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ABSTRACT: The Balgzand intertidal is an important nursery area for early life stages of various
epibenthic crustacean and fish species. Especially in summer, extremely high numbers of individuals
occur. This study analyses whether these high densities in summer lead to food limitation using
0-group plaice Pleuronectes platessa L. as a model species. Between 1975 and 2007, this species was
quantitatively monitored during 20 yr. The aim of this study is twofold: (1) a statistical analysis of field
growth in relation to density, whereby negative density-dependent growth is considered as an indi-
cation of intraspecific competition, and (2) a comparison of observed field growth with predicted
maximum growth according to the dynamic energy budget (DEB) model, to detect whether growth
reduction occurs during the growing season as an indication of interspecies competition. The statisti-
cal analysis indicated no negative density-dependent growth during the whole growing season, sug-
gesting the absence of intraspecies competition for food. The comparison of observed growth with
DEB-predicted maximum growth showed that field growth was lower than the possible maximum,
and that the difference increased over time until about the end of July, suggesting interspecies com-
petition for food in summer. The stabilization in growth rate from July onwards might be related to a
change in food quality: a shift from small bivalve siphons as main food items to larger tail tips of the
lugworm Arenicola marina. These findings illustrate that not only food quantity but also food quality
affects growth rates, at least in 0-group plaice.
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INTRODUCTION

Shallow coastal systems are considered to be hostile
environments, subject to strong variations in abiotic
parameters that determine a relatively low species
diversity (for overview see Goodall 1983). Regardless,
shallow areas are used as nursery grounds by various
epibenthic fish and crustacean species. Only a few
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species account for most of the numbers and biomass
in shallow coastal systems, and these species are
widely distributed (Haedrich 1983, Wolff 1983). This
means that over a large latitudinal gradient, the same
group of species is dominating. Along the European
coast, the most abundant epibenthic species include
the mobile invertebrates Crangon crangon and Car-
cinus maenas and the fishes Pomatoschistus minutus,
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P. microps, and the juvenile flatfishes Pleuronectes
platessa, Platichthys flesus, Limanda limanda and
Solea solea (Zijlstra 1972, Jensen & Jensen 1985, Pihl
1985, Ansell et al. 1999, Amara 2003, Amara & Paul
2003, Freitas et al. 2010a).

For those species, shallow coastal areas are typically
important habitats as nursery grounds for early life
stages due to presumed favourable conditions for
growth and survival (Zijlstra 1972, Bergman et al.
1988). In general, juveniles arrive and settle in the in-
tertidal with rising temperatures in spring and disap-
pear with decreasing temperatures at the end of the
growing season, emigrating to deeper waters. As a re-
sult, high densities (10s to 1000s of ind. m~2) of epiben-
thic consumers build up in these shallow areas in the
course of the season. Since the various species have
overlapping food spectra, these high numbers, and
hence high biomass, have raised questions about their
growth conditions, suggesting that food might be lim-
ited by either intra- and/or interspecies competition
(Pihl 1985). For most species, growth is difficult to mon-
itor due to more or less continuous settlement cohorts.
The various flatfish species are an exception with, in
general, a single cohort of settling larvae in spring.
Therefore, flatfishes have become popular model spe-
cies for the analysis of growth conditions in coastal
nurseries, whereby the basic approach has been the
comparison of observed field growth with predictions
from a laboratory-based relationship of maximum
growth in relation to water temperature (Zijlstra et al.
1982, van der Veer et al. 1991, 2001b, Jager et al. 1995).
A potential problem with these growth models is that
they are applicable over a restricted size range corre-
sponding in most areas with the spring-early summer
growth period only, although highest temperatures and
biomasses occur in the summer—autumn period.

