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ABSTRACT: Physical and chemical vertical gradients in
estuaries are often steep, with changes on the scale of cm
to m strongly affecting a phytoplankter's exposure to lim-
iting nutrients and light. Two diel field studies were con-
ducted during June and July 2001 to establish how the
composition and productivity of the phytoplankton are
influenced by the vertical water column structure within
the shallow, eutrophic, microtidal Neuse River Estuary,
North Carolina, USA. During both studies, an upper
photic mixed layer with low dissolved inorganic nitrogen
(DIN) (~ 1 nM) lay above a sub-halocline, aphotic region
with elevated DIN (~2 to 5 ntM). Phytoflagellates were
dominant, and observed diel vertical migration (DVM)
patterns are likely an important reason for their success
in this N-limited system characterized by strong vertical
separation of light and DIN resources. Integrated water
column primary productivities during June and July
were 15 and 113 % greater, respectively, than expected
for a vertically homogenous phytoplankton community.
The high degree of productivity enhancement in July
was due to daytime near-surface aggregation in re-
sponse to low-light, overcast conditions. Displacements
of flagellate populations during DVM were positively
correlated with cell size, exposing larger cells to higher
light and nutrient levels over the diel period. Since larger
phytoplankton are generally less efficient at utilizing
scarce resources, such vertical niche partitioning ac-
cording to cell size should enhance community-level pro-
ductivity. Interspecific variation in vertical migration
patterns is an important trait of phytoplankton that
promotes complementarity of resource utilization and
contributes to the relationship between diversity and
productivity within phytoplankton communities.
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In vivo fluorescence profiles over 4 d in the Neuse River
Estuary showing phytoflagellate diel vertical migrations (red:
high abundance; blue: low abundance), and photomicro-
graphs of common phytoflagellates (from left to right: Karlo-
dinium veneficum, Scrippsiella trochoidea, Pheopolykrikos
hartmanii).

Image: N. S. Hall and A. R. Joyner

INTRODUCTION

Phytoplankton vertical distribution is of central inter-
est to phytoplankton ecologists because vertical gradi-
ents of light, nutrient concentrations, current velocities
and turbulence are much steeper than horizontal gradi-
ents of these properties. These factors affect phyto-
plankton growth, survival and coexistence strategies
(Margalef 1978, Fogg 1991). Among marine systems,
some of the steepest vertical physical and chemical gra-
dients are found in estuaries that are strongly salinity
stratified. In these systems, depth distributions of
phytoplankton cells are controlled by a number of in-
teracting factors, including endogenous and environ-
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mentally cued swimming and buoyancy regulation
(Kamykowski et al. 1998), vertical advection due to up-
welling and/or downwelling, and turbulent mixing
(Margalef 1978). Changes in the depth distribution of
phytoplankton coupled with the steep physical and
chemical gradients in estuaries can result in dramatic
changes in light and nutrient availability over short
time (s to d) and spatial (cm to m) scales. Evolutionarily,
phytoplankton have developed diverse strategies to
help regulate their distribution relative to the various
vertical physical and chemical gradients in order to
enhance growth and survival (Margalef 1978, Ganf &
Oliver 1982, Fogg 1991). For example, at the population
level, coupling between the depth distribution of phyto-
plankton and vertical gradients of current velocities
may decrease advective losses (Seliger et al. 1970, An-
derson & Stolzenbach 1985, Chang & Carpenter 1985,
Crawford and Purdie 1992). Additionally, mismatches
in the vertical localization of phytoplankton and zoo-
plankton patches can decrease grazing losses (Jones
1991, Salonen & Rosenberg 2000). Despite the potential
importance of these z-dimension gradients, relatively
few studies have investigated the relationship between
these gradients and phytoplankton community struc-
ture in shallow-water (<10 m) marine systems, with
notable exceptions being Seliger et al. (1970), Ander-
son & Stolzenbach (1985), Chang & Carpenter (1985),
Waters & Mitchell (2002) and Handy et al. (2005). This
is particularly true with respect to how the community
responds to diel changes in light intensity via diel verti-
cal migration (DVM) (Litaker et al. 1987). The present
study was therefore undertaken to gain greater insight
into how vertical gradients, particularly with respect to
growth-limiting light and nutrient resources, influence
phytoplankton community structure and productivity.
The study itself was conducted in the Neuse River
Estuary (NRE), North Carolina, USA, and encompassed
2 time-intensive diel field studies.

The NRE is a shallow-water (4 to 7 m) microtidal estu-
ary that receives freshwater primarily from the Neuse
River and saltwater inputs from Pamlico Sound (Fig. 1).
The phytoplankton community in this estuary is quite
diverse, with diatoms, chlorophytes, cyanobacteria, di-
noflagellates and cryptophytes all comprising impor-
tant segments of the community under various condi-
tions (Mallin et al. 1991, Pinckney et al. 1998). Diatoms
lack motility and are generally negatively buoyant, re-
quiring turbulence to maintain their position within the
photic zone (Sournia 1982). Although some cyano-
bacteria effectively use gas vesicles to control their
position in the water column (Paerl 1988), the picoplank-
tonic Synechococcus spp. that dominate the cyano-
bacteria of the lower NRE (Gaulke et al. 2010) lack gas
vesicles necessary for vertical migration (Sournia 1982).
In contrast, the dinoflagellates, cryptophytes and many
of the chlorophytes are flagellated, with swimming
speeds that allow for vertical migration when mixing is
weak. DVM is a common migration pattern of flagel-
lated phytoplankton, whereby cells swim to the well-
lit surface waters during the day and into deeper,
usually more nutrient-rich waters at night (Eppley et al.
1968, MacIntyre et al. 1997). Aggregation at the pycno-
cline is another commonly observed vertical distribu-
tion pattern of motile organisms in stratified environ-
ments (Tyler & Seliger 1981, Waters & Mitchell 2002,
Kononen et al. 2003), which, when the photic zone is
deep enough, provides simultaneous access to light and
nutrient resources (Klausmeier & Litchman 2001).

Although the phytoplankton community is diverse,
blooms in the NRE are nearly always comprised of
flagellates of the classes Dinophycea, Cryptophycea or
Raphidophyceae (Mallin et al. 1991, Pinckney et al.
1998, Rothenberger et al. 2009). At times, these blooms
cause severe water quality problems such as de-
creased water transparency (Woodruff et al. 1999, Hall
et al. 2008), bottom water hypoxia (Paerl et al. 1998)
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Fig. 1. The Neuse River
Estuary, showing station
NR 120—where the diel
studies were performed —
and the meteorological
station, BFT 142
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and fish kills (Mallin 1994, Hall et al. 2008). Given their
ability to vertically migrate, understanding the rela-
tionships between flagellate depth distributions and
vertical gradients of growth-limiting light and nutrient
resources is crucial to understanding bloom dynamics
and the resultant water quality within this system.

During 2 diel studies, we determined how the phyto-
plankton community was organized within the physi-
cal and chemical gradients of the NRE, with particular
emphasis on growth-limiting light and nutrient re-
sources. Results demonstrate that many of the domi-
nant phytoflagellate species perform vertical migration
behaviors in response to steep vertical separation of
light and nutrient resources. Interspecific and intraspe-
cific variation in migration patterns provide in situ
evidence for striking flexibility in vertical migration
responses of the flagellate community, which con-
tributes to enhanced productivity within this eutrophic
estuary.

