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INTRODUCTION

Human activities are constantly increasing along
coastal zones and are altering the habitat structure
with anthropogenic infrastructures that change the
diversity and abundance of species within benthic
communities (Bulleri & Chapman 2010). Marine as -
semblages on these novel artificial substrata differ sub-
stantially from those on natural benthic communities,
raising major concerns about the consequences of such
biodiversity changes (Glasby & Connell 1999, Chap-
man & Blockley 2009, Ruiz et al. 2009, Bulleri & Chap-

man 2010). In fact, it is common that introduced spe-
cies dominate epibenthic communities on artificial
structures (Stachowicz et al. 2002, Glasby et al. 2007,
Sams & Keough 2007, Dafforn et al. 2009) and eventu-
ally outcompete native species (Tyrrell & Byers 2007).
Further, introduced species have been more frequently
reported on artificial hard substrata in estuaries and
bays than on open coasts (Wasson et al. 2005, Ruiz et
al. 2009, Marins et al. 2010). However, our understand-
ing of the factors that contribute to the invasion pro-
cesses on anthropogenic structures and subsequently
to natural habitats remain limited despite numerous
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studies reporting an increasing number of non-native
species in the marine environment (Ruiz et al. 2000,
Robinson et al. 2005, Streftaris et al. 2005).

A number of studies have examined the abiotic fac-
tors that contribute to the development of fouling as -
semblages on artificial structures, including distur-
bance, orientation, position, material, motion, light and
pollution (Harris & Irons 1982, Glasby 1999, 2000,
Glasby & Connell 2001, Dobretsov et al. 2005, Blockley
& Chapman 2006, Cifuentes et al. 2007, Crooks et al.
2011), as well as biotic factors, e.g. recruitment, compe-
tition, and predation (Osman 1977, Sutherland & Karl-
son 1977, Keough & Downes 1982, Stachowicz et al.
1999, Tyrrell & Byers 2007, Nydam & Stachowicz 2007).
Post-settlement predation is one important factor that
can result in high mortality rates for newly settled
marine invertebrates (Gosselin & Qian 1997, Hunt &
Scheibling 1997). It is widely accepted that large gener-
alist omnivores can actively graze on recruits settled on
hard substrata and influence the development of ben-
thic communities (Witman & Dayton 2001). For exam-
ple, intense grazing in benthic hard-
bottom communities by sea urchins can
lead to barren zones dominated by
 encrusting coralline algae (Chapman
1981, Witman 1987, Andrew 1993).
Several studies have shown that pre -
dation can have a dramatic effect on
fouling community development when
large predators (e.g. sea urchins, sea
stars, crabs), but also micropredators
(e.g. small gastropods), are present (Os-
man et al. 1992, Osman & Whitlatch
1995, Osman & Whitlatch 2004, Nydam
& Stachowicz 2007).

However, predators that are natu-
rally abundant in benthic communities
can be rare on artificial structures
(Chapman 2003, Chapman & Blockley
2009). Predators from rocky bottoms
may colonize artificial structures that
are connected to hard substrata. In
contrast, common soft-bottom preda -
tors, many of which bury temporarily in
the sediment (e.g. Reise 1985) may not
colonize hard artificial structures. Con-
sequently, artificial structures located
on rocky substrata may be more acces-
sible to benthic predators than ones on
sandy substrata or suspended in the
water column. In the present study, we
first described the fouling communities
found on pilings at different distances
from the shore at La Herradura Bay, in
northern-central Chile. Based on initial

observations of the fouling communities, we hypo-
thesized that pilings set on rocky bottom are provided
with potential predators which forage on fouling com-
munities, whereas communities on pilings found on
soft sediment at increasing distances from the rocky
shore have much fewer benthic predators such as rock
shrimp and sea urchins, which rarely move across soft
sediments. This should result in a greater impact on
fouling community development near the shore (over
rocky bottom) and less impact seaward (over sandy
bottom). We performed a manipulative enclosure
experiment to examine the effects of 2 abundant pre-
dators on rocky reefs (rock shrimp and sea urchins) in
structuring fouling communities on pilings.

