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INTRODUCTION

Mobile marine organisms such as fish may be ex-
pected to form large populations that are strongly
interconnected by dispersal, and hence display little
genetic subdivision. However, recent studies have
highlighted both the surprisingly restricted dispersal of
many marine taxa (Jones et al. 1999, Almany et al.
2007) and the consequent high level of population sub-
division even within taxa with long-lived larvae or
mobile adults (Ayre & Dufty 1994). Many factors,
including ocean currents (James et al. 2002), coastal
features such as estuaries or embayments (Watts &
Johnson 2004), and complex larval and/or adult behav-
iour (Gerlach et al. 2007, Dixson et al. 2008), have been
implicated. Hence, predictions that the life history of

fish should result in widespread dispersal must always
be treated with caution.

A diverse range of marine animals displays spawn-
ing site fidelity (e.g. sea kraits, Shetty & Shine 2002;
turtles, Bowen et al. 2005, groupers, Starr et al. 2007).
This trait is common in many groups of fish and may
involve the adults returning to their place of birth to
spawn (i.e. natal-site spawning) (e.g. Thorrold et al.
2001). Although the exact mechanism facilitating
spawning site faithfulness is often unclear, it seems
probable that it relies on individuals sensing and ‘hom-
ing’ to some underlying characteristic or environmen-
tal factor associated with the spawning site. For exam-
ple, the navigational mechanism facilitating natal-site
spawning in estuarine (i.e. stream or river) dependent
salmon is thought to involve olfactory imprinting (dur-
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ing early life stages), and subsequent sensing of natal-
site odours (Dittman & Quinn 1996, Yamamoto et al.
2010).

On the east coast of Australia, Acanthopagrus aus-
tralis Günther (yellowfin bream) is considered to be
highly mobile and is treated as a single (fisheries) stock
ranging over >2000 km from southern Queensland
(QLD) to the New South Wales (NSW)/Victoria (VIC)
state border (Henry & Lyle 2003). Indeed, 2 studies
have shown bream (which the authors assumed were
A. australis rather than the estuary restricted congener
A. butcheri Munro (black bream) that were tagged
within both central and northern NSW estuaries being
recaptured in locations in southern Queensland
(Henry 1983, West 1993). While these tagging studies
clearly show that a small proportion of A. australis
undertake long-distance migration (in a southerly
direction, ranging over 10s to 100s of kilometres) (pro-
portion of the total no. of fish that emigrated to the total
no. of fish tagged and released: 29/589, 12 588 [total
no. of fish tagged], West 1993; 4/88, 1058 [total no. of
fish tagged], Henry 1983), both authors reported that
the majority of recaptured fish were caught within
the estuary in which they were tagged (560/589 and
84/88 respectively). These findings support earlier
work by Pollock (1982a), who similarly used capture-
tag-release-recapture data to show that A. australis
inhabiting Moreton Bay (QLD) at approximately the
northern range limit of the species
should be considered as a separate
(fisheries) stock, as fish did not emi-
grate outside of Moreton Bay. Taken
at face value, these findings, together
with aspects of the life history of A.
australis, suggest that populations
could be genetically subdivided.

Although adult Acanthopagrus aus-
tralis are thought to migrate in a
southerly direction to spawn, and
pelagic larvae are thought to be dis-
persed over large distances by the
East Australian Current (EAC), the
species may display spawning site
fidelity. Spawning behaviour is
relatively unstudied in A. australis,
although spawning is thought to oc-
cur in entrance channels or lower
reaches of coastal lakes and lagoons
(‘estuaries’) or in the surf zone of
beaches adjacent to the entrances of
estuaries (Pollock 1982b, 1984). This
close association with estuarine
spawning sites has the potential to
promote fine-scale genetic differenti-
ation of both adult and juvenile popu-

lations if A. australis lineages maintain prolonged
associations with individual estuaries. Alternatively, if
spawning is simply opportunistically associated with
estuaries in general, and larvae are mixed and trans-
ported over a wide area by the EAC, then we would
expect little or no population subdivision.

Here we use population genetic data to test the pre-
diction that spawning site fidelity promotes fine-scale
population subdivision in Acanthopagrus australis.
Specifically, we compare the degree of genetic differ-
entiation of sets of A. australis recruits within different
estuaries with that of adults caught near estuaries but
on the open coast.