MATERIALS AND METHODS

Two diel studies were performed in the NRE at sta-
tion NR 120 (Fig. 1) on 12 to 13 June and 18 to 19 July
2001. Profiles of light, nutrients and phytoplankton
biomass were made at 3 to 6 h intervals to identify diel
patterns in the vertical distribution of phytoplankton
and relate these patterns to water column structure. Be-
cause this study included vertical profiles of microscopi-
cally determined cell abundance, differences in pat-
terns of phytoplankton distribution within taxonomic
levels from class to species were discernable. Addi-
tionally, primary productivity and nutrient uptake stud-
ies were performed to investigate the linkage between
patterns of resource availability and utilization.

Study site. The NRE is located along the mid-
Atlantic seaboard of the USA (Fig. 1) and is a major
tributary estuary of the Albemarle-Pamlico Sound
estuarine system (Paerl et al. 1998, 2007, Peierls et al.
2003). The few narrow inlets in the Outer Banks of
North Carolina restrict exchange with shelf waters
and, as a result, astronomical tides in the NRE are neg-
ligible (Luettich et al. 2002). Riverine discharge and
wind are the primary drivers of circulation, producing
a partially mixed estuary where periods of strong salin-
ity-based stratification are common (Luettich et al.
2000). Maximum depths along the axis of the estuary
increase from ~4 m at the head of the estuary to near
7 m where the estuary discharges to Pamlico Sound.
Mean depth is only 2.3 m owing to extensive shelves
and shoals that rim the estuary. The NRE has a multi-
decadal history of algal bloom and hypoxia problems
associated with excessive anthropogenic nutrient load-
ing (Paerl et al. 1998, 2004, 2007).

Station NR 120 (34°57.132' N, 76°48.779' W) is located
near the bend in the estuary (Fig. 1), has a depth of
~5.5 m, and is mesohaline and mesotrophic to eu-
trophic (Boyer et al. 1994). Salinity is highly variable
and largely dependent on riverine discharge (Christian
et al. 1991). This site is monitored on a biweekly basis
as part of the NRE Modeling and Monitoring (Mod-
Mon) Program (Luettich et al. 2000) that has collected
environmental data within the NRE since 1994 (www.
unc.edu/ims/neuse/modmon).

Sample collection. Water samples for determination
of phytoplankton biomass, community composition,
primary productivity and nutrient uptake were col-
lected using a 21 Van Dorn sampler and immediately
poured into 2 to 4 1 polyethylene bottles. Water was
collected from 0.1, 0.5, 1, 2, 3.5 and 5 m depths at
roughly 3 h intervals. Time is reported as Eastern
Standard Time.

Within minutes of collection, 150 ml of each sample
was poured into an amber polyethylene bottle and
fixed with Lugol's solution at 1% final concentration
for microscopic phytoplankton enumeration. Chloro-
phyll a (chl a) and nutrient measurements were made
at 0.5, 2 and 5 m for the early morning, noon, afternoon
and midnight periods (roughly 6 h intervals). For chl a
measurements, 3 aliquots of 50 ml were filtered sepa-
rately onto Whatman 25 mm GF/F filters (nominal pore-
size 0.7 pm). Filters were folded in half (content side
faced inward), blotted with a paper towel to remove
excess water, wrapped in aluminum foil and stored on
ice in plastic bags for the duration of each 24 h obser-
vation (Paerl et al. 1995). The filtrate from the 3 filters
was poured into acid-washed and sample-rinsed 150 ml
polyethylene bottles and stored on ice for the duration
of each 24 h observation for subsequent analysis of dis-
solved nutrients. Once back at the laboratory, chl a and
nutrient samples were frozen at —-20°C.

Physical data. Temperature, salinity and in vivo fluo-
rescence profiles were collected coincidentally with
each set of water samples using a YSI 6600 multipara-
meter water quality sonde. During the June diel study,
measurements were made at 0.5 m depth intervals. In
July, the YSI 6600 sonde continuously collected data at
1 Hz and produced a depth resolution of ~0.1 m. Pro-
files of photosynthetically active radiation (PAR) were
collected before and after each productivity incubation
using a Li-Cor 192S 4n spherical PAR sensor. Diffuse
attenuation coefficients (K;) were calculated from
least-squares fits of the exponential decay of PAR pro-
files. Hourly wind and incident solar radiation data
were obtained from the US Environmental Protection
Agency Clean Air Status and Trends Network site
BFT 142 (34°53.088'N, 76°37218'W), 19 km east of
NR 120 (Fig. 1) (www.epa.gov/castnet). Incident PAR
(umol photons m~2 s7!, 400-700 nm) was approximated
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by multiplying incident solar radiation (W m™2, 400-
1100 nm) by 2.04 (Fisher et al. 2003). Wave height was
estimated to the nearest 0.3 m (1 foot) at the time of
each sampling.

Nutrient and chl a analyses. Frozen nutrient sam-
ples were quick-thawed and NO, + NOj;™ (reported
as NO;7), NH,* and PO,>~ concentrations were imme-
diately determined using a Lachat Quick-chem 8000
auto-analyzer (Lachat Quik-chem methods 31-107-04-
3-B, 31-107-04-1-C and 31-107-06-1-B, respectively).
Detection limits for NO;~, NH,* and PO,*~ were 0.26,
0.34 and 0.024 pM, respectively. Dissolved silica was
not measured during this study because concentra-
tions were always (697 of 597 biweekly measure-
ments from station NR 120 since 1999) saturating for
diatom growth in this region of the estuary (>2 pM;
Dortch & Whitledge 1992). Chl a samples were ana-
lyzed within 1 wk of each diel observation and nutri-
ent analyses were performed within 4 wk of each diel
observation. For chl a analysis, filters were extracted
using a tissue grinder in 90% acetone (EPA method
445.0; Arar et al. 1997). Chl a concentration of the
extracts was measured using the non-acidification
method of Welschmeyer (1994) on a Turner Designs
TD-700 fluorometer calibrated with pure, liquid chl a
standards.

Primary productivity and nitrogen uptake. Assays
for primary productivity (**C) and nitrogen (*’N) up-
take were timed to capture rates for the early morning,
midday, afternoon and midnight periods with reported
times indicating the beginning of each assay (Fig. 2).
We focused on N uptake, rather than N and P, because
N has repeatedly been shown to be the limiting nutri-
ent within the NRE during the summer (Rudek et al.
1991, Paerl et al. 1995, 2004).

For ®N uptake assays, whole-water samples from
0.5, 2 and 5 m depth were added to triplicate 150 ml
clear polyethylene terephthalate glycol bottles amended
with trace concentrations (0.1 pM) of >N ammonium
chloride (*NH,Cl), potassium nitrate (K'>NO;) or urea
((**NH,),CO) (Sigma Chemicals). For NH,*, "’NH,* rep-
resented a small portion of the total NH,* pool (range 1.4
to 18.7 %, mean 9.4 %); therefore, it seems unlikely that
significant stimulation of NH,* uptake via increased sub-
strate availability occurred. Calculation of in situ uptake
of NO3™ and urea was not possible because ambient con-
centrations were below analytical detection limits for 20
of 24 NO;™ samples and all 24 urea samples (see Twomey
et al. 2005 for urea measurement methods). Samples
were incubated in the water at the collection depth by
suspending the bottles on a vertical line at 0.5, 2 and 5 m
depths. To prevent shading, the incubation line drifted
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on a tether ~5 m from the vessel. Incubations lasted from
2t0 5.1 h (Fig. 2) and were terminated by filtration onto
pre-combusted (500°C, 16 h) Whatman 25 mm GF/F fil-
ters (nominal pore-size 0.7 pm). While shipboard, filters
were sealed in plastic Petri dishes and stored on ice. Im-
mediately upon return to the Institute of Marine Sciences
(~2 h after the last assay), filters were dried at 60°C. For
15N analysis and calculation of uptake rates, we used the
procedures described by Twomey et al. (2005). Our
’NH,* uptake method did not account for isotopic dilu-
tion caused by remineralization, which can lead to signif-
icant underestimation of true NH,* uptake rates (Glibert
et al. 1982). All the NH,* uptake rates reported in the
present study are, therefore, considered minimum up-
take rates. We used the minimum NH,* uptake rates to
calculate a maximum turnover time for the ambient
NH,* pool in the water column by dividing the ambient
NH,* concentration by the minimum uptake rate.