MATERIALS AND METHODS

Study site. The present study was conducted at La
Herradura Bay, a 3.3 km2 sheltered bay in northern-
central Chile (Fig. 1), between October 2005 and Jan -
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Fig. 1. Map of Chile and inset of La Herradura Bay noting the 2 piers and the iso-
lated rock on sandy bottom where surveys and cage experiment were con-
ducted. The bottom photo graphs show the piers, a piling set on boulders (left 

panel) and one set on sandy bottom (right panel)
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uary 2006. Large boulders covered with encrusting
coralline and red and green macroalgae characterize
shallow rocky bottoms in the bay. The black sea urchin
Tetrapygus niger and the rock shrimp Rhyncocinetes
typus are the most abundant grazers and predators in
shallow sub tidal areas but other mobile predators such
as blennid fishes, crabs and sea stars are also present.
R. typus is a common grazer in northern Chile (Caillaux
& Stotz 2003), with populations having increased in re -
sponse to the overexploitation of fish predators (Godoy
et al. 2010) and the present lack of interest in its com-
mercial exploitation. This rock shrimp was heavily
 harvested until the 1950s with bait traps but was then
replaced by offshore shrimp species harvested by
trawling (Vas quez & Castilla 1982). The sea urchin
T. niger occurs in high densities on rocky bottoms but is
absent on soft bottoms. Buoys, piers and other marine
facilities provide artificial hard-substrata for dense as-
semblages of fouling species, typically dominated by
bryozoans (the invasive Bugula neritina and B. fabel-
lata), ascidians (the native Pyura chilensis and the inva-
sive Ciona intestinalis), hydrozoans (Hydractinia spp.),
and the native giant barnacle Austromegabalanus psit-
tacus (Valdivia et al. 2005, Cifuentes et al. 2007).

Field survey. We first described the established
epibiotic communities on concrete pilings at different
distances from the shore on the University Católica del
Norte’s pier (Fig. 1). Nearshore pilings were set on
rocky substratum whereas offshore pilings were set on
coarse-grained sand. To describe the communities on
pilings, we surveyed 7 sets of 4 pilings (representing
4 replicates) that were parallel to the shore at 2 to 4 m
in depth, and the sets extended out from the shore by a
distance of 5 m from each other (see Figs. 1 & 2). We
took 1 photoquadrat of each piling at 1 m above the
bottom using a Nikonos V mounted with a 15 mm lens
and 2 strobes. The communities on the pilings were
consistent from just above the substrate/piling inter-
face to within 1 m of the low tide mark on the pilings.
Twelve pilings were therefore monitored on rocks (20
to 30 m from the shore), 4 at the edge of the rocky and
sandy bottom (35 m), and 12 on sand (40 to 50 m). The
percent cover of the different taxa and bare space
were estimated using a grid of 60 regularly spaced
points overlaying projected images of the photo-
quadrats, which represented an area of between 0.14
and 0.2 m2. Densities of sea urchins were quantified
with four 0.5 × 0.5 m randomly placed quadrats per pil-
ing, while the number of shrimp on each piling was
visually estimated early in the afternoon.

A second photographic survey was conducted using
the same method at a nearby pier used to load iron ore
carriers and a large rock isolated from other hard sur-
faces by over 20 m of sandy substratum (Fig. 1). The
rock (3 m in diameter and 1.5 m in height) contained

neither shrimp nor urchins. The cement base of the
iron ore pier was set in a rocky assemblage similar to
the University pier, but most of the remaining pilings
were set in sediment. Photoquadrats were taken of the
rock (12 quadrats), pier base (9 quadrats) and of pilings
extending out from the shore on sandy bottoms (13
quadrats). The isolated rock represented a natural
exclusion experiment, while the pier base and pilings
were a parallel arrangement to the University pier.

Predation enclosure experiment. To assess whether
benthic predators affect the structure of the fouling
communities and particularly the recruitment of the in-
vasive bryozoan Bugula neritina, a cage experiment
was performed on the pilings of the University pier.
Predation levels were manipulated using 4 cage treat-
ments: (1) predator exclusion cage, (2) urchin cage
(each containing 3 enclosed sea urchins), (3) shrimp
cage (containing 3 enclosed rock shrimp), and (4) no
cage. To further examine whether the initial commu-
nity influenced the recruitment of sessile species and
the grazing effect of the predators, the cage treatments
were combined with 2 levels of substratum (unscraped
or scraped surface). The unscraped substratum (i.e. turf
algal community) represented a piling surface in the
presence of shrimp, while the scraped substratum (i.e.
bare rock) resembled a piling surface in the presence of
urchins. We predicted that the resultant community
would change or remain similar according to the en-
closed predator species and the initial community.

