled data under different assumptions of species susceptibilities and species
composition along an increasing gradient of a potential environmental impact

Do species Does Are species Correlation between = Recommended Potential bias
differ in relative relative abun- abundance of most analysis
suscepti- species dances strongly susceptible species
bility? composition  correlated with and gradient?
vary? gradient (collinearity)?
No No No or Yes Negative or Simple regression Minimal
Positive or ANOVA
No Yes No or Yes Negative or Simple regression Minimal
Positive or ANOVA
Yes No No or Yes Negative or Simple regression Minimal
Positive or ANOVA
Yes Yes No Negative or Multiple regression Minimal
Positive or ANCOVA
Yes Yes Yes Positive Simple regression Overestimate of
or ANOVA environmental impact
Yes Yes Yes Negative Simple regression Underestimate or opposite
or ANOVA estimate of environmental impact
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Fig. 6. Observed bleaching and coral community composition
during 1998 Florida Keys, USA, station surveys including: (a)
mean fraction of bleached colonies per station for each spe-
cies, with the 6 most abundant species shaded, (b) relative
contribution of the 6 most abundant species (full names in a)
to mean colony abundance per station in each region, and (c)
the mean fraction of bleached colonies per station in each
region, pooled across species

DISCUSSION

Our results emphasize the need to account for spe-
cies composition when assessing differences in disease
prevalence along an environmental gradient. Unless
species have similar distributions or similar susceptibil-
ities between the regions being compared, using stan-
dard regression or ANOVA methods to detect differ-
ences will likely over- or underestimate the true effect,
with a tendency toward false positives. Regressions
may even predict opposite patterns to the true effect,
particularly when more susceptible species are limited
in their distribution to non-impacted or high-quality
regions, a situation that may be common in nature
(Gaston 1994, Nijboer & Schmidt-Kloiber 2004). Fur-
thermore, because pooled disease prevalence is inher-
ently linked to relative species abundances, increased
sampling effort, either through higher abundances or
additional sampling sites, will not improve the ability
to detect significant differences between regions or
along a gradient.

Our results indicate that incorporating species rela-
tive abundances as a covariate greatly improved
model accuracy. However, situations where species
abundance is strongly correlated with the environ-
mental effect tend to produce large numbers of false
negatives, not surprising given known issues with
collinearity among predictor variables in regression
(Quinn & Keough 2002). Collinearity also likely con-
tributed to high variability in estimates of model coeffi-
cients in models with both environmental effects and
abundance.

We used simplified 2-species communities in our
simulations to demonstrate that, even under a rela-
tively simple scenario, assessments of pooled disease
prevalence can lead to misinterpretations of true
effects. Errors will be likely further exaggerated in
species-rich communities, because of the increasing
likelihood of variability in species susceptibilities and
shifts in community composition. These issues are a
concern for coral reef studies because species compo-
sition can vary widely between reefs or over time (Loya
et al. 2001, Somerfield et al. 2008). Additionally,
species have been observed to be variable in their sus-
ceptibilities to either disease (Gil-Agudelo & Garzoén-

Table 3. Beta-binomial regressions on Florida Keys, USA, bleaching data, in which bleaching observations were pooled across
species (Colpophyllia natans, Montastraea cavernosa, Acropora cervicornis, Montastraea annularis)

Model df Predicted region Region Model
effect (m) (p-value) (p-value)
Region 3 1.13 0.012 <0.001
Region + C. natans + M. cavernosa + A. cervicornis + M. annularis 7 0.28 0.432 <0.001
C. natans + M. cavernosa + A. cervicornis + M. annularis 6 0 - <0.001




94 Mar Ecol Prog Ser 431: 83-96, 2011

Ferreira 2001, Santavy et al. 2006) or bleaching
(McField 1999, Marshall & Baird 2000, Floros et al.
2004, Yee et al. 2008).

Results from our analysis of field data, which repre-
sented a community of 14 species of variable suscepti-
bility to bleaching, matched the general conclusions
from our simplified 2-species model simulations. Our
field data demonstrated a real scenario of data in
which species had different susceptibilities to bleach-
ing and species had different distributions between
regions. Because abundances of highly susceptible
species were positively correlated with the region
effect, we would anticipate from our simulations that a
regression model with region alone would tend to
overestimate the region effect, which was confirmed
through statistical analysis of our field data. In our
case, field data included several other species without
strong collinearity, which could be included in multiple
regressions, providing a potentially less biased esti-
mate of the region effect. Without historical data, how-
ever, it is impossible to ascertain whether the currently
observed lack of differences between regions reflects a
past event of disease or bleaching mortality that
removed highly susceptible species from the impacted
region.