In most cases, the growth rate of juvenile flatfish in
the field in spring and early summer was at a maxi-
mum level and only determined by temperature, as
found for the Balgzand area in the western Dutch
Wadden Sea, Loch Ewe, Scotland and Filey Bay,
England (Zijlstra et al. 1982, van der Veer 1986), in
Swedish bays (van der Veer et al. 1990), in the Dollard,
Netherlands (Jager et al. 1995) and during part of the
year in Port Erin Bay, Irish Sea (Nash et al. 1994). In
some cases, negative density-dependent growth (Mo-
din & Pihl 1994) or reduced growth was observed, due
to poor food conditions (van der Veer & Witte 1993,
Berghahn et al. 1995). Back-calculation of juvenile
plaice growth based on otolith microstructure analysis
showed an increase in growth rate from the 1950's
onwards (Rijnsdorp & van Leeuwen 1992), which was
suggested to be related to an increase in availability
of food in the coastal zone over that time period. How-
ever, for the period mid-June until September, ob-

served growth rates of juvenile flatfish (plaice) in the
field were much lower than the predicted maximum
values, a phenomenon observed at Balgzand (Teal et
al. 2008), the Dollard (Jager et al. 1995), the Irish Sea
(Nash et al. 1994) as well as in northern Norway (Frei-
tas et al. 2010a). This discrepancy between maximum
possible and observed growth might suggest food lim-
itation in summer due to the outburst of gobiids and
crustaceans (Kuipers & Dapper 1984), or it might be
an experimental bias, since the plaice population from
July onwards starts outgrowing the range where the
maximum growth model can be applied (van der Veer
et al. 2009). Solving the question of food and growth
conditions in summer would require extensive labora-
tory experiments with larger-sized fish.

In this paper, an innovative approach that does not
suffer from this size limitation, and which can be
applied for the whole growing season, including the
summer—autumn period, is used: the standard dynamic
energy budget (DEB). The DEB is based on surface-
and volume-related processes and provides a frame-
work describing the quantitative aspects of energy
flows through an organism (Ross & Nisbet 1990, Kooij-
man 2010). The energetics of a species is captured in a
single model, where intraspecies variability (in size or
length) is caused by differences in state variables (as
a result of differences in environmental conditions,
i.e. temperature, food), and interspecies variability is
caused by differences in parameter values (Kooijman
2010). Applying the DEB model requires a set of spe-
cies-specific parameters, which can be estimated from
the result of experimental studies (van der Veer et al.
20006). For flatfishes, parameters were published in van
der Veer et al. (2001a, 2009) and Freitas et al. (2010b).
Once such a set is available, maximum possible growth
(corresponding with a model situation of ad libitum
food) can be estimated in relation to prevailing temper-
ature conditions and compared with observed growth
in the field. Subsequently, observed and predicted
growth can be compared and used as an indicator of
food conditions and hence of competition.

The present study analyses the food conditions in a
temperate coastal nursery area in summer in the Balg-
zand intertidal area in the western Dutch Wadden Sea,
where plaice Pleuronectes platessa is used as a model
species. Between 1975 and 2007, 0-group plaice has
been monitored quantitatively during 20 years. The
aim of this study is twofold: (1) a statistical analysis of
field growth in relation to density, whereby negative
density-dependent growth is considered as an indica-
tion of intraspecific competition and (2) a comparison
of observed field growth with predicted maximum
growth according to the DEB model, to detect whether
growth reduction occurs during the growing season as
an indication of interspecies competition.
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MATERIALS AND METHODS

Field observations. Seasonal patterns of 0-group
plaice were monitored in the Balgzand intertidal area
in 20 yr during the period 1975 to 2007. Sampling gen-
erally started in February and continued at frequent
intervals (2 to 4 wk) until about October. During each
survey, 9 transects distributed over the area were sam-
pled, each consisting of 4 stations (Fig. 1). Sampling
occurred within a 3 h period around high tide, during
which the flatfish population is assumed to be ran-
domly distributed over the area (Kuipers 1977). Hauls
were taken during the day with a 1.9 m beam trawl
with 1 tickler chain, a net mesh size of 5 x 5 mm, towed
by a rubber dinghy with a 25 hp outboard motor at a
speed of ~35 m min~! (Riley & Corlett 1966). Location of
the hauls was initially established by fixed poles at the
beginning of each transect and later by GPS. Exact
length of the hauls was assessed with a meter wheel
fitted to the trawl. Occasionally, some stations could
not be sampled due to extreme weather conditions
(wind stress, reduced water depths). During all cruises,
except for 1975 and 1976, bottom water temperature
measurements were taken to the nearest °C. For 1975
and 1976, water temperature was estimated from a
nearby station, Marsdiep (Fig. 1), based on a linear
regression model for the mean monthly Marsdiep tem-
peratures for 1977 to 2002 (van Aken 2003) and those
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Fig. 1. The Balgzand intertidal area in the western Dutch
Wadden Sea. Each transect consisted of 4 hauls (O). Thin lines
indicate the low water mark, dashed lines the high water mark