The experimental cages (35 units) were made with a
5 mm plastic mesh (30 × 30 × 15 cm), had no bottom,
and were directly attached with ropes to the pilings at
a depth of 2 to 3 m below the sea surface. All cage
treatments were randomly assigned to a piling located
on rocky bottom or sandy bottom but close to boulders
(at a distance of 30 to 40 m from the shore, see Fig. 2),
and then placed in a random direction around the pil-
ing (4 cage treatments on each of 10 pilings). The pil-
ings used to assign the cage treatments were initially
covered by a turf alga community on which numerous
shrimp but very few urchins were foraging. To obtain
the bare rock (scraped) substratum, the surface of
 pilings were scraped with a metallic brush prior to
the experiment to remove established sessile epibiota,
al though a small cover of turf and encrusting coralline
algae could remain attached. In the case of unscraped
substratum, an additional treatment was conducted
with 3 shrimp and 3 sea urchins enclosed in the same
cage. The sea urchins Tetrapygus niger (40 to 50 mm in
test diameter) were collected on surrounding boulders,
while the rock shrimp Rhyncocinetes typus (15 to
20 mm in carapace length) were gently collected from
pilings, using plastic Ziploc® bags and then placed
immediately into the cages. The abundance (12 ind.
m–2) of shrimp and sea urchins in the cages were
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within the range of densities occurring on barren habi-
tats (Caillaux & Stotz 2003, Gaymer et al. 2010). The
cages were visited weekly to remove en crusting
organisms from the outer surface of the cages and to
replace missing shrimp (a minimum of 2 shrimp were
always present in cages with enclosed shrimp) and sea
urchins (2 dead urchins were replaced in 1 cage in the
third week). The experiment (5 replicates per treat-
ment) was run for 12 wk to allow enough time for the
communities to develop inside the cages.

After 12 wk, each replicate treatment was sampled
in situ and abundances of benthic invertebrates and
macroalgae were estimated. Primary cover (organisms
attached directly to the pilings) and secondary cover
(organisms attached to primary cover) were estimated
for sessile organisms using a grid of 81 regularly
spaced points within a 0.25 × 0.25 m quadrat. We lim-
ited the sampling to the secondary cover when the
 primary cover was not directly visible. Taxa that were
present in a replicate, but did not appear under any of
the 81 measuring points, were assigned a cover of
0.5%.

To compare cover of sessile organisms and algae
among treatments, percent cover data for primary and
secondary covers were combined for non-parametric
multivariate analyses. Percent covers were used to
 examine whether differences existed in the composi-
tion and species frequency of the resultant fouling com -
munities. We performed permutational multivariate
ANOVA (PERMANOVA), using the statistical package
PERMANOVA+ (Anderson et al. 2008) to estimate the

pseudo-F statistic with permutations. This statistic is an
analog of the univariate Fisher’s F ratio. When appro-
priate, a posteriori pair-wise comparisons were made
using Monte Carlo sampling (Anderson et al. 2008).
Multivariate analyses were performed separately for
each type of substratum (scraped and unscraped) on
Bray-Curtis dissimilarities after a square-root transfor-
mation of the data using PRIMER 6 (Clarke & Gorley
2006). Univariate analyses of variance were used to test
the difference in percent cover of the dominant taxa
and bare space with treatment and substratum as fixed
factors. The treatment cage shrimp+urchins was ex-
cluded from univariate analyses to maintain a balanced
design. Normality was tested with the Shapiro-Wilks
test and homogeneity of variances was tested using the
Levene test, and in cases where the assumptions were
not met, ANOVAs were applied to both the raw and
the rank-transformed data, as suggested by Conover
(1980), and we present the results of the former when
they were the same for the 2 analyses.

