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INTRODUCTION

Synchronous bursts of reproduction typically punc-
tuate the lives of plants and animals in response to pre-
dictable variation in survival of offspring during envi-
ronmental cycles (Ims 1990). Seasonal and interannual
synchrony have received considerable attention, in-
cluding spectacular examples of masting by trees,
17 yr cycles of cicadas and mass spawning by corals
(Rathcke & Lacey 1985, Babcock et al. 1986, Taylor &
Karban 1986). Seasonal variation in reproductive syn-

chrony usually places offspring in favorable environ-
mental conditions, such as desirable levels of tempera-
ture, light, rainfall or food (Rathcke & Lacey 1985,
Giese & Kanatani 1987). Intraseasonal variation in
reproductive synchrony relative to the daily cycle of
sunlight (24 h) and monthly cycle of moonlight (29.6 d)
is most commonly attributed to avoiding or swamping
predators (Johannes 1978, Ims 1990).

In addition to synchronizing with diel and lunar
cycles, larval release by coastal marine organisms is
timed to different phases of the tides, including semi-
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daily (12.4 h) or daily (24.8 h) cycles of tidal height and
the biweekly cycle of tidal amplitude (14.8 d; Korringa
1947, Giese & Kanatani 1987, Saigusa et al. 2003, Skov
et al. 2005, Morgan 2007). Coastal organisms display a
diverse array of timing patterns and synchronize
reproduction to coincide with different phases of one
or more of these environmental cycles (Forward 1987,
Robertson et al. 1990, Morgan 1995, 2007, Palmer
1995, Schmitt & Holbrook 1999).

Despite considerable differences in life histories, a
common paradigm has emerged for the adaptive sig-
nificance of reproductive synchrony by coral reef
fishes and intertidal crabs. Predation by planktivorous
fishes is a strong selective pressure on larvae (Morgan
1987a, 1989, 1992, Morgan & Christy 1996, Morgan
& Anastasia 2008), and many species release most
gametes or larvae during nocturnal maximum-
amplitude high tides (Johannes 1978, Christy 1982,
Robertson et al. 1990, Morgan 1995, Thurman 2004).
This common timing pattern occurs even in regions
where the tidal amplitude and lunar cycles do not coin-
cide, indicating that most crabs track cues that are
associated with the tides rather than moonlight (Mor-
gan & Christy 1994, Morgan 1995, 1996a,b, Kellmeyer
& Salmon 2001). During this narrow window, adults,
embryos or larvae are least likely to be seen by preda-
tory fishes because they are rapidly transported away
from nearshore coastal areas that generally harbor
more predators than do offshore waters (Johannes
1978, Christy 1982, Morgan 1990, Morgan & Christy
1995, Hovel & Morgan 1997). Intertidal crabs remain
near burrows to release larvae, and consequently, spe-
cies that live high on the shore are constrained to
release larvae when they are inundated by maximum
amplitude tides. However, many species that live low
on the shore and are inundated every day also release
larvae during maximum-amplitude high tides (Christy
1986, Morgan & Christy 1995, Morgan 1995, 1996a,
Thurman 2004). The few species that do not release
larvae at the safest time, during nocturnal maximum-
amplitude high tides, are pigmented so they are incon-
spicuous and less vulnerable to planktivorous fishes
(Morgan 1995, Morgan & Christy 1995, 1997, Gove &
Mambonhe 2000, Hsueh 2002). Larvae also recruit to
adult habitats during a safe period during nocturnal
spring flood tides (Christy & Morgan 1998, Paula et al.
2004). Thus, a wide variety of coastal crabs from tropi-
cal and temperate regions synchronize larval release
and recruitment to occur during safe periods of dimi-
nished fish predation.