of the Balgzand area. The regression model (Tyjarsaiep =
1.02 X Tgqigzana + 0.36) indicated a strong relationship
(R? = 0.95, n = 228, p < 0.01) between temperature at
high water at Balgzand (Tgagzana, °C) with that of the
nearby Marsdiep station (Tyarsdiepr °C)-

Catches were immediately stored in a 4 % formalin so-
lution (until 1990) or deep-frozen (from 1991 onwards)
and sorted within a few days. The 0-group plaice present
in the catches were preserved in 70% ethanol and,
within a few days, total length (TL) was measured to the
nearest mm. No correction for shrinkage was applied.
For each haul, numbers caught were corrected for
size-selective mesh and catch efficiency after Kuipers
(1975) and Dapper (1978) and then converted into ind.
per 1000 m? (ind. [10® m?]'!). The arithmetic mean
density and mean size in TL, considering all stations
sampled during a cruise, was taken as an index of the
population (cf. Kuipers 1977, Zijlstra et al. 1982).

To eliminate a bias in growth rate estimates due to
settlement of larvae in spring, data analysis was
restricted to the period from peak settlement in May,
which generally coincided with a peak in maximum
abundance, and until the end of September, to limit the
potential bias introduced by autumn emigration of
juveniles. Daily growth in length (dL; cm d°!) was
estimated from the changes in population mean TL
between consecutive sampling periods (cf. Zijlstra et
al. 1982, van der Veer 1986).

DEB model. The DEB theory (Kooijman 2010) des-
cribes energy flows through an animal (Fig. 2) under
conditions in which food densities and temperatures
vary. Food uptake is assumed to follow a functional
response relationship with food density. In line with
observations on juvenile flounder (Kiorbge 1978, Mat-
tila & Bonsdorff 1998), a Holling type-II hyperbolic
function seems to be sufficient to quantitatively repro-
duce ingestion rate in plaice. Environmental food con-
ditions are described in the form of a scaled functional
response f, where 0 reflects starvation, and 1 optimal
food conditions (feeding ad libitum). Food uptake is
proportional to organism surface area and converted
into reserves with a constant efficiency. Mobilized
reserves are allocated to growth, to maintenance of
existing body tissues (somatic and gonadal) and to
maturation or reproduction. A fixed fraction (x rule) of
reserve is allocated to growth plus somatic mainte-
nance while the remaining fraction (1-x) is allocated to
maturity maintenance plus maturation and/or repro-
duction. Maintenance has priority over growth, and
hence, growth ceases when all reserve that is allocated
to somatic maintenance plus growth is required for
somatic maintenance. The mobilization rate of reserve
is proportional to the ratio of reserve density (i.e. the
ratio of reserve and body structure) and volumetric
length (the cubic root of structure's volume), and the
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Fig. 2. Energy flow through an organism in the DEB model,
after van Haren (1995). Rates = 1: ingestion (uptake), 2: defe-
cation, 3: assimilation, 4: demobilization of energy into re-
serves, 5: mobilization of energy from reserves, 6: utilization,
7: growth, 8: maintenance, 9: maturation maintenance, 10:
maturation, 11: reproduction. Rounded boxes: sources or
sinks, Squares: state variables. x and 1—«: fractions of energy
allocated to, respectively, growth + somatic maintenance and
maturity maintenance + maturation and/or reproduction

energy costs of maintenance are proportional to the
volume of the structure.