Primary productivity was determined using the “C
method adapted for in situ estuarine conditions by
Paerl (1987). Triplicate light and single dark 150 ml
polyethylene terephthalate glycol bottles were filled
with water collected from 0.5, 2 and 5 m depths fol-
lowed by the addition of 0.3 ml of a '*C NaHCO, solu-
tion with an activity of 7.5 nCi ml™!, (58 mCi mmol™*
specific activity, ICN Pharmaceuticals). Incubations
were conducted at the sampling depth, in the same
manner as the N incubations. After a ~3 h incubation
period (Fig. 2), 50 ml aliquots from each bottle were
filtered onto Whatman 25 mm GF/F filters. Filters were
then sealed in plastic Petri dishes and stored on ice.
Immediately upon return to the Institute of Marine
Sciences, filters were fumed with HCI to remove inor-
ganic C and air dried. *C incorporation was mea-
sured using a Beckman TD-5000 liquid scintillation
spectrometer. Dissolved inorganic C was determined
by acidification and measurement of the evolved CO,
gas with a Beckman 865 infrared gas analyzer (Paerl
1987). Primary productivity was calculated according
to the formula of Wetzel & Likens (1991).

To understand how vertical distributions of phyto-
plankton impacted productivity, we first characterized
the light dependence of photosynthesis from both days
by comparing the observed chl a specific productivity
(P®) with PAR flux for each time point and all 3 depths.
Phytoplankton layering can cause light to attenuate
unevenly in the water column and may produce errors
in estimating PAR flux at a specific depth based on
incident PAR and Ky (Wetzel 2001). Therefore, PAR
flux during the incubations was estimated as the mean
of the actual PAR measurements at each sampling
depth made at the beginning and end of each incuba-
tion. Afternoon productivity incubations were termi-
nated at sunset (Fig. 2). Because there was essentially
no incident PAR to the water at sunset, PAR profiles

were not made and PAR was assumed to be zero at all
depths. We empirically modeled the observed relation-
ship between PP and PAR using a least-squares fit to a
hyperbolic tangent model (Jassby & Platt 1976). Using
this empirical model, we calculated the productivity
expected if chl a was evenly distributed throughout the
water column. For each productivity measurement, we
assumed that chl a at each depth equaled the mean chl
afrom 0.5, 2 and 5 m sampling depths. We then multi-
plied these mean chl a values by the modeled P® for
the given PAR flux to obtain a modeled productivity
value and compared these values with the observed
productivities. Productivity values were integrated by
depth and time using trapezoidal integration (see Hall
et al. 2008 for details) to provide areal (m™2) estimates
of productivity for each incubation and for the entire
photoperiod. For integration over the photoperiod,
afternoon productivity values were reordered so that
the afternoon values followed the morning and midday
measurements, although the measurements were actu-
ally made the previous day (see Fig. 2).

Phytoplankton enumeration. Cell counts were per-
formed using the inverted microscope technique of
Utermohl (1958) with a Thomas Scientific microscope
under phase contrast at a magnification of 400x.
Smaller phytoplankton were likely underrepresented
in the counts because the 24 h settling time was not
sufficient to ensure that all of the nano- and picophyto-
plankton had settled (Hall 2009). However, consistent
settling time and use of the same size settling chamber
throughout the study (30.8 ml, 10 cm height) provided
a sufficient basis for comparing samples. For each
sample, 65 to 255 fields were counted, providing be-
tween 34 and 1973 counts of the most abundant of 15
to 27 cell types. We were unable to identify some cell
types to the genus level. For example, small (generally
4 to 5 pm diameter), solitary centric diatoms were
grouped and not identified further. Drawings and/or
photomicrographs of each common phytoplankton
species were made to record cell sizes for estimation of
biovolumes from published sources.

Analysis of phytoplankton depth profiles. Both hor-
izontal and vertical advection of phytoplankton patches
can produce changes in depth patterns that may be
mistaken for active vertical migration patterns (Happey-
Wood 1976, Denman 1977). Our analyses define the
statistical significance of DVM patterns and also
address the likelihood of advection of phytoplankton
patches producing apparent DVM patterns; issues
commonly not addressed in descriptions of vertical
migration behaviors (Jones 1988).

The center of mass of the phytoplankton depth distri-
bution for each profile (Z.,) was used as a metric to
describe changes in the depth distribution in a manner
that was independent of the absolute concentrations
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between profiles (Denman 1977). Z..,; was calculated
for the common species, classes and in vivo fluores-
cence as:

z=H

Zcent = z C’z Xz
z=0

z=H

2C, (1)
2=0

where z is the sampling depth of each biomass value,
C, is the biomass value at depth z and H is water col-
umn depth.

In stratified waters, vertical advection of phytoplank-
ton patches via the propagation of internal waves
along the pycnocline is common and can be mistaken
for active vertical migration, particularly if the wave
period is close to 24 h (Denman 1977). By subtracting
Zeent from the depth of the pycnocline, erroneously
perceived changes in vertical distribution brought
about by changes in the depth of the pycnocline were
avoided. Pycnocline depth for each profile was defined
as the depth of the 14 psu isohaline, which was consis-
tently found in the region where the maximum density
gradient occurred (Fig. 2). To assess the statistical
significance of observed diel changes in phytoplank-
ton depth distributions, time series of Z., were cor-
related with a cosine wave with a midday maximum
and midnight minimum. A significant DVM pattern
was defined by a significant positive correlation (o <
0.05) between the observed diel change in Z., and
the cosine wave.

Short-term changes in the vertical profiles of im-
motile cells indicate water movement, which should
redistribute all phytoplankton unless they are capable
of effectively swimming against mixing (Happey-
Wood 1976). Redistribution of flagellates due to mixing
is accounted for by comparing observed patterns of
phytoflagellate vertical distribution against the vertical
distributions of the most common non-motile phyto-
plankton groups.

The possibility that random horizontal advection
coupled with horizontal patchiness of phytoplankton
could produce an apparent DVM pattern solely by
chance was addressed by comparing the variability
with depth against the variability with time using a
2-way ANOVA of depth, time and their interaction
against total cell abundances of the dominant 3 phyto-
plankton classes during each diel study. A significant
time effect would indicate that advection of phyto-
plankton patches are a potentially important factor in
determining phytoplankton biomass within the pro-
files (Happey-Wood 1976). Both depth and time were
treated as categorical variables and were grouped into
4 time and 3 depth categories. Time was divided into
night (20:00 to 02:00 h), morning (02:00 to 08:00 h),
midday (08:00 to 14:00 h) and afternoon (14:00 to
20:00 h). Depth was divided into near-surface (0.1 and
0.5 m), mid-depth (1 and 2 m) and below pycnocline

(3.5 and 5 m) categories. This design resulted ina 4 x 3
matrix of cells with each cell containing 4 phytoplank-
ton class abundance values. Transformation of the cell
abundance data (c) by log(c+1) resulted in the data
conforming to the assumption of normality and homo-
geneity of variance as tested by Lilliefors’ and Bartlett's
tests, respectively.