There is little information on the timing of larval
release from strong upwelling regions along the west-
ern margins of continents (Morgan 1995, Christy 2003,
Thurman 2004). The timing of peak reproduction
around the safe period should be maintained there,

provided that predatory fishes are as strong a selective
force as they are elsewhere in the world. However,
reproductive synchrony by intertidal crabs could be
much weaker in upwelling regions, thus increasing the
risk of fish predation (Christy 2003). Reproductive
seasons are protracted in upwelling regimes (Morris
et al. 1980), and intraseasonal synchrony in the timing
of larval release also may be much less pronounced.
Development times for externally brooded embryos of
intertidal crabs are typically <2 wk in warm regions
of the world (e.g. DeCoursey 1983, Morgan & Christy
1995, Morgan 1996b), whereas they probably are
much longer in upwelling regimes. Upwelled water
and fog keep water and air temperatures cold year-
round, which lengthens embryonic development
times. Long incubation times increase potential expo-
sure to a wide range of temperatures, especially during
low tide, which could result in higher variance in
development time and thus weaker synchrony in the
timing of larval release. Female crabs in warm up-
welling regions appear to adjust the timing of fertiliza-
tion, regulate their depth in burrows and choose the
width of burrows during courtship to compensate for
variation in development rates of embryos arising from
small changes in temperature (Christy et al. 2001,
Reaney & Backwell 2007). However, these compen-
satory behaviors may be less effective when cold tem-
peratures lengthen incubation periods, especially for
species that live in depressions under rocks rather than
in burrows (Christy 2003). Weaker synchrony in larval
release also may result from large waves obscuring
tidal cycles along rocky shores (Flores & Paula 2002).
Weak synchrony around the safe period in upwel-
ling regions should reduce fitness by increasing fish
predation.

Variation in the strength and persistence of up-
welling along the coast may also affect the degree of
reproductive synchrony around the safe period. Along
the coast of California,  upwelling is stronger and more
persistent north of San Francisco Bay than farther
south. This spatial variability already has been found
to affect the evolution of seasonal patterns of reproduc-
tive timing by fishes and crabs in the region (Parrish et
al. 1981, Shanks & Eckert 2005). The colder tempera-
tures in the strong, persistent upwelling regions of
northern California could result in weaker synchrony
and greater predation than observed in southern Cali-
fornia by increasing exposure to variable air and water
temperatures over longer incubation periods.

The purpose of this study was to determine the
degree and timing of intraspecific reproductive syn-
chrony by 4 common species of intertidal crabs that
reside in a mixed semidiurnal tidal regime (usually 2
but sometimes 1 tide per day) along the upwelling
coast of California. Our specific objectives were to
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determine whether the synchrony and timing of larval
release were (1) similar to patterns described else-
where in the world, (2) affected by variation in up-
welling intensity along the coast and (3) influenced by
variable water and air temperatures during long incu-
bation periods. We expected that the timing of larval
release would be synchronized with nocturnal maxi-
mum spring tides to avoid planktivory, but that larval
release would be more weakly synchronized than in
tropical and other temperate regions. In addition, we
expected incubation periods to be longer and repro-
ductive synchrony to be weaker in northern than in
southern and central California, where waters are
warmer. Determining the extent of variation in the syn-
chrony and timing of larval release relative to the safe
period is the first step in evaluating the likely fitness
consequences in upwelling regimes.

MATERIALS AND METHODS

Determining the timing and synchrony of larval
release. The lined shore crab Pachygrapsus crassipes
occurs in the high intertidal zone of rocky shores and
salt marshes, the purple shore crab Hemigrapsus
nudus and porcelain crab Petrolisthes cinctipes both
occur in the midintertidal zone of rocky shores and the
yellow shore crab Hemigrapsus oregonensis occurs
from the lower intertidal to the subtidal zone in estuar-
ies. We collected all ovigerous crabs in northern Cali-
fornia from the rocky shores of Bodega Harbor or the
adjacent open coast, and we collected ovigers from
several locations in southern and central California
(Fig. 1). P. cinctipes was collected from boulder fields
and mussel beds between Ventura and Santa Barbara
(southern California), P. crassipes was collected from
the jetty at the Channel Islands Harbor entrance

(southern California) and H. nudus and H. oregonensis
were collected from Elkhorn Slough near the entrance
to Moss Landing Harbor (central California). All crabs
were collected during low tides either from under-
neath overturned stones during the daytime or with
the use of a flashlight at night to immobilize them.
Time periods, numbers of ovigerous crabs and num-
bers of days that crabs were observed are presented in
Table 1.