With a set of species-specific parameters, the DEB
model can be applied for all combinations of fish size,
food conditions and temperature. At constant food
densities, the reserves are in equilibrium with the envi-
ronment and consequently growth of structural bio-
volume represents a weighted difference between sur-
face area and volume, which corresponds with the von
Bertalanffy growth curve (Kooijman 2010):

%L = rg(L.—L) (1)
The parameters L., (ultimate size; cm) and ry (von Berta-
lanffy growth rate constant, d™!) can thus be written as
a combination of DEB parameters:

L= fim _p vV 2)
Sy gkudn
P 1 _ ky/3 a)
BT 3/ky+3fL, /v 1+f/g

where fis the scaled functional response (dimension-
less), 8y is the shape coefficient (-), L, the maximum
volumetric length an individual can reach (cm), vis the
energy conductance (cm d!), a parameter related to
reserve dynamics, g is the investment ratio (-) that
stands for the costs of new biovolume relative to the
maximum potentially available energy for growth and
maintenance, and f(M is the maintenance rate coeffi-
cient (d™!), which stands for the ratio of somatic main-
tenance costs to structure. This means that the DEB

theory gives a physiological interpretation to the von
Bertalanffy parameters (see Kooijman 2010). Justifica-
tion for applying Eq. (1) for plaice is the fact that plaice
growth follows von Bertalanffy growth (van der Veer et
al. 2001a).

Changes in food conditions (f) are expected to affect
both L., and rp, while temperature conditions affect rp
only due to the temperature dependence of physiolog-
ical rates. In the DEB model, the temperature effect is
based on an Arrhenius type relation that describes the
rates at ambient temperature, k(T), as follows:
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Ia _Ia (T T
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where T is absolute temperature (K), Tp. and Tay are
Arrhenius temperatures (K) for the rate of decrease at
the lower (T1) and upper (Ty) boundaries, respectively.
T, is the reference temperature (k), T, the Arrhenius
temperature (k), and k; is the rate at the reference
temperature.

Data analysis. To test for intraspecies competition,
the variability in the observed growth rate dL (cm d?)
between time t=iand t=1+ 1 was analysed as a func-
tion of mean population length, density and water tem-
perature at t = i. A significant negative relationship of
population density with growth was considered as an
indication of intraspecies competition.

Secondly, for all field observations, dL was expressed
as the ratio of maximum possible growth predicted by
the DEB model. Differences in the ratio over time, espe-
cially a decrease in summer onwards was considered as
an indication of interspecies competition.

Field observations: Prior to the statistical analysis of
the field growth rates, a data exploration was carried
out following the protocol described in Zuur et al.
(2010). Potential outliers were checked using Cleve-
land dotplots, and multi-panel scatterplots were used
to identify the type of relationships between variables
(e.g. linear versus non-linear) and the presence of
collinearity among covariates.

To investigate the relationships of field growth rates
(DL) with temperature, plaice mean length and popu-
lation density, a linear regression model was applied:

DL; = o+ Byx Length;; + B, x Density;; +
B3 x Temperature;; + ¢;

©)

where DL; is the growth rate (cm d') between sam-
pling day j and j + 1 in year i, Length (cm), Density
(ind. [10® m?]"!) and Temperature (°C) are covariates,
and ¢g; is the residual. Model validation showed that
the residuals exhibited some heterogeneity (a de-
crease in variation along day of the year) and pre-
sented a year effect. To avoid the violation of hetero-
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geneity and dependence problems, linear mixed effects
models were applied (Zuur et al. 2009) in which year
was used as random intercept:

DL; = o+ B;x Length;; + B, x Density;; +
B3 X Temperature;; + a; + €;

(6)

The random intercept a; is assumed to be normally
distributed with mean 0 and variance Gzyea,, and g is
normally distributed with mean 0 and variance ¢2. The
random intercept q; is imposing a temporal correlation
structure on the observations within a year, namely the
so-called compound symmetric correlation (Pinheiro &
Bates 2000). This means that the correlation between 2
observations from the same year is equal to p, where p
(also called the intra-class correlation [ICC]) is esti-
mated by:

G%ea.r
P=— 2 ()
Oiear +OF

year

Because the observed time series within a year are
short, irregularly spaced, and unbalanced over the
years, a more sophisticated correlation structure was
not considered.