RESULTS
Hydrographic and weather conditions

Throughout both diel studies, the water column was
stratified with salinity and temperature differences of
4 to 8 psu and 2 to 3°C from the surface to the bottom of
the ~5.5 m deep water column (Fig. 2A-D). Salinity was
responsible for >93% of vertical density variation
(calculated according to Gowen et al. 1995) and there-
fore is a suitable proxy for density. Salinity and temper-
ature increased from June to July, with mean water
column salinities of ~12 and ~15 psu and mean water
column temperatures of ~26 and ~27°C, respectively
(Fig. 2A-D). During both diel studies, the upper mixed
layer was ~1.5 m thick and was separated from the bot-
tom waters by the pycnocline (~1.5 to 3 m) centered at
~2 m depth (Fig. 2A,B) with a salinity of 14 psu.

A pronounced diel sea breeze pattern was evident
during June with south winds reaching 6 m s7! in the
late afternoon and very light to windless conditions
during the nighttime and early morning (Fig. 2E). In
July, winds were generally south—southwest and only
exceeded 2 m s™! during the late afternoon of 18 July
(Fig. 2F). Wave heights were <0.3 m except during the
afternoon of 13 June, when wind speed increased to
~6 m s~! and wave height increased briefly to ~0.6 m.
Clear skies in June allowed incident irradiance to
reach ~2000 pmol photons m~2 s! at midday and irra-
diance was only slightly suppressed during early after-
noon (Fig. 2E). In contrast, dense cloud cover approxi-
mately halved incident irradiance on 19 July (Fig. 2F).

Nutrients and dissolved inorganic nitrogen uptake

Dissolved inorganic nitrogen (DIN) was principally
in the form of NH,* throughout both diel studies. NO3~
was below detection for all samples during June. In
July, 4 samples collected from 0.5 and 2 m depth con-
tained low (<0.5 pM) but measurable NO;~. NH,* in
the surface waters (0.5 m) generally ranged from ~0.5
to ~1 pM for both diel studies (Table 1). NH,* concen-
trations at 2 m, near the pycnocline, closely matched
those at the surface for each profile. During the June
diel study, bottom-water NH,* was consistently 4 to 7
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Table 1. NH,* and PO’ concentrations, minimum NH," uptake rates and maximum
turnover times for the NH,* pool in the Neuse River Estuary, North Carolina, USA.
Values are means + SD from near-surface, near-pycnocline and subpycnocline depths

availability in July and a consistent
PB versus PAR relationship, midday
primary productivity was very simi-

lar between June and July with

Date Depth  [PO,*] [NH,*] NH,* Uptake NH," Turn- ~80-90, 10-20 and 1-3 pg C 1'* h?
(m) (M) (M) (RM b7 over (h) measured at the 0.5, 2 and 5 m

12-13 June 2001 0.5 0.34+0.084 0.78+0.15 0.22+0.073 3.71+0.64 depths, respectively, for both diel
2  053+0.26 0.89+0.25 021+0.081 4.36+0.70 studies (Fig. 3C). This was due to the

5 1.29+0.10 575+1.49 0.091+0.025 69.9+37.1 high near-surface biomass (~40 pg

18-19 July 2001 0.5 0.85+0.077 1.10+0.27 0.28 +0.070 4.07 + 0.91 chl al!) on 19 July (Fig. 3B), which
2 0.98£0067 1.09+0.56 0.27+0.12 4.13+1.01 increased near-surface (0.5 m) pro-

5 248+039 1.79+0.46 0.16+0.090 153 11.1 ductivity by ~85% (Fig. 4B) and

times higher than at the surface or near pycnocline
depths. In July, bottom-water NH,* was 1.2 to 3 times
higher than near the surface. Surface-water PO,3~
ranged from 0.25 to 0.8 uM and bottom-water PO,3-
(1.2 to >3 nM) was always higher than at the surface.
DIN to dissolved inorganic phosphorus molar ratios were
much lower than Redfield ratios (Redfield 1958), rang-
ing from 0.55 to 5.56 with a mean (+SD) of 2.00 + 1.35.

For near-surface (0.5 m) and near-pycnocline (2 m)
waters, the maximum turnover time of NH,* was ~4 h
(Table 1). Maximum turnover times were much longer
for the bottom waters than for the near-surface waters
(~15 h in June and ~70 h in July) owing to generally
lower minimum uptake rates and the much larger pool
of NH,* (Table 1).

Light and primary productivity

Attenuation of PAR within and between the 2 diel
studies (Fig. 3A) was very similar. Midday values of the
diffuse PAR attenuation coefficient for June and July
were 1.28 and 1.39 m™!, respectively, and standard
deviations for the complete set of PAR profiles (n = 5)
from both diel studies (data not shown) were less than
0.1 m™'. During both diel studies, light at the center of
the pycnocline (~2 m) was consistently 6 to 8% and
light in the bottom waters (>3.5 m) was <1 % incident
irradiance (Fig. 3A). However, because of differences
in cloud cover (Fig. 2E,F), light availability in June was
more than twice that in July (Fig. 3A).

During both diel studies, productivity normalized to
chl a (P®) closely tracked PAR availability, as shown for
the midday P® profiles (Fig. 3D) and for the comparison
of all P® measurements against PAR (Fig. 4A). The hy-
perbolic tangent model fit the observed relationship be-
tween PP and PAR well (R? = 0.92). However, PAR was
never fully saturating, which can lead to errors in esti-
mation of P®_,, (MaclIntyre et al. 2002). We will address
the likelihood and potential implications of inaccurately
estimating P2, in the ‘Discussion’. Despite lower PAR

increased the depth integrated pro-
ductivity by >100 % over what would
be expected for a vertically homogenous phytoplank-
ton community (Table 2). In fact, for all productivity
profiles except during the afternoon of 18 July, the ob-
served vertical heterogeneity of chl a increased depth
integrated productivity (Table 2). On a daily basis, the
observed productivity was 15% higher in June but
113 % higher in July than would have been expected
for evenly distributed chl a (Table 2).
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Fig. 3. (A) Midday depth profiles of photosynthetically active

radiation (PAR), (B) chlorophyll a, (C) primary productivity

and (D) biomass (chlorophyll a)-specific primary productivity

(PB). Dotted horizontal lines in A represent the mean depth of

the euphotic zone (1% incident PAR) from the 5 measured

PAR profiles during each diel study. Error bars represent
standard deviations
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Fig. 4. Scatter plots of (A) photosynthetically active radiation
(PAR) vs. biomass (chlorophyll a)-specific primary productiv-
ity (PP) and (B) observed versus modeled primary productiv-
ity, which assumes a vertically homogenous chlorophyll a dis-
tribution. Data come from all 3 depths (0.5, 2 and 5 m) for the
morning, midday and afternoon productivity assays con-
ducted during the June and July diel studies. Solid line in A
represents the best fit to the hyperbolic tangent model (Jassby
& Platt 1976). Solid line in B represents the 1:1 ratio between
observed and modeled primary production

Vertical distribution of the phytoplankton in June

The 6 most abundant phytoplankton species or
groups (Fig. 5) constituted 88 % of total phytoplankton
cell abundance. The community was dominated by
flagellates, and the dinoflagellates cf. Karlodinium
veneficum and Scrippsiella trochoidea, the crypto-
phyte Cryptomonas sp. and the euglenophyte Eutrep-
tia sp. all displayed statistically significant DVM pat-
terns (Fig. 6). The nanoplanktonic cryptophyte cf.
Chroomonas minuta (Campbell 1973) and the dino-
flagellate Prorocentrum minimum generally displayed
maximum abundance at depths close to or above the
pycnocline (Fig. 5I-P, OO-VV), with no statistically
significant DVM pattern (Fig. 6).