Because all intertidal crabs release larvae during
high tide while they are inundated (Forward 1987,
Morgan 1995, Thurman 2004), we focused on deter-
mining the timing of larval release relative to the
other 3 environmental cycles (diel, tidal amplitude,
lunar) by means of a method that is conducive to
long-term monitoring. Ovigerous females that were
collected in northern California were held in uncov-
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Fig. 1. The 4 crab collection sites along the coast of California

Species Family Location Observation period Days Crabs
TA/lunar Diel Collections No.

Petrolisthes Porcellanidae Bodega Bay 6 Mar –8 Aug 2001 157 152 3 365
cinctipes Ventura–Santa Barbara  18 Mar–10 May 1997 54 10 2 8 2

Ventura–Santa Barbara  26 Jun–28 Jul 1997 32 1 1 7 5

Hemigrapsus Grapsidae Bodega Bay 11 Dec 2000–21 May 2001 162 162 4 256
oregonensis Elkhorn Slough 16 Mar–25 May 1997 71 39 1 9 7

Hemigrapsus Grapsidae Bodega Bay 7 Mar–5 Jul 2001 121 121 4 101
nudus Elkhorn Slough 8 Jul–4 Aug 1997 28 10 1 6 0

Pachygrapsus Grapsidae Bodega Bay 13 Jul–5 Sep 2001 55 34 1 5 4
crassipes Ventura 26 Jun–22 Jul 1997 27 1 1 3 8

Table 1. Locations, time period, numbers of ovigerous crabs observed and numbers of days that crabs were observed in determin-
ing the timing of larval release relative to tidal amplitude (TA), lunar and diel cycles for 4 species from along the coast of Califor-
nia in 1997, 2000 and 2001. The timing of larval release relative to the diel cycle was determined for subsets of crabs used to 

determine biweekly periodicities
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ered, outdoor, flow-through seawater tables at Bo-
dega Marine Laboratory (BML), and those from south-
ern California were held in covered, flow-through
seawater tables at the Marine Science Institute (MSI)
in Santa Barbara. Plastic mesh covered the tanks at
BML to shade crabs from direct sunlight by ~25%
because these species typically remain under rocks
during the daytime. We determined the timing of lar-
val release by all species by holding ovigerous
females individually at ambient seawater and light
conditions. Large crabs were held in culture dishes
(14.0 or 22.9 cm diameter), and small crabs were held
in the compartments (4.5 × 4 × 4 cm) of plastic trays.
Crabs were checked daily for larval release when sea-
water in the containers was changed. Females infre-
quently released larvae on 2 consecutive days, and
these females were scored as releasing larvae on the
first day. Females that released larvae were returned
to the collection site and were occasionally replen-
ished with newly collected ovigerous females.

This method yields accurate estimates of hatching
patterns relative to lunar and tidal amplitude cycles,
because the date of larval release is established once
embryos are spawned as long as crabs are maintained
at ambient temperatures. The efficacy of this method
has been demonstrated previously for many crab spe-
cies in a range of tidal and upwelling regimes by com-
paring hatching patterns in trays to those determined
in situ (Salmon et al. 1986, Morgan & Christy 1994,
1995, Morgan 1996a). Crabs often were checked shortly
after sunrise and before sunset to determine whether
they released larvae during the day or night.

The duration of the incubation period for each spe-
cies was estimated by determining the maximum time
that crabs brooded embryos under ambient conditions.
Estimates of the incubation periods improved when
large numbers of crabs were collected because the
probability of capturing females bearing newly spawned
embryos increased.

Data analysis. Synchrony relative to environmental
cycles: The predicted difference between the maxi-
mum range between a high and low tide was calcu-
lated for each day of the observation period by means
of NOAA tide tables for each crab collection site.
Rayleigh’s test was used to detect peaks in timing of
larval release relative to both lunar and tidal amplitude
cycles. Data were divided into 14 d periods to deter-
mine the timing of larval release relative to the tidal
amplitude cycle and 15 d periods for the semilunar
cycle. Values of Rayleigh’s test depend on sample size
and are not comparable among different observation
periods. Instead, this test detected the degree of syn-
chrony in larval release and the timing relative to tidal
amplitude and lunar cycles. A higher r-value and lower
magnitude for one environmental cycle relative to the

other between observation periods indicated the rela-
tive importance of the 2 cycles for the timing of larval
release.