We also considered smoothing equivalents of the
model in Eq. (6). In such additive mixed effects models
(AMMs), the parametric terms are replaced by smooth-
ing splines, resulting in:

DL; = f(Lengthy) + f (Densityy) + (8)
f (Temperaturey) + a; + g;

Cross-validation was used to estimate the optimal
amount of smoothing for each smoother.

All calculations were carried out in R version 2.9.1
(R Development Core Team 2009). Linear mixed
effects models were fitted using the nlme package
(Pinheiro et al. 2009) and the AMMs using the mgcv
package (Wood 2006).

DEB predictions: Growth rates predicted by the DEB
model under constant and maximum possible food
conditions (f = 1) at various temperatures were esti-
mated by Eqgs. (1) & (4). DEB parameter values were
taken from van der Veer et al. (2009) and Freitas et al.
(2010b). Due to differences in food intake and in
energy participation, males and females have different
parameter sets (Table 1), and hence, growth character-
istics (Freitas et al. 2010b). Therefore, maximum
growth predictions in relation to temperature were
made for both sexes separately.

The ratio of observed and DEB predicted maximum
growth rates was estimated and analyzed over time. To
help visualize patterns, a smoothing curve was added
using the LOESS function in R (R Development Core
Team 2009).

RESULTS

The seasonal patterns in O-group plaice density,
mean length, water temperature and daily growth
rate were rather consistent over the years (Fig. 3).
Maximum numbers occurred by the end of April and
beginning of May, followed by a reduction and a
stabilization from about July onwards. Over this pe-
riod of time, mean length increased continuously

Table 1. Dynamic energy budget (DEB) model parameters for male and female plaice Pleuronectes platessa at 283 K (10°C). Para-
meters after van der Veer et al. (2009) and Freitas et al. (2010b). For details on the notation used see Kooijman et al. (2010)

Symbol Units Interpretation Male plaice  Female plaice
Ta K Arrhenius temperature 7000 7000
{DPam} Jem2d!  Maximum surface area specific assimilation rate 234 390
[Puml Jem3d! Volume specific maintenance costs 19.4 19.4
[Em] Jcem™ Maximum storage density 1500 2500
[Eg] Jem™ Volume-specific costs of growth 5600 5600
K - Fraction of utilized energy spent on maintenance plus growth 0.95 0.85
[V, - Shape coefficient 0.219 0.219
v cm d? Energy conductance 0.156 0.156
ky = [Pul/[EG] d! Maintenance rate constant 0.0035 0.0035
g = [Egl/x[Ey] - Investment ratio 3.930 2.635
L, = k{pam}/[Pul cm Maximum volumetric length 52 78
T K Lower boundary of tolerance range 277 277
Ty K Upper boundary of tolerance range 295 295
Tar K Rate of decrease at lower boundary 50000 50000
Tan K Rate of decrease at upper boundary 75000 75000
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from 1.5 cm at settlement in spring to a size of
around 9 to 10 cm at the beginning of autumn. Water
temperature showed a clear seasonal pattern with a
maximum of ~20°C in July and August. Mean
growth rate decreased from 0.08 in spring to 0.02 cm
d™! in autumn.

Field observations

A multi-panel plot showed similar patterns for the
various years where a steady decrease in growth
rates was associated with an increase in mean
length, a decrease in population density and a dome-
shaped curve in water temperature (Fig. 4). In some
years, the pattern in population density and water
temperature was irregular. Cleveland dotplots (not
shown) of the various variables did not indicate out-
liers in any of the variables except for population
density. Four observations were considerably larger

than the rest, 3 from 1996 and 1 from 2001 (Fig. 5).
Instead of transforming the data, 2 statistical analyses
were conducted: one where the extreme cases were
omitted and another containing all data. Multi-panel
scatterplots suggested a slightly non-linear relation-
ship between growth rate and mean length as well
as some degree of collinearity between the covariates
(Fig. 5). To deal with collinearity, one factor had to
be dropped and temperature was chosen as it had a
less clear relationship with growth rate.