Table 2. Morning, midday, afternoon and integrated daily
values of observed depth-integrated primary productivity
(subperiods: mg C m™2 h™!, whole day: g C m™2 d7!) in the
Neuse River Estuary and modeled depth-integrated primary
productivity that assumes a vertically homogenous chloro-
phyll a distribution. Afternoon productivity measurements
were made prior to the morning and midday measurements
on the previous day (see Fig. 2)

Date Primary productivity
Time period Observed Modeled
12-13 June 2001
Morning 57.0 49.8
Midday 120.0 98.1
Afternoon 10.3 8.9
Whole day 1.73 1.51
18-19 July 2001
Morning 90.2 69.9
Midday 147.9 72.1
Afternoon 2.8 28.9
Whole day 3.24 1.52

Highest cell abundances of cf. Karlodinium vene-
ficum were nearly always observed in the pycnocline
region, but abundances above the pycnocline were
higher during the daytime (Fig. 5Q-X). High concen-
trations of cf. K. veneficum were never found below
the pycnocline at the 3.5 and 5 m depths (Fig. 5Q-X).
In contrast, Scrippsiella trochoidea displayed maxi-
mum abundances below the pycnocline at 3.5 m
at night, though very few cells were found deeper
(Fig. 5Z,AA). During the early morning, S. trochoidea
maxima were found near the pycnocline, with a large
portion of cells remaining below the pycnocline
(Fig. 5BB, CC). By mid-morning, a distinct population
maximum of both S. trochoidea and cf. Gymnodinium
danicansformed at 1 m depth but deepened by midday
to 2 m, only to migrate again to shallower depths by
mid-afternoon (Fig. 5DD-FF, LL-NN). Maximum con-
centrations of the dinoflagellate cf. G. danicans were
generally found near or just above the pycnocline at
concentrations of 40 to 100 cells ml™! (Fig. 5GG-NN).
Early in the morning (Fig. 5JJ, KK), dense patches of cf.
G. danicans (~1000 cells ml™') were observed at 1 to
2 m depths but, nearer midnight (Fig. 5SHH,II), these
patches appeared to be virtually absent from the water
column. The non-motile phytoplankton, small centric
diatoms (Fig. 5SWW-DDD) and the chlorophyte Anki-
strodesmus sp. did not display DVM patterns but gen-
erally had higher abundances at or above the pycno-
cline, as indicated by generally positive Z.; values
(Fig. 6).

Because of their abundance and large size, dinofla-
gellates constituted a large proportion of the phyto-
plankton biomass and this was reflected in the in vivo
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12-13 June 2001
Time of profile (h:min)
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Fig. 5. Vertical distribution of (A-H) in vivo fluorescence and salinity and (I-DDD) cell abundances of the top 6 numerically dom-
inant phytoplankton species or groups during the 12-13 June 2001 diel study. Light/dark bar along top indicates whether profile
was collected during daytime or nighttime. In top panels, in vivo fluorescence, salinity and pycnocline depth are represented by
solid, dashed and dotted horizontal lines, respectively. Species abbreviations are as follows: C. min = cf. Chroomonas minuta,
K. ven = cf. Karlodinium veneficum, S. troc = Scrippsiella trochoidea, G. dan = cf. Gymnodinium danicans, P. min = Prorocentrum
minimum and Centric = small (<20 pm diameter) centric diatoms. Multiplication of the scale factors (below species abbreviations)
by the abscissa yields cell abundance. Cell abundances higher than figure limits are displayed without scaling. Error bars
represent the 90 % confidence intervals for the abundance estimates
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Fig. 6. Diel patterns in the center of mass for the (A-L) common phytoplankton species, (M-0O) classes and (P) in vivo fluorescence

of the phytoplankton community during the June (squares) and July (triangles) diel studies. Filled symbols indicate a statistically

significant diel cycle based on the Pearson's correlation (r-values) between the center of mass with respect to the pycno-
cline and a cosine wave with zero phase shift (dotted line for June, solid line for July). *p < 0.05; **p <0.01; ***p < 0.001

fluorescence profiles. For example, nocturnal fluores-
cence peaks below the pycnocline at 3.5 m (Fig. 5B,C)
were most likely due to Scrippsiella trochoidea, and
the unusually high near-surface fluorescence during
the noon profile (Fig. 5G) coincided with high concen-
trations (350 cells ml™!) of the large dinoflagellate
Pheopolykrikos hartmanii (data not shown).

Vertical distribution of the phytoplankton in July

The 6 most abundant phytoplankton species or
groups (Fig. 7) constituted 92 % of total phytoplankton
cells. As in June, the community was dominated by fla-
gellates, and the dinoflagellates cf. Karlodinium vene-
ficum, Scrippsiella trochoidea and Pheopolykrikos
hartmanii, the cryptophytes cf. Chroomonas minuta
and Cryptomonas sp. and the chrysophyte Apedinella

radians all displayed significant DVM patterns (Fig. 6).
Growth conditions were poor relative to June because
of low incident PAR and lower bottom-water nutrient
concentrations (Fig. 2, Table 1). Coincident with these
conditions, the observed DVM patterns were generally
more exaggerated, with cells ascending higher during
the day and deeper into the water column at night. The
higher ascent of cells at midday was responsible for
the high midday primary productivity during July.
The DVM pattern of cf. Chroomonas minuta resulted
in the highest cell concentrations: >5000 cells ml™! at
3.5 m at night (Fig. 7K) and >10 000 cells ml™! at 0.5 m
at midday (Fig. 70). Apedinella radians and cf. Karlo-
dinium veneficum exhibited very similar DVM pat-
terns (Fig. 7 Q-FF). Early in the night (Fig. 7R,Z), a
sizeable fraction of the populations were found below
the pycnocline whereas later in the night and through
the early morning (Fig. 7S-U, AA-CC) the vast major-
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Fig. 7. Vertical distribution of (A-H) in vivo fluorescence and salinity and (I-DDD) cell abundances of the top 6 numerically dom-
inant phytoplankton species or groups during the 18-19 July 2001 diel study. Figure configuration is identical to Fig. 5. Species
abbreviations are as follows: C. min = cf. Chroomonas minuta, A. rad = Apedinella radians, K. ven = cf. Karlodinium veneficum,
P. hart = Pheopolykrikos hartmanii, S. troc = Scrippsiella trochoidea, Centric = small (<20 pm diameter) centric diatoms

ity of cells of both species occurred along the pycno-
cline. By midmorning (Fig. 7V, DD), cells from the pyc-
nocline started to accumulate in the surface waters. By
midday (Fig. 7W, EE), the majority of cells of both spe-
cies were in the upper 1 m and were accompanied by

cell abundance maxima of Scrippsiella trochoidea
(Fig. 7UU) and Pheopolykrikos hartmannii (Fig. 7MM).
Compared with June, both cf. K. veneficum and S. tro-
choidea moved higher into the water column during
midday (Fig. 5W, EE, 7EE, UU). For cf. K. veneficum,
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a larger portion of cells were found
below the pycnocline at night in July
(Fig. 5R,S, 7Z) and S. trochoidea
showed evidence of deeper noctur-