Time series analysis of synchrony relative to the
tidal amplitude cycle: Cross-correlation and cross-
Fourier analyses were used to determine the timing of
larval release for time series ≥2 mo long (5 of the 8
observation periods). Hatching data were log trans-
formed for this analysis. Autocorrelations of 1 to 3 d
were evident in some of these data and were removed
before analysis; seasonal trends were not evident. In
cross-correlations, the time series of larval release was
lagged relative to that of the tidal amplitude, which
was held stationary. Only lags of 10 to 20% of the time
series were considered to be valid (Emery & Thomson
1997).

Effects of environmental factors on synchrony and
timing: We examined the potential influence of 3
environmental variables on the synchrony and timing
of larval release by Hemigrapsus oregonensis and
Petrolisthes cinctipes near Bodega Bay, the 2 longest
data sets. We used time-series analysis to compare the
temporal pattern of hatching to daily records of sea
surface temperature (SST) and air temperature (moni-
tored near BML) and tidal amplitude (from tide tables)
from the same time period. We assumed that the
probability of hatching on a given day was likely to
reflect environmental conditions over several preced-
ing days. Therefore, we constructed statistical models
in which the proportion of available broods hatched
on Day t was a function of the mean environmental
conditions over the previous week (Days t – 1 to t – 7).
Because hatching also may occur in response to
recent changes in the environment, we also con-
structed models with terms for the rate of change in
an environmental parameter, defined as the mean of
the variable over the preceding 3 d (Days t – 1 to t – 3)
minus the mean of the variable on the 3 d preceding
that interval (Days t – 4 to t – 7). This approach cap-
tures smooth trends in each variable rather than daily
fluctuations. We limited our analysis to the week pre-
ceding hatching to minimize the loss of hatching
observations at the beginning of the time series, since
physical observations were not available before the
onset of hatching data collection.

We considered linear models with terms for both the
mean and rate of change in SST, tidal amplitude and
air temperature, as well as interactions between those
6 factors. We then compared the suite of models gener-
ated for each species using Akaike’s Information Crite-
rion (AIC). Models were fitted with generalized least
squares (GLS) with an error covariance matrix that
accounted for the autocorrelation structure of the
data sets (see supplement at www.int-res.com/articles/
suppl/m425p103_supp.pdf for details).
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RESULTS

Timing and synchrony of larval release

The 4 species of crabs generally released larvae near
spring tides at night, regardless of where they were col-
lected along the coast (Fig. 2, Table 2). Near Bodega
Bay in northern California, all 4 species released larvae
during or 1 d before spring tides, except the pattern
was not significant for Pachygrapsus crassipes accord-
ing to Rayleigh’s test (Figs. 2 & 3, Table 2). In central
and southern California, Rayleigh’s test indicated that
3 species released larvae during or 2 d before spring
tides, and P. crassipes released larvae 4 d before spring

tides in a brief time series (Fig. 2, Table 2). A brief sec-
ond trial for 1 of the 3 species (Petrolisthes cinctipes) did
not show a significant pattern (Table 2). Cross-correla-
tions for all species again showed that larval release
peaked near spring tides in central and southern Cali-
fornia (Fig. 3, Table 2). The coupling of larval release to
the tidal amplitude cycle was similar for species that
reside high (P. crassipes, Hemigrapsus nudus) or low
(P. cinctipes, H. oregonensis) in the intertidal zone.
Similar percentages of larvae were released at night
by the 4 species in northern California (86 to 100%)
and central and southern California (90 to 100%).