The linear mixed effects model (Eq. 5), in which
mean length and population density were used as the
remaining covariates, showed that only mean length
was significant. However, a plot of residuals against
mean length revealed a slight non-linear pattern (see
also scatterplots of Fig. 5). Therefore, additive mixed
modelling was applied (Eq. 8), starting with mean
length and density as covariates. Cross-validation indi-
cated that density could be fitted as a linear term, but
since it did not have a significant effect at the 5% level,
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Fig. 3. Pleuronectes platessa. Seasonal patterns in 0-group plaice (a) density (ind. [10° m?]™!), (b) mean length (cm), (c) water tem-

perature (°C), and (d) growth rate (cm d~!) at Balgzand for the period 1975-2007. Circles indicate observed values for various
years together
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Fig. 4. Pleuronectes platessa. Time series plot of 0-group growth rates (thick black solid line), temperature (dashed red line),
mean length (dotted green line) and density (dash-dotted blue line). The y-scale for growth rates and all variables were rescaled
to fit between 0 and 0.08

it was removed from the model. Therefore, the optimal
final model was given by:

with an ICC (Eq. 7) of 0.175, meaning that the correla-
tion between any 2 observations from the same year
was 17.5%.

The need of a random intercept was tested by fitting
2 AMM models, one with and another without a ran-
dom intercept, and applying a likelihood ratio test
while correcting for testing on the boundary (Zuur et

al. 2009). Results gave y? = 3.289 (df = 1, p < 0.05), indi-
cating that the best model was the one including the
random intercept. The estimated df for the smoother of
mean length was 2.35, and the resulting smoother was
slightly non-linear (Fig. 6). The residuals of the model
were homogeneous and approximately normally dis-
tributed. The statistical analysis including extreme
cases for density did not deviate from these results and
similar conclusions were obtained: a negative and
slightly non-linear length effect on growth rate and no
impact from density.
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Fig. 5. Pleuronectes platessa. Multipanel scatterplots between 0-group growth rate (cm d~!) and each covariate. Pearson correla-
tion values: size of characters is proportional to the correlation found

DEB predictions

DEB parameters for males and females are listed in
Table 1. At 10°C, the growth rates of female and male
plaice amounted to 0.065 and 0.048 cm d™?, respectively.
After incorporating the temperature effect, DEB model
predictions showed a similar pattern as in the experimen-
tal observations by Fonds et al. (1992), and similar ranges
in the case of males (Fig. 7a). Furthermore, growth rate
was negatively related to fish length (Fig. 7b).

In relation to predicted maximum DEB growth rates,
observed growth rates showed a decrease over time

and were generally lower for both males and females
(Fig. 8), although the differences were stronger for
females for which the DEB model predicted higher
growth rates. Overall, the discrepancy increased over
time, stabilizing from about Day 240 onwards (Fig 8).

DISCUSSION

The diet of juvenile plaice consists of a variety of
macroozoobenthic prey items, including both poly-
chaetes and bivalves, varying from body parts (siphon
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Fig. 6. Pleuronectes platessa. Estimated smoothing function
obtained from a generalized additive mixed model (GAMM)
for 0-group growth rate as a function of mean fish length.
Mean length (vertical lines; cm) vs. contribution of the
smoother to the fitted values of growth rate (cm d-!). Solid
curve: cubic smoothing spline {it for the continuous covariate,
Dashed lines: 95% confidence bands around the fit. The
smoother df (2.35) were calculated with cross-validation

tips, tail tips) to whole individuals (Kuipers 1977, De
Vlas 1979). Plaice is an opportunistic feeder whose diet
generally reflects the composition of the benthic fauna
(De Vlas 1979) and is in competition with other epiben-
thic species that also prey upon macrozoobenthos such
as other juvenile flatfishes Platichthys flesus, Limanda
limanda and Solea solea, fish species Pomatoschistus
minutus, P. microps, and mobile invertebrates Crangon
crangon and Carcinus maenas (Kihl & Kuipers 1983).
Since 0-group plaice consists of a single settlement
cohort, it was selected as a model species. With respect
to location, the Balgzand intertidal is an isolated
important nursery area in the Dutch Wadden Sea,
allowing quantitative studies in plaice (Zijlstra et al.
1982, van der Veer & Witte 1999), as well as in other
flatfish species (van der Veer et al. 1991, 2001b, Bolle
et al. 1994), gobiids (van Beek 1976) and crustaceans
(Kuipers & Dapper 1981, 1984). Moreover, especially in
summer, extremely high numbers of early life stages of
various epibenthic species occur in the area, making
the Balgzand intertidal a suitable area for studies on
food competition.