Table 3. F-statistics and p-values from an ANOVA of depth, time and their interaction
against total cell abundances of phytoplankton classes that displayed significant diel
vertical migration patterns of their depth of center of mass (Fig. 6) during each diel
study in the Neuse River Estuary. Values for significant (o = 0.05) effects are in bold

nal migration compared with that
in June, with high concentrations of
cells at both 3.5 and 5 m (Fig. 5Z, AA,

Phytoplankton class

Fig. 7PP-RR). During the day, maxi-
mum cell concentrations of Pheopoly-
krikos hartmanii were found at or

Total dinoflagellates (June)
Total dinoflagellates (July)
Total cryptophytes (July) 7.97

Depth Time Depth x Time
F P F P F P
18.20 3.46x10° 164 020 577 2.8x1073
8.07 1.27x102% 0.61 062 5.09 7.1x10*

1.4x10% 143 025 4.71 1.2x1073

above the pycnocline (Fig. 7ZKK-NN)
and at night, dense aggregations
(>1600 cells ml™!) occurred below the pycnocline (3.5 m)
(Fig. 711, JJ). As in June, the other common dinoflagel-
lates, Prorocentrum minimum and cf. Gymnodinium
danicans, and the non-motile groups, the chlorophyte
Ankistrodesmus sp., the common pennate diatom Cy-
lindrotheca closterium and the small centric diatoms
did not display significant DVM patterns (Fig. 6).

In vivo fluorescence profiles, as in June, generally
tracked the vertical distribution of the large dinoflagel-
lates such as Scrippsiella trochoidea and Pheopoly-
krikos hartmanii (Fig. 7A-H). In July, the resulting
DVM pattern of in vivo fluorescence was statistically
significant (Fig. 6). We speculate that decimeter-scale
structure within the nocturnal fluorescence peak from
2.5 to 4 m (Fig. 7C,D) was due to different flagellate
species, but our sampling resolution precluded this
determination.

Effects of horizontal advection

ANOVA results for total dinoflagellates in June and
both total dinoflagellate and cryptophyte abundance
in July showed significant depth effects and significant
interactions between depth and time (Table 3). Com-
paring the mean cell abundances for each depth level
(data not shown) demonstrated that the significant
depth effect was due to the general trend toward
higher abundance at mid-depths, as can be seen in
Figs. 5 & 7. The significant interaction indicates that
abundance at a given depth level was dependent on
the time of day, an outcome determined through the
statistically significant DVM cycles of the dinoflagel-
lates and cryptophytes (Fig. 6). Horizontal advection of
phytoplankton patches is unlikely to have produced
the observed DVM patterns because time was not a
significant predictor of abundance.

Although it is impossible to prove with certainty that
apparent DVM patterns were truly a result of DVM,
the following results, in combination, provide strong
evidence to support DVM as the cause of the observed
diel vertical distribution patterns: (1) ANOVA results
indicate that horizontal advection was an unlikely cause

of DVM patterns; (2) the DVM patterns of flagellates
were repeated during both studies, although with
slight differences; (3) changes in pycnocline depth did
not affect apparent DVM patterns of Z.,;; and (4) there
was a lack of apparent DVM patterns from the com-
mon non-flagellate phytoplankton.

Relationship between cell size and DVM amplitude

We compared the equivalent spherical diameter and
the amplitude of the best-fit cosine wave for Z.,; for
each flagellate species that displayed a statistically
significant DVM pattern. A Spearman'’s rank correla-
tion showed a significant trend of higher DVM ampli-
tude with increasing cell size (Fig. 8). Even if the mean
DVM amplitude for each species was used (with a
reduction of n from 10 to 7), the relationship between
size and DVM amplitude was still significant (p = 0.032).
The smaller flagellates—cf. Karlodinium veneficum,
cf. Chroomonas minuta and Apedinella radians—had
DVM amplitudes of <1 m whereas the larger micro-
plankton— Scrippsiella trochoidea, Cryptomonas sp.,
Eutreptia sp. and Pheopolykrikos hartmanii—had
DVM amplitudes of >1 m. DVM amplitudes were
higher in July than June for the 3 species that dis-
played statistically significant DVM patterns on both
days.

DISCUSSION

DVM and the vertical separation of light and
nutrients

Through DVM, flagellates are able to temporally and
spatially separate photosynthesis and nutrient uptake
(Fraga et al. 1992), and thus efficiently exploit verti-
cally separated light and nutrient resources on daily
time scales relevant to the growth of individual cells.
At the concentrations of DIN observed in the surface
waters during the present study (~1 nM), phytoplank-
ton assemblages from the NRE showed considerable
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Fig. 8. Relationship between cell size, expressed as equiva-
lent spherical diameter, and amplitude of the center of mass
for phytoplankton species that demonstrated statistically sig-
nificant diel vertical migration during the June (squares) and
July (triangles) diel studies. rs- and p-values are the results
from a Spearman's rank correlation between amplitude and
diameter. Abbreviations and sources for cell biovolumes used
to calculate equivalent spherical diameter are as follows: A.
rad = Apedinella radians (Olenina et al. 2006), C. min = cf.
Chroomonas minuta (Campbell 1973), Cryp = Cryptomonas
sp. (Campbell 1973), Eut = Eutreptia sp. (Olenina et al. 2006),
K. ven = cf. Karlodinium veneficum (Adolf et al. 2009), P. hart=
Pheopolykrikos hartmanii (Olenina et al. 2006), S. troc =
Scrippsiella trochoidea (Olenina et al. 2006)

enhancement of photosynthetic efficiency (Bergmann
et al. 2002) and growth (Rudek et al. 1991, Paerl et al.
1995) upon DIN additions. Therefore, the observed
migrations between euphotic surface waters that are
deplete in DIN and the more DIN-rich bottom waters at
night should enhance growth and productivity of the
N-limited resident flagellate community (Lieberman et
al. 1994). Within the constraints imposed by light limi-
tation, phytoplankton community composition changes
to efficiently exploit the temporal and spatial patterns
of nutrient availability (Harris 1980). Given the spatial
separation of light and nutrients in the lower NRE, the
advantages gained by vertical migration form a basis
for the flagellate dominance of the NRE (Pinckney et
al. 1998), particularly during the summer months when
the severity of N limitation is greatest (Rudek et al.
1991, Paerl et al. 1995, 2004).

The vertical separation of light and nutrients ob-
served in the present study is common for the lower
NRE (Hall 2009) and other stratified aquatic systems
when phytoplankton have enough time for uptake of
nutrient inputs within the euphotic zone and the pri-
mary nutrient source comes from below (Margalef
1978). This certainly is the case for the lower NRE. The
virtual lack of flushing by astronomical tides results in
a long residence time of ~1 mo (Pietrafesa et al. 1986),

which is enough time for dozens of cell doublings
(Pinckney et al. 1997). Lack of tides also results in
reduced energy for vertical mixing, permitting long
periods of stratification that are disrupted only during
strong wind events (Luettich et al. 2000). High net
rates of phytoplankton growth upstream effectively
filter riverine nutrient loads to the low levels observed
in the lower estuary (Pinckney et al. 1997). Our esti-
mates of maximum turnover times for the NH,* pool
(the dominant DIN form) in the surface waters of
the lower NRE show that phytoplankton and bacteria
can deplete surface-water DIN in a few hours. These
turnover times for NH,* agree well with the results of
previous studies (Christian et al. 1991, Boyer et al.
1994, Twomey et al. 2005), but it should be noted that
none of these studies accounted for isotopic dilution.
As a result, their data are also likely to overestimate
the turnover time of the NH,* pool. With a small NH,*
pool and high NH,* demand, remineralization and
uptake rates must be near steady state to maintain a
relatively constant NH,* pool in the surface waters of
the lower NRE.