RESULTS

At the University pier, the black sea urchin Tetra -
pygus niger only occurred on the pilings that were
located on rocky bottom with a maximum density of
42.7 (±14.2 SE) ind. m–2 on the first pilings, while the
rock shrimp Rhyncocinetes typus was abundant on all
pilings (up to 250 ind. per piling) except for pilings set
at a distance >10 m from the rocky bottom (Fig. 2). The
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Fig. 2. Schematic distribution of sea urchins Tetrapygus niger, rock shrimp Rhyncocinetes typus and fouling community assem-
blages on pilings positioned on rocky or sandy bottom at different distances from the shore at the University pier at La Herradura Bay
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survey of the epibiotic assemblages on pilings re -
vealed a gradient with encrusting coralline algae dom-
inating on pilings with sea urchins, whereas a high
cover of turf algae dominated on pilings where shrimp
and few or no sea urchins were observed foraging
(Figs. 2 & 3). In contrast, the furthest offshore pilings
set on sandy bottom and in the presence of few shrimp
and no sea urchins were heavily colonized by the inva-
sive bryozoan Bugula neritina.

The survey of the iron ore pier showed a similar pat-
tern to that of the University pier (Fig. 3). The base of
the pier was dominated by encrusting corallines and
small turf algae, and shrimp were conspicuous among
the rocks surrounding the base. The pilings set on sand
were dominated by a mix of Bugula neritina, the en -
crusting hydroid Hydractinia sp., and turf algae. The
iso lated rock had a mix of fleshy algae and colonies of
B. neritina, which are not commonly found on algal-
dominated upper horizontal natural surfaces. No ur -
chins or shrimp were observed on this rock between
November 2005 and January 2006 during 3 visits span-
ning several weeks.

The cage experiment resulted in the development of
3 distinct epibiotic assemblages i.e. communities dom-
inated by encrusting coralline algae, turf algae or
bryo  zoans (Fig. 4). The presence of the predators, sea
urchins and rock shrimp, had a significant effect in
 limiting the recruitment of the invasive bryo zoan
(Table 1). In the predator exclusion cages, Bugula ner-
itina monopolized cage substrata (>95% cover) on
both scraped and unscraped surfaces. Such dominance
by bryo zoans resulted in only sporadic recruitment
(<10% cover) of other sessile species such as serpulids
(Fig. 5) and on a few occasions (<1%) the invasive asci -
dian Ciona intestinalis. In contrast, no or low re -
cruitment of bryozoans occurred in the presence of
predators. Instead, the enclosures with shrimp resulted
in a high cover of turf algae (77.0 ± 6.3% and 52.1 ±
9.6% on scraped and unscraped surfaces, respectively)
and some bryozoans (Table 2, Fig. 4). Turf algae also
dominated in the uncaged treatment (>80% for both
scraped and unscraped surfaces), but no bryozoans
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were found in those communities. In the presence of
sea urchins, bare space largely dominated on both
scraped and unscraped surfaces (Table 2, Fig. 4). The
additive treatment with urchins and shrimp on
unscraped surfaces also resulted in a high proportion
of bare space (86.9 ± 2.4%), relatively similar to the un -
scraped treatment with urchins only (p = 0.051,
Table 1). However, the latter did not prevent the re -
cruitment of bryozoans, contrary to the enclosure with
urchins and shrimps (Fig. 4).
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Scraped substratum
Source df MS Pseudo-F p

Treatment 3 13061.0 37.5 0.0001
Error 16 347.9

Pair-wise comparisons t p Similarity (%)

No cage, No predator 7.5 0.007 14.0
No cage, Urchins 7.4 0.008 18.8
No cage, Shrimp 1.2 0.287 68.5
No predator, Urchins 9.6 0.008 15.1
No predator, Shrimp 5.3 0.008 28.4
Urchins, Shrimp 6.3 0.006 17.6

Unscraped substratum
Source df MS Pseudo-F p

Treatment 4 9108.7 23.6 0.0001
Error 20 385.3

Pair-wise comparisons t p Similarity (%)

No cage, No predator (NP) 7.3 <0.001 21.2
No cage, Urchins (U) 5.2 <0.001 21.7
No cage, Shrimp (S) 2.2 0.010 56.1
No cage, U + S 6.3 <0.001 23.2
NP, U 5.2 <0.001 42.5
NP, S 4.5 <0.001 42.3
NP, U + S 9.5 <0.001 26.4
U, S 3.9 <0.001 33.2
U, U + S 1.9 0.051 70.5
S, U + S 4.3 <0.001 37.6