Many field studies may have limited or no informa-
tion on species coral bleaching. In such cases, re-
searchers may need to rely on personal observations or
subsampling to ascertain potential biases in their data
analysis or to acknowledge that species compositional
differences may be contributing to perceived differ-
ences. Even when species-specific information on dis-
ease or bleaching is available, low sample sizes may
limit the ability to conduct species-specific analyses.
When pooled data are necessary, it is advisable to only
pool data across species with similar distributions and
susceptibilities. Furthermore, susceptibilities can vary
within a species, such as across depths (Gleason &
Wellington 1993) or size classes (Nugues 2002), and a
high density of coral may exacerbate disease out-
breaks (Borger & Steiner 2005, Bruno et al. 2007). Also,
bleached coral may be more susceptible to infection,
such that disease outbreaks follow bleaching events
(Harvell et al. 2001, Muller et al. 2007). Multiple re-
gression methods provide one way to detect significant
differences in susceptibilities between regions or along
an environmental gradient while controlling for addi-
tional environmental variables, e.g. reef depth, size
distribution, species total abundances, or historical dis-
ease/bleaching incidence, which may be confounded
with the variable of interest.

Several studies have attempted to adjust for differ-
ences in species distributions in statistical analyses of
thermal stress on disease prevalence by including
coral cover as an additional explanatory variable (Page

& Willis 2006, Bruno et al. 2007). It is unclear, however,
whether variations in coral cover were coincident with
variation in species composition, which may have
influenced interpretations of disease patterns between
reefs. An alternative approach is to quantify risk
through an index, which calculates a weighted aver-
age across species by assigning weightings to species
depending on their relative susceptibilities (McClana-
han et al. 2007). The multiple regression approaches
we propose here are functionally similar to a weighted
average, but allow coefficients on species relative
abundances to be estimated by fitting models to sam-
ple data, rather than assigning a priori weightings on
species susceptibilities.

Because the presence or absence of disease is a
binary response variable, we chose to model the prob-
ability of disease using binomial regression. However,
because individuals co-occur at a given site, they will
be subjected to similar local conditions and cannot be
treated as independent data points, an assumption of
standard logistic regression. Beta-binomial models
were selected to account for both types of variation
that occur in reality: variation between individuals at
the same site (binomial variation) and variation be-
tween sites within the same region or treatment group
(extra-binomial variation). The standard regression
model accurately represents the extra-binomial varia-
tion, but averages away the within-site binomial varia-
tion. Methods that ignore extra-binomial variation may
underestimate the true standard errors of estimated
treatment differences, leading to false positives
(McCullagh & Nelder 1989). This would be a form of
pseudoreplication (Hurlbert 1984).

Although we have focused on coral disease and
bleaching prevalence, we emphasize that statistical
detection of patterns for pooled effects across species
can apply to other systems as well. For example, esti-
mates of indices of ecological quality are susceptible to
the inclusion of taxa with small distribution ranges
(Nijboer & Schmidt-Kloiber 2004). More sophisticated
methods for estimating ecological condition incorpo-
rate estimates of species distributions and tolerance to
stress (Howe et al. 2007). Furthermore, it is well known
that patterns in ecosystem functioning along a gradient
may be driven by changes in species composition
(Tilman 1999). Pooling of species may obscure strong
responses of individual functional groups or species
(Micheli et al. 2004). Even predictions of presence/
absence of single species might be misleading if the
prevalence of a target organism is not taken into
account (Manel et al. 2002).

Our understanding of coral diseases is relatively
young but growing (Harvell et al. 2007). In many cases,
our ability to assess patterns is limited by the availabil-
ity of data, particularly when looking for broad-scale



Yee et al.: Species composition and disease risk 95

patterns across species groups (Goreau et al. 2000,
Porter et al. 2001). Options for managing disease are
limited, and it is important to compare contrasting
environments to gain insights into factors influencing
disease prevalence (Page et al. 2009). However,
researchers should be cautious of potential species
compositional differences that may confound our abil-
ity to assess the impacts of environmental factors on
patterns of disease.
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