The sediments are the major source of ‘new' NH,* to
the lower NRE during the summer (Luettich et al.
2000). The accumulation of NH,* and PO,%~ below the
pycnocline indicates that vertical mixing across the
pycnocline is weak and also suggests that light levels
below the pycnocline are too low to support net growth
of phytoplankton. Our primary productivity measure-
ments support this view. Assimilation in the bottom
waters was 10 and 23 % of P®_ ., for the June and July
midday productivity assays, respectively. Phytoplank-
ton respiration rates are generally 10 to 30% of P®_ .,
(Cole et al. 1992, Falkowski & Raven 1997) and for
dinoflagellates this ratio is generally >25% (Geider
& Osborne 1989). Thus, net production of a dinoflagel-
late-rich phytoplankton community confined to the
bottom waters of the NRE would likely be negative.
Light attenuation in the NRE (Woodruff et al. 1999) and
in many other estuaries (Cloern 2001) is dominated by
background attenuation due to non-algal suspended
particulates and colored dissolved organic matter
rather than phytoplankton. High background attenua-
tion and lack of tidal mixing are 2 system-specific
attributes (sensu Cloern 2001) that set the stage for the
vertically separated light and nutrient condition com-
mon to the lower NRE.

The observed high degree of vertical phytoplankton
patchiness created by vertically migrating flagellates
challenges currently accepted views on the relation-
ship between primary productivity and light in this
shallow system. Mallin & Paerl (1992) argued that mix-
ing in the NRE enhanced primary productivity by alle-
viating both photoinhibition by near-surface irradi-
ances and light limitation of near-bottom irradiances.
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This is probably true during wind mixing events,
which occur often within the NRE, but does not reflect
the average condition for most of the lower NRE. Their
study was conducted along the shallow (~3 m) margins
of the estuary above the pycnocline, where tempera-
ture data did appear to indicate predominantly well-
mixed conditions. Besides the fact that temperature is a
poor predictor of water column stability in the NRE
(Christian et al. 1991, Hall 2009), a large portion of the
lower NRE is deeper (Fear et al. 2004) and salinity-
based stratification occurs more often than well-mixed
conditions, particularly during the summer (Luettich
et al. 2000, Hall 2009). Additionally, our results clearly
demonstrate that, even within the upper mixed layer,
mixing is not always sufficient to overcome the swim-
ming velocities of the flagellates.

Vertical migration responses to fluctuations in the
growth environment

The higher daytime ascents of several dominant fla-
gellates on 19 July 2001 mitigated transient light limi-
tation of photosynthesis imposed by dense cloud cover.
The validity of this conclusion relies on the accurate
estimation of the photosynthetic parameters (o and
PB..) of the hyperbolic tangent model (Jassby &
Platt 1976) describing the relationship between PAR
and carbon fixation. Although the hyperbolic tangent
model fit the data well (R? = 0.92), the range of PAR
values at the depths measured did not produce a clear
saturation response on photosynthesis (Fig. 4A). This
has little effect on estimation of the slope of the light-
limited portion of the curve (o) but can lead to inaccu-
rate estimation of the maximum biomass-specific pro-
ductivity (P®,.¢) and, consequently, the level of PAR
that saturates photosynthesis (Maclntyre et al. 2002).
Both the estimated o (0.0106 pg C pg chl a! pmol
photons m2s ' h™') and P® ., (7.73 ng C pg chla ' h?)
fell very close to median values reported from other
studies of the relationship between PAR and photosyn-
thesis on natural assemblages in the NRE (Boyer et al.
1993, Bergmann et al. 2002, Gaulke et al. 2010). Fur-
ther, in these 3 studies, light saturation of photosynthe-
sis occurred at levels below the highest observed mean
PAR flux during an incubation in the present study
(866 pmol photons m™2 s7!). Hence, significant in-
creases in PP beyond those measured at 866 pmol
photons m~2 s7! were highly unlikely and we feel that
PB .« is reasonably constrained.

Phytoflagellates are capable of acclimating to de-
creases in PAR flux over time scales of hours in culture
studies (Richardson et al. 1983). However, the consis-
tent relationship between PAR and productivity be-
tween these 2 days, despite greatly varying incident

PAR, suggests that the flagellate-dominated phyto-
plankton community did not show strong signs of pho-
toacclimation. During daylight hours, the flagellates
formed aggregations that provided access to light
while generally avoiding potentially damaging high
near-surface irradiances. Avoidance of excessive irra-
diance may explain the midday descents of Scripp-
siella trochoidea and cf. Gymnodinium danicans
(Fig. 5DD-FF, LL-NN) on 13 June 2001, a sunny day
(Blasco 1978, Passow 1991). These observations are
consistent with the increasingly supported theory that,
in poorly mixed systems, vertical migration is a pri-
mary means for flagellates to cope with short-term
(hours to days) changes in irradiance that are detri-
mental for growth (Passow 1991, Ault 2000).

Near-surface aggregation of phytoflagellates in re-
sponse to low incident irradiance has been subse-
quently documented in the NRE. On 19 October 2006,
an overcast day with highly stratified water column
conditions, a dense surface aggregation of flagellates
dominated by the toxic dinoflagellate Karlodinium
veneficum (>200000 cells ml™!) was discovered just
upstream from NR 120. Supersaturated dissolved
oxygen conditions (~180% saturation) at the surface
demonstrated that the flagellates were highly pro-
ductive (Hall et al. 2008). Given the high proportion of
flagellated phytoplankton in the lower NRE (Pinckney
et al. 1998) and the near-weekly frequency of frontal
systems that bring heavy cloud cover to the region
(Litaker et al. 2002), this type of near-surface aggrega-
tion may be a common and important mechanism lead-
ing to enhanced productivity within the NRE. By con-
trast, in the nearby well-mixed Newport River Estuary,
light reduction because of cloud cover was shown to
have a strong negative impact on the growth of
dinoflagellates, which were not able to maintain favor-
able near-surface aggregations against tidal vertical
mixing (Litaker et al. 2002).

DVM patterns are also often modified to reflect
changes in vertical gradients of limiting nutrients.
Experimental studies have shown a general tendency
for flagellates to move deeper and spend more time at
depth in response to nutrient limitation (Heaney &
Eppley 1981, Cullen 1985, Watanabe et al. 1991, Mac-
Intyre et al. 1997). On 18 to 19 July 2001, bottom-water
DIN concentrations were substantially lower than dur-
ing 12 to 13 June, although surface-water DIN concen-
trations were similar (~1 pM). All 3 of the flagellates
that displayed significant DVM behaviors on both
days (Scrippsiella trochoidea, cf. Karlodinium venefi-
cum and Cryptomonas sp.) showed deeper migrations
in July compared with June (Figs. 5 & 7). Additionally,
cf. Chroomonas minuta also displayed nocturnal popu-
lation maxima below the pycnocline in July whereas in
June, population maxima were restricted to the region
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at or above the pycnocline (Figs. 5 & 7). These field
observations corroborate the results of previous exper-
imental laboratory studies that suggest that these
intraspecific variations in DVM patterns provide a
strong link between nutritional state and fluctuations
in the light and nutrient environment at time scales
relevant to the growth of individual cells (Cullen 1985,
Passow 1991, Maclntyre et al. 1997, Ralston et al. 2007).