The timing of larval release was not as tightly
related to the lunar as to the tidal amplitude cycle
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Fig. 2. Timing of larval release relative to tidal amplitude and lunar cycles by (a) Petrolisthe cinctipes near Bodega Bay (northern
California) from 6 March to 8 August 2001 and between Ventura and Santa Barbara (southern California) from 18 March to 
10 May and 26 June to 28 July 1997, (b) Hemigrapsus oregonensis near Bodega Bay from 11 December 2000 to 21 May 2001 and in
Elkhorn Slough (central California) from 16 March to 25 May 1997, (c) H. nudus near Bodega Bay from 7 March to 5 July 2001 and
in Elkhorn Slough from 8 July to 4 August 1997 and (d) Pachygrapsus crassipes near Bodega Bay from 13 July to 5 September 2001
and at Ventura from 26 June to 22 July 1997. Full moons are indicated by open circles and new moons are indicated by filled circles



Mar Ecol Prog Ser 425: 103–112, 2011

(Fig. 2, Table 2). Only 2 species in northern California
released larvae during or 1 d before new and full
moons (Petrolisthes cinctipes, Hemigrapsus nudus). In
central and southern California, peak release by only
2 species occurred during or 1 d before new and full
moons (H. oregonensis, H. nudus). The other 2 species

(P. cinctipes, Pachygrapsus crassipes) released larvae
6 d before new and full moons (i.e. on quarter moons),
and the longest trial for one of them was not related to
lunar phase (P. cinctipes).

Peaks in larval release were neither pronounced nor
closely coupled with the biweekly tidal amplitude
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Species Location Study period Rayleigh’s test Cross- Spectral Night Brood
Tide r Moon r correlations day % days

Petrolisthes Bodega Mar–Aug 2001 0 d 0.32*** –1 d 0.16*** 0–4 d < MAT* ns 89 65
cinctipes Ventura–SB Mar–May 1997 0 d 0.29*** –2 d 0.14 0–2  d < MAT* ns 100 53

Ventura–SB Jun–Jul 1997 –5 d 0.14 –6 d 0.20* na na 100 33

Hemigrapsus Bodega Dec 2000–May 2001 –1 d 0.24** –4 d 0.12 1–3 d < MAT* ns 80 78
oregonensis Elkhorn Mar–May 1997 0 d 0.24** 0 d 0.30*** 0–2 d < MAT* 14.2** 100 71

Hemigrapsus Bodega Mar–Jul 2001 0 d 0.41*** 0 d 0.29*** 1–3 d < MAT* ns 86 53
nudus Elkhorn Jul–Aug 1997 –2 d 0.28* –1 d 0.25* na na 90 29

Pachygrapsus Bodega Jul–Sep 2001 –1 d 0.14 2 d 0.24 0–1 d < MAT* ns 100 55
crassipes Ventura      Mar–May 1997 –4 d 0.57** –6 d 0.56*** na na 100 26

Table 2. Timing of larval release relative to tidal amplitude and lunar and diel cycles of 4 crab species along the coast of Califor-
nia. SB: Santa Barbara. Larval release for the tidal amplitude and lunar cycles is shown as the number of days (d) relative to max-
imum amplitude tides (MAT) and new and full moons. Larval release relative to the diel cycle is reported as the percent hatching
at night. The maximum number of days that crabs brooded embryos before releasing larvae is also reported (brood). *p < 0.05;
**p < 0.01; ***p < 0.001 for Rayleigh’s test, cross-correlations and spectral analysis (Fisher’s Kappa). ns: spectral analysis was 

not significant; na: test was not performed owing to the short time series. See Table 1 for sample sizes

Fig. 3. Cross-correlation (left panels) and spectral analyses (right panels) of the timing of larval release relative to the tidal ampli-
tude cycle by (a) Petrolisthes cinctipes near Bodega Bay and between Ventura and Santa Barbara, (b) Hemigrapsus oregonensis
near Bodega Bay and in Elkhorn Slough, (c) H. nudus near Bodega Bay and (d) Pachygrapsus crassipes near Bodega Bay. Lags are
relative to peak tidal amplitude within a biweekly cycle with 0 and 14 d corresponding to spring tides and 7 d corresponding to
neap tides. Dashed lines indicate p < 0.05 on cross-correlation plots, and the one significant periodicity is labeled on spectral plots
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cycle indicating that synchrony was weak
(Fig. 3, Table 2). Periodicities in 5 of 6 cases
with long time series were not significant; a
biweekly periodicity was found only for
Hemigrapsus oregonensis at Elkorn Slough.
Maximum incubation times by the 4 species
were longer in northern (53 to 78 d) than in
southern or central California (26 to 53 d).