Table 1. Statistical summary of permutational multivariate
ANOVA and pair-wise a posteriori comparisons to test the ef-
fect of benthic predators on the fouling communities of pilings
for each type of substrate (scraped and unscraped) using per-
cent cover of sessile species. The treatments were no cage, no
predator, cage with urchins, cage with shrimp, and cage with
both urchins and shrimp for unscraped substrate. Separate
analyses were run for each type of substratum (scraped and
unscraped). p-values were estimated with Monte Carlo sam-
pling. Pair-wise comparisons are indicated with the degree of 
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unscraped (i.e. remained intact) prior to starting the experiment

Source df MS F p

Turf algae
Treatment (T) 3 18 068 80.31 <0.001
Substrate (S) 1 366 1.63 0.211
T × S 3 397 1.76 0.174
Residual 32 225

T: NC = S > U = NP
Bryozoans
Treatment (T) 3 19 578 76.90 <0.001
Substrate (S) 1 531 2.08 0.159
T × S 3 246 0.97 0.421
Residual 32 255

T: NP > S = U = NC
Bare space
Treatment (T) 3 17 361 116.17 <0.001
Substrate (S) 1 151 1.01 0.322
T × S 3 151 1.01 0.400
Residual 32 149

T: NP > S = U = NC

Table 2. Results of 2-way ANOVAs testing for the effects of
benthic predators (cage with no predator, shrimp, sea urchins,
and no cage) and the type of substrate (scraped and un-
scraped) on the percent cover of turf algae, the invasive bry-
ozoan Bugula neritina and bare space on pilings. Results of
Tukey’s tests are presented below analyses with the abbrevi-
ations: NC, no cage; NP, no predator; S, shrimp; U, sea urchin
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DISCUSSION

The high abundance and diversity of non-native spe-
cies on anthropogenic structures (Glasby & Connell
1999, Holloway & Connell 2002, Bulleri & Chapman
2010) suggest that these artificial substrata could pro-
vide a spatial refuge from predation. Our study de -
monstrates that anthropogenic structures (i.e. pier pil-
ings) can facilitate the establishment of the invasive
erect bryozoan Bugula neritina by supplying novel
substrata out of reach of benthic predators. The field
survey at the 2 piers revealed that pilings set on a
rocky bottom were colonized by a fouling community
dominated by coralline and turf algae, while pilings
surrounded by sandy bottoms at a distance from the
rocky shore were heavily colonized by B. neritina. This
change in fouling community composition correlated
with the presence of benthic predators on the pilings.
Sea urchins and rock shrimp were present on the first
pilings located on boulders from which these benthic
predators could easily forage. Predators decreased in
abundance on offshore pilings with the replacement of
rocky substrata with sandy bottom.

Numerous studies have reported an increase in ascid-
ians and bryozoans in cage experiments in fouling com-
munities (e.g. Russ 1980, Table 3 in Schmidt & Warner
1984). Similarly, in our study conducted during the re-
cruitment period of Bugula neritina (Cifuentes et al.
2010), the exclusion of predators within cages on pilings
resulted in a high recruitment of bryozoans largely dom-
inated by this invasive species. We further ob served nu-
merous adult colonies of B. neritina on an isolated rock in
a sandy area, indicating that this in vasive bryozoan can
occupy natural benthic communities when grazers (e.g.
sea urchins, shrimp) are not present. Thus, anthropo-
genic structures away from rocky bottom (e.g. pilings on
soft substratum, floating structures) offer epibiotic spe-
cies a spatial refuge from numerous invertebrate benthic
predators. The sea ur chins and shrimp prevented the
colonization of B. neri tina, but only to a limited distance
from their rocky habitat. While sea urchins remained rel-
atively sedentary on pilings, shrimp seek refuge from
predators within boulders on the rocky shore and make
short-distance movements outside of their shelters to for-
age on pilings. The higher mobility of shrimp compared
to sea urchins allows them to forage further away from
the rocky bottom (i.e. on distant pilings) and conse-
quently influence the development of fouling communi-
ties on offshore pilings. The confounding factor depth
could also possibly have influenced the ob served pat-
terns. However, the bottom slope in the back part of La
Herradura Bay is very slight and the depth of the pilings
on sand only varied by less than 2 m from the rocks to the
outer edge of the pilings, so distance from the shore was
most likely the important factor.