Intraspecies competition
The statistical analysis to test whether growth is (neg-

atively) density-dependent is straightforward. Since
plaice growth depends not only on prevailing water
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Fig. 7 Pleuronectes platessa. Maximum daily growth (cm d!)
of 0-group plaice under optimal constant food conditions
(f=1) according to the DEB model for females (dashed line)
and males (dotted line) in relation to (a) water temperature
(°C) together with Fonds et al.'s (1992) laboratory-derived
growth model (solid line) and (b) total length (cm)

temperature (Fonds et al. 1992) but also on fish size
(van der Veer et al. 2009), these 2 factors had to be in-
cluded in the statistical model of field growth. However,
this was impossible due to the collinearity between
temperature and plaice length. One factor had to be
dropped and temperature was selected since it had a
less clear relationship with growth rates. The conse-
quence is that the statistical model cannot be applied
for growth predictions in other areas with different
temperature regimes. However, this was not the aim of
this study. The observed inverse relationship between
growth and mean length is according to expectations.

One problem concerned the variability in the data es-
pecially caused by the extremely high peak densities of
the 1996 year class. An option would have been to
transform this variable, but it would have resulted in re-
duced resolution between the individual observations.
Therefore, no transformation was applied and instead 2
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different analyses were run: one excluding the extreme
cases and another including them. The fact that the re-
sults of both analyses did not deviate justified, in our
opinion, the decision of not transforming the data.

The autocorrelation in the data set is another aspect
that should be kept in mind. Since the estimates are
based on the differences between 2 successive obser-
vations, a biased sample immediately introduces vari-
ability in successive estimates. In the beginning of the
season, just-settled plaice redistribute from the settle-
ment areas over the Balgzand area (van der Veer 1986)
and this might have introduced some variability in the
estimates. In fact, the correlation between any 2 obser-
vations from the same year was about 18 %.

The statistical analysis did not indicate a relationship
with density, suggesting the absence of intraspecies
competition for food during the whole growing season
including the summer period. These findings are in
line with previous analyses of population growth in the
Dutch Wadden Sea (van der Veer & Witte 1993). More
detailed analyses based on otolith microstructure
analysis of individual fish showed that only in excep-
tional cases, negative density-dependent growth could
be observed: in small Swedish bays at densities of sev-
eral ind. m™2 (Modin & Pihl 1994). These densities are
far above those occurring at the Balgzand intertidal:
only in exceptional cases and for a short period during
settlement, densities >1 ind. m™2 were observed (van
der Veer et al. 2000) and, during the growing season,
are in general an order of magnitude lower. The
absence of intraspecies competition for food at Bal-
gzand is in support of the 'maximum growth/optimal
food conditions' theory (Karakiri et al. 1991).

Interspecies competition

In line with previous research, the analysis of inter-
species food competition was based on whether
growth is maximal or reduced compared with a predic-
tive maximum growth model. Different from previous
studies, the maximum growth model of Fonds et al.
(1992) was replaced by a DEB model (Kooijman 2010)
and instead of comparisons of absolute growth rates, a
ratio was introduced. The main reason for using the
DEB approach was that it allowed an estimate of maxi-
mum possible growth rates in relation to prevailing
temperature irrespective of fish size. In this way, a
direct comparison between observed and maximum
possible growth could be made for the whole season,
disposing of the limitations of the growth model of
Fonds et al. (1992). The fact that male and female
growth differs, as has been described in detail for dab
Limanda limanda by Lozén (1992), implies that maxi-
mum growth predictions had to be made for each sex.

The DEB model can mimic and predict the maximum
growth experiments of Fonds et al. (1992). Experimen-
tal data represented observations on small groups of
unknown mixtures of males and females. Hence, ex-
perimental data would be expected to fall in between
the maximum prediction for both sexes. However,
experimental data corresponded with maximum pre-
dictions for males, most likely because experimental
observations represent mean values of small groups of
fish compared with a DEB prediction of theoretical
maximum growth.