Productivity enhancement via interspecific variation
in migration patterns

Productivity of this estuary is likely enhanced by
interspecific differences in the vertical migration pat-
terns of the resident flagellates. In terrestrial plant
communities, partitioning of light and nutrient gradi-
ents via interspecific differences in rooting depth and
canopy height are believed to reduce interspecific
competition, increase efficiency of resource use and
increase ecosystem productivity (McKane et al. 1990,
Hooper et al. 2005, Cardinale et al. 2007). The ob-
served interspecific differences in DVM amplitudes
within the NRE are the pelagic analogs of rooting
depth and canopy height. We expect that such similar
vertical niche diversification within the estuarine light
and nutrient gradients should lead to higher resource-
use efficiency and productivity, particularly given the
observed positive relationship between cell size and
DVM amplitudes.

The observed relationship between cell size and
DVM amplitude has been previously documented by
comparing maximum DVM amplitudes for dozens
of species observed within multiple freshwater and
marine systems (Sommer 1988). However, to our
knowledge, the present study presents the first evi-
dence of this relationship within a single community of
vertically migrating flagellates. The relationship be-
tween size and DVM amplitude is partly explained by
the fact that smaller size comes at the cost of increased
relative water viscosity, which reduces swimming
speed (Sommer 1988, Kamykowski et al. 1992). How-
ever, directed motility in the form of DVM amplitudes
shows an even stronger relationship with cell size than
with maximum swimming speed (Sommer 1988). This
indicates that DVM amplitude likely covaries with cor-
relates of cell size other than maximum swimming
speed. Efficiency of light and nutrient utilization is
a likely covariate of cell size that can explain the
observed strong relationship between DVM amplitude
and cell size in the NRE and across multiple aquatic
systems (Sommer 1988). Large cells are less efficient at
capturing light and nutrient resources at low levels of
resource availability (Fogg 1991, Sunda & Hardison
2007, Gaulke et al. 2010). The tradeoff between effi-

ciency of resource utilization and the ability to access
depth layers with higher light and nutrient levels is
thus optimized when large cells fulfill their swimming
potential to provide daily access to water layers with
higher levels of growth-limiting light and nutrient
resources (Hecky & Kilham 1974, Sommer 1988). Opti-
mization of this tradeoff should reduce interspecific
competition with the flagellate community, and this
niche complementarity would be expected to increase
the overall resource-use efficiency and productivity
of the NRE and similarly stratified aquatic systems
(Hooper et al. 2005).

Productivity enhancement via interspecific variation
in vertical migration patterns would then provide a
strong linkage between diversity and productivity
within poorly mixed aquatic systems. The relationship
between biodiversity and productivity in aquatic sys-
tems is receiving increasing attention because of
changes in diversity associated with species introduc-
tions and extinctions, cultural eutrophication and cli-
mate change (Hooper et al. 2005, Bracken & Stachow-
icz 2006). However, conclusions drawn from laboratory
and field studies about the influence of diversity on
productivity of phytoplankton communities are often
contradictory, and the functional traits within phyto-
plankton communities that can produce a positive rela-
tionship between diversity and productivity are still
unclear (Striebel et al. 2009).

Laboratory experiments have often demonstrated
that phytoplankton diversity is less important than
the presence of one or more highly productive domi-
nant species, i.e. a selection effect (Weis et al. 2007,
Schmidtke et al. 2010). In contrast, a field study in a
Portuguese estuary found that diversity was correlated
with biomass-specific productivity and suggested
niche complementarity as the mechanism (Duarte et al.
2006). Similarly, a study of hundreds of Scandinavian
lakes and coastal Baltic Sea sites found a strong rela-
tionship between nutrient-use efficiency and genera-
level phytoplankton richness, suggesting that, across a
wide range of natural systems, phytoplankton diversity
does contribute to enhanced production (Ptacnik et
al. 2008).

Taxon-specific differences in accessory pigments
with unique absorption spectra have been identified as
one functional trait linking diversity to productivity. As
diversity increases, niche complementarity provided
by a more diverse suite of photopigments affords a
more complete harvest of the solar spectrum for photo-
synthesis, resulting in higher biomass-specific rates of
photosynthesis and growth (Striebel et al. 2009). As
another mechanism that can produce niche comple-
mentarity (Olli et al. 1998, present study), DVM may
also help explain the observed discrepancy between
field and laboratory studies of biodiversity and pro-
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ductivity. The cited laboratory experiments were con-
ducted in well-mixed containers (Weis et al. 2007,
Schmidtke et al. 2010) that cannot represent the spatial,
particularly vertical, resource heterogeneity of natural
aquatic systems. It is exactly these gradients upon
which interspecific variation in migration patterns
would lead to niche complementarity and enhanced
productivity.

Although most of the common phytoflagellates dis-
played a significant DVM pattern during at least one of
the 2 diel studies, Prorocentrum minimum and cf.
Gymnodinium danicans did not. Depths of population
maxima were variable for these species but were
always observed within the euphotic zone at or above
the pycnocline (Fig. 5GG-VV). The question then
becomes, how did these species meet nutrient require-
ments within the nutrient-poor photic zone? During the
June diel study, cf. G. danicans virtually disappeared
from the water column near midnight (Fig SHH,II). It is
possible that it migrated below the pycnocline on this
night, but nocturnal aggregations were missed by the
coarser sampling resolution of the bottom waters.
However, the data for P. minimum clearly suggest that
it did not perform DVM even though it possesses this
capability under some conditions (Tyler & Seliger
1981). A high affinity of uptake at low NH,* concentra-
tions (Fan et al. 2003) and mixotrophic feeding (Jeong
et al. 2005) may provide sufficient N to maintain
growth during periods of low nutrient availability (Olli
et al. 1998). In any case, the co-occurrence of migra-
tory and non-migratory components of phytoflagellate
communities is common (Frempong 1981, Jones 1988,
Olli et al. 1998) and increases the functional diversity
of vertical distribution patterns within phytoplankton
communities (Olli et al. 1998).

CONCLUSIONS

Rapid light attenuation, high nutrient uptake rates
and weak vertical mixing combine to produce marked
vertical separation of light and nutrient resources in
this shallow microtidal estuary. These conditions select
for a phytoplankton community dominated by phyto-
flagellates that use their vertical migration ability to
access light and nutrients on a diel basis through
DVM. Intraspecific variation in DVM patterns allow
resident flagellates to maintain high rates of productiv-
ity and growth during short-term (hours to days) re-
source scarcity. Interspecific variation in DVM patterns
is also likely to enhance community-level productivity
by spatio-temporally partitioning the water column
according to cell size. As larger phytoplankton are
generally less efficient at capturing light and nutrient
resources at low levels of resource availability, the

observed positive relationship between cell size and
the amplitude of DVM suggests that resources are allo-
cated within the phytoflagellate community according
to cell requirements. We suggest that niche partition-
ing via interspecific variation in DVM patterns may be
an important and underappreciated functional trait
that links diversity of the phytoplankton community to
enhanced productivity within poorly mixed systems.
Phytoplankton diversity and/or productivity experi-
ments that effectively simulate natural light and nutri-
ent gradients will help quantify the importance of ver-
tical niche partitioning in enhancing community-level
phytoplankton productivity.
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