Effects of environmental factors on 
synchrony and timing

For Hemigrapsus oregonensis, the lagged
mean tidal amplitude and the rates of change
in tidal amplitude and SST were the only fac-
tors with statistically significant (p < 0.05) co-
efficients in univariate GLS models (Fig. S1 in
the supplement at www.int-res.com/articles/
suppl/m425p103_supp.pdf). Given the evi-
dence that those 3 variables had better pre-
dictive power than did the others, we
then considered a full set of models includ-
ing interactions among those 3 variables
(Table S1a). The most parsimonious model
(AIC weight w = 0.89) had terms for the rate of
change in SST, tidal amplitude and their in-
teraction (Table S1a). In this model, the pro-
portion of broods hatching increased on a ris-
ing tide or when SST was increasing; when both SST
and tidal amplitude were increasing the total effect was
slightly less than additive (Table S1b). This model ex-
plained 12.5% of the variance in the data and afforded
a reasonable fit to the hatching time series, capturing
the presence, though not the magnitude, of most of the
peaks and valleys in hatching (Fig. 4). The fit was poor-
est in regions near the beginning of the time series, for
which SST data were missing and had been interpo-
lated. For Petrolisthes cinctipes, the lagged mean tidal
amplitude and air temperature were the only factors
with coefficients that were significantly different from
zero in univariate GLS models, but no model that in-
cluded environmental factors was more parsimonious
than an intercept-only model (in the supplement at
www.int-res.com/articles/suppl/m425p103_supp.pdf).

DISCUSSION

Larval release by the 4 species of crabs peaked near
spring tides at night in an upwelling regime as it does
for many intertidal species elsewhere in the world
(Forward 1987, Morgan 1995, Thurman 2004). The
timing patterns also were characteristic of other mixed
semidiurnal tidal regimes, where peak larval release

generally is more closely related to the tidal amplitude
than the lunar cycle and larvae sometimes are released
in daylight (Morgan & Christy 1994, Morgan 1996a,
Kellmeyer & Salmon 2001, Weaver and Salmon 2002).
Because the tidal amplitude and lunar cycles do not
always coincide in mixed semidiurnal tidal regimes,
crabs must time larval release according to only one of
the 2 environmental cycles, and they typically timed it
by the tides rather than moonlight with the exception
of one semiterrestrial species (Saigusa 1988). Crabs
sometimes released larvae in daylight because high
tides do not always peak at night in mixed semidiurnal
tidal regimes (Morgan & Christy 1994, Morgan 1995,
1996a,b, Thurman 2004).

The timing of larval release was similar along the
coast of California despite differences in the intensity
and persistence of upwelling (Hickey 1998). The dif-
ferent timing pattern by one species (4 d before spring
tides by Pachygrapsus crassipes) and nonsignificant
results (second brief trial for Petrolisthes cinctipes) are
to be expected for weakly synchronous timing patterns
in the shorter time series obtained for southern and
central California.

Larval release was less synchronous than that ob-
served in nonupwelling regimes. The strong, regular
peaks of biweekly or monthly larval release that are
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Fig. 4. Hemigrapsus oregonensis. Best-fit GLS models for the time series
collected near Bodega Bay. Panels show the rates of change in (a) tidal am-
plitude and (b) sea surface temperature (SST) over 1 wk before hatching
and (c) proportion of ovigerous females hatching (dashed line) relative to
the most parsimonious model fit (solid line), including the effects of the 

rate of change in tidal amplitude, SST and their interaction
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characteristic of intertidal crabs elsewhere in the world
were not evident along our upwelling coast. Nor was
larval release more synchronous by species that live
higher in the intertidal zone, even though females in
natural populations are constrained to release larvae
on maximum amplitude tides while they are inundated
(Salmon et al. 1986, Morgan 1995, Morgan & Christy
1995). Although larval release by all 4 species coin-
cided with spring tides in most trials, peaks of larval
release were neither well defined nor highly periodic.
The weak synchrony raises the possibility that females
that are not inundated by high tides every day com-
monly walk to the water line to release larvae rather
than releasing larvae from the safety of their refuges,
which would increase the risk of predation on females,
embryos and newly released larvae (Morgan & Christy
1995).