Predation strongly affected the development of the
fouling assemblages but the resultant communities dif-
fered with predator species. Sea urchins graze on
algae and invertebrate recruits, including bryozoans.
Shrimp, with their slender and tweezer-like second
chelipeds, can more carefully select the food of interest
and do not necessarily damage other recruits. The
presence of bryozoan recruits in cages with shrimp
suggests that a higher density would have been neces-
sary in the enclosures (12 ind. m–2) to totally suppress
the recruitment of Bugula neritina. The heterogeneity
of the substratum (i.e. unscraped pilings) also likely
restricted the sea urchins from grazing on bryozoans
that recruited within interstices created by engineer
species such as ascidians and barnacles (Castilla et al.
2004). However, the combination of the 2 predators
(sea urchins and shrimp) enhanced their effectiveness
in preventing the recruitment of the invasive bryo -
zoans due to the ability of shrimp to forage on organ-
isms recruiting within interstices.

The ecological importance of rock shrimp in benthic
marine systems is largely unknown. In stream eco-
systems, freshwater shrimp are often the dominant
macro-consumers and can play an important role in
determining the benthic community assemblages
(Pringle et al. 1993, March et al. 2002). In seagrass
beds, shrimp actively graze on epibionts (both plant
and animal) on grass blades, which influences the de -
velopment of epibionts in seagrass communities (Pers -
son et al. 2008). In rocky reef communities, however,
shrimps are usually not considered important pre-
dators (but see Bruno & O’Connor 2005). Our results
clearly show the dramatic effect of rock shrimp on the
development of epibenthic communities, which may
therefore play an important role in structuring the ben-
thic communities in northern Chile. Shrimp foraging
may further prevent introduced species such as Bugula
neritina from invading benthic communities. However,
it remains unclear how Rhyncocinetes typus interacts
with other intermediate consumers (e.g. sea urchins).
Its reported voracity in feeding on invertebrates such
as the introduced cultured Japanese abalone (Stotz et
al. 2006) and small recruits of sea urchins (C. Dumont
pers. obs.), and its ability to effectively consume foul-
ing organisms on pearl nets of scallop aquaculture
(Dumont et al. 2009) suggest an important functional
role of shrimp in controlling benthic assemblages.
Given the importance of R. typus grazing on fouling
communities, further studies are required to elucidate
the ecological role of this abundant species in natural
habitats (Caillaux & Stotz 2003). Several studies have
demonstrated that predators can limit the abundance
or distribution of invaders in natural habitats (e.g.
Byers 2002, Hunt & Yamada 2003, Castilla et al. 2004,
deRivera et al. 2005). Similarly, the shrimp R. typus
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could certainly contribute to the biotic resistance of
invasions in rocky habitats in northern Chile.

A number of studies have shown that predation may
strongly influence the development of fouling commu-
nities (Russ 1980, Mook 1981, Anderson & Underwood
1997, Osman & Whitlatch 2004, Nydam & Stachowicz
2007), while others have reported weak effects of pre-
dation (Keough & Butler 1979, Connell 2001, Sams &
Keough 2007). The effect of benthic predators on com-
munity development varies with the type of structures
(e.g. piling versus floating structures, Holloway & Con-
nell 2002), but our study further shows that the type of
surrounding benthic substratum determines the access
of benthic predators that can affect the development of
the fouling community and, more importantly, the
spread of invasive species. In fact, such anthropogenic
structures are frequently located in protected bays and
estuaries dominated by sandy or muddy bottoms, but it
is also common to have either natural or artificial shal-
low rocky fringes in such bays. There is no question
that other environmental factors contribute to the
structure of fouling communities (see ‘Introduction’),
but our results highlight the importance of the substra-
tum surrounding these pilings and other artificial sub-
strata, and indicate that benthic invertebrate predators
may determine the fouling community on these solid
structures where they can access them from nearby
rocky bottoms.
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