The comparison of observed with model-predicted
maximum growth showed that growth was generally
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not maximal irrespective of the season and that the
difference even increased until July. These results
slightly differ from the analysis by Teal et al. (2008)
where growth rates in spring were found to be close to
experimental growth rates. These differences reflect
the use of different models: the mean observed growth
of a group of fish that performed well (Fonds et al.
1992) versus maximum possible growth of an individ-
ual fish (DEB predictions).

A more detailed look into the growth analysis by
Teal et al. (2008) suggests different periods with differ-
ent patterns: first, a period of lower than possible
growth until about the end of the period of larval
immigration (~Day 125). Next, a second period until
~Day 180 with field growth rates in line with predicted
maximum growth; hereafter, a period in summer—
autumn with lower growth rates than maximum pre-
dicted rates. The first period is characterized by a
continuous immigration of settling larvae ranging in
length from 10 to 15 mm (van der Veer 1986). As a con-
sequence, mean growth estimates during this period
will be underestimated. Just-settled plaice pass
through a period of predation by shrimps until the pop-
ulation has reached a size of 3 cm (van der Veer &
Bergman 1987). This predation is size-selective and
stronger on the lowest size classes (van der Veer &
Bergman 1987, van der Veer et al. 1997). Therefore, in
the second period, length growth estimates may be
slightly biased and overestimated. After this period,
growth estimates appear to be lower than maximum
possible growth. The observations of this study, after
accounting for these sampling biases by restricting the
analysis to the period after peak settlement, are in line
with the findings of Teal et al. (2008): more or less
maximum growth just after settlement, followed by a
continuous reduction in growth performance until sta-
bilization at ~40% of the maximum possible growth
from the end of July onwards.

The results of the present study eliminate experi-
mental bias as a cause of the observed patterns and
confirm the view of Kuipers & Dapper (1984), Pihl
(1985) and Teal et al. (2008) of food competition among
epibenthic species in summer. Which other species are
involved is unclear at present; however, other flatfish
species are less likely than crustaceans and gobiids,
which occur in much higher numbers. The underlying
mechanisms of the competition for food might be
related to interference affecting prey searching, cap-
turing and handling, and reducing and limiting food
intake. In this respect it is of interest that the difference
between field and maximum predicted growth stabi-
lized after July (~Day 225) for plaice >8 cm: at a size of
~8 cm, plaice shifts from small bivalve siphons to
larger, more energy containing tail tips as main food
items (Kuipers 1977, De Vlas 1979). This is in line with

the observations on the feeding behaviour of young
plaice, which seems to depend particularly on the
nature and density of available prey (Gibson 1980). It
indicates that food quality is also of importance: shifts
in prey species composition from small siphon tips to
Arenicola tail tips affect plaice growth performance.

Long-term trends in nursery ground quality

Based on the assumption that food was already limi-
ting for 0-group plaice in summer, Teal et al. (2008)
argued that a further increase in seawater temperature
may negatively affect the nursery quality if the produc-
tion rate of benthic food cannot meet the increase in
energy requirements of 0-group plaice. However,
instead of food conditions, prevailing temperature
might be more important. The high temperature sensi-
tivity of plaice makes it relatively vulnerable to tem-
perature changes and hence climate change (Freitas et
al. 2007). The key factor for plaice might be its rela-
tively low upper tolerance limit: under experimental
conditions, growth starts to decrease at ~20°C (Fonds
et al. 1992). In recent years, I- and II-group plaice have
disappeared from the intertidal (H. W. van der Veer &
J. 1J. Witte pers. obs.) and moved to deeper waters (van
Keeken et al. 2007). Also, 0-group plaice disappears
from the intertidal area in late summer (H. W. van der
Veer & J. 1J. Witte pers. obs.), which is much earlier
than in the past (Kuipers 1977). Therefore, a further
increase in water temperature might imply that tem-
perate estuaries such as the Wadden Sea may become
unsuitable as nursery areas for plaice from a physio-
logical point of view, irrespective of prevailing food
conditions. Whether this also holds true for the other
epibenthic species remains unclear. However, it might
be of interest to find out whether and to what extent
competition for food occurs in the other epibenthic spe-
cies.
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