The weak synchrony in the timing of larval release
probably arose from the cumulative effect of environ-
mental variation during long incubation times in cold
water and air temperatures. This relationship was
found for 1 of the 2 crabs tested (Hemigrapsus orego-
nensis from Bodega Bay), and the amount of variation
in reproductive synchrony explained by temperature
might even have been greater if a complete tempera-
ture record had been available. Although less plausi-
ble, selection for synchronous release may have been
relaxed if newly released larvae encountered fewer
planktivorous fishes in upwelling regimes. Juvenile
fishes that are exclusively zooplanktivorous regardless
of their dietary preferences as adults (Morgan 1990)
are most abundant in estuaries and kelp forests, both
of which are patchy in space along the California coast.
However, larval release by many intertidal crabs is
quite synchronous in the weaker upwelling regimes off
the Pacific Coast of Panama (Christy 1986, Morgan &
Christy 1994, 1995, 1997) and Portugal (Paula 1989,
Pereira et al. 2000), suggesting that fish predation on
newly released larvae can be high in warmer up-
welling regions. Large waves obscuring tidal cycles
were not responsible for the weak synchrony (Flores &
Paula 2002), because crabs were collected in sheltered
habitats (except for Pachygrapsus crassipes near
Bodega Bay).

Follow-up studies should be conducted with inter-
tidal crabs across upwelling regimes to determine (1)
the degree of synchrony in the timing of larval release
in the field, (2) whether females of mid- and high inter-
tidal species walk to the shore to release larvae and
(3) whether fish predation on newly hatched larvae
increases in upwelling regimes. We recommend using
a precise, labor-intensive method to determine incu-
bation periods and the timing of larval release in the
field. This method involves placing a bottomless, well-
ventilated box with a translucent cover over a natural

population, and frequently pumping water and any
newly hatched larvae while crabs are inundated dur-
ing high tide (Morgan & Christy 1994, Morgan 1996a).
Surveying ovigerous females at the waterline with a
flashlight over consecutive nocturnal high tides would
determine whether larvae are released from the safety
of their refuges (DeCoursey 1983). Comparing the den-
sity of fish and numbers of larvae eaten by fish (Mor-
gan 1990, Hovel & Morgan 1997) between cold up-
welling and warm coasts would be a first step toward
determining whether there was a cost to poorly syn-
chronized larval release.

In conclusion, larval release by intertidal crabs ap-
pears to be weakly synchronized in cold upwelling
regimes. This result stands in stark contrast to well-
known examples of strong synchrony in other coastal
regions. Given the intense selective pressures leading
to synchrony in those regions, our results suggest two
possible interpretations. Either planktivory is lower
in this upwelling region, which we find unlikely, or
environmental constraints preclude strong synchrony.
Females may be unable to compensate for the cumula-
tive variation in temperature experienced by develop-
ing embryos during long incubation periods in cold
upwelled waters. Weak synchrony has important im-
plications for the reproductive success of all intertidal
species that brood their offspring by exposing newly
released larvae to a greater risk of fish predation. The
survival of newly hatched larvae has been linked to
peaks in settlement for crabs and fishes (Christy &
Stancyk 1982, Robertson et al. 1988, Morgan 1990,
Tilburg et al. 2008), and increased fish predation
resulting from weak synchrony could contribute to
recruitment limitation in upwelling regimes (Gaines &
Roughgarden 1987). The timing of larval release by a
diverse array of taxa can be affected by other selective
factors (Salmon et al. 1986, Anger et al. 1994, Morgan
1987b, 1995, Brodie et al. 2007), but weaker synchrony
should still result in reduced reproductive success
relative to other regions.
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