MATERIALS AND METHODS

The Acanthopagrus species complex, sample col-
lections, and genetic markers. A. australis is distrib-
uted continuously along the east coast of Australia
from southern QLD to approximately the NSW/VIC
state border (Fig. 1) (Edgar 2000). It inhabits a range
of habitats encompassing rocky headlands, offshore
reefs and the surf zone of coastal beaches as well as
estuaries. The species has an annual reproductive
cycle, with asynchronous gonad development and
group spawning occurring over a period of 2 to 5 mo.
Peak spawning occurs between April and June (on
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Fig. 1. Distribution of Acanthopagrus australis and its estuary restricted con-
gener A. butcheri, and the locations of sampling sites for juvenile (Tuross,
Corunna and Wallaga Lakes) and adult (Gold Coast, Forster and Botany Bay) 

A. australis
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the north coast but may be later on the south coast,
i.e. July/August, C. A. Gray pers. comm.). During the
spawning period, an unknown proportion of the pop-
ulation is thought to migrate in a southerly direction
along the coast, with fish forming large aggregations
in the lower reaches of estuaries and/or in the imme-
diate surf zone of coastal beaches directly adjacent to
the entrances of estuaries, presumably to spawn (Pol-
lock 1982b, 1984). Larvae may be dispersed over a
wide area as they are thought to spend a large
amount of time in the coastal ocean plankton under
the influence of the East Australian Current (EAC)
while undergoing development (Neira et al. 1998)
before recruiting to shallow seagrass meadows and
submerged structures in coastal lakes and lagoons
(Griffiths 2001).

The dispersal potential of Acanthopagrus australis
could have serious implications for its estuary
restricted congener, A. butcheri. This is because on
the southeast corner of Australia where the 2 species
co-occur within estuaries, A. australis has made a
major contribution to the genotypes of A. butcheri
through hybridisation and introgression (Rowland
1984, Roberts et al. 2009). The juvenile A. australis
examined in this study represent a subset of a collec-
tion of Acanthopagrus spp. from Roberts et al. (2010),
who determined the proportion of A. australis, A.
butcheri and introgressed or hybrid bream within 5
coastal lagoons in southern NSW. Roberts et al. (2010)
collected 688 juvenile (<30 mm length) Acanthopa-
grus spp. (81 to 170 per lagoon) following a single
recruitment event in 2002, after the 2001 spawning.
Between 20 and 66 bream were sampled at each of 3
or 4 haphazardly chosen sites (within seagrass mead-
ows) in each lagoon. Bream were captured with a 10 ×
2 m haul seine net (6 mm mesh) over a ~25 m2 area.
The species specific status of every individual was
determined using admixture analysis based on 8
microsatellite loci, and a species specific mtDNA
RFLP (restriction fragment length polymorphism) pro-
file (Roberts et al. 2010). The microsatellite markers
and the PCR cycling conditions are described in
Roberts et al. (2009).

We examined microsatellite genotypes for 30 ran-
domly selected juvenile Acanthopagrus australis from
2 or 3 sites, within each of 3 lagoons on the NSW south
coast (Tuross, Corunna and Wallaga Lakes) separated
by a distance of up to 50 km (total n = 240 fish). We also
genotyped sets of ocean-caught adults from each of 3
locations: the Gold Coast (QLD) (n = 40), Forster (n =
40) and Botany Bay (n = 30) (NSW) (total n = 110)
(Fig. 1). These fish were included to compare the
genetic similarity of juvenile bream on the south coast
of NSW to adult bream from throughout the described
range of the species.

Genetic analyses: microsatellites. For each site
within a lagoon, and for each ocean location, we calcu-
lated the average number of alleles per locus, and the
average observed and expected heterozygosity (using
POPGENE; Yeh et al. 1999).

Because incorrect interpretation of microsatellite
data can occur when there are genotyping errors asso-
ciated with null alleles, stutter bands due to replication
slippage during PCR, and/or large allele dropout, we
determined whether our data were affected by these
potential sources of error using the program Micro
Checker (van Oosterhout et al. 2004). Separate analy-
ses on the overall collection of juveniles and adults for
each lagoon and ocean site revealed that 2 loci
(pAb2A5 and Acs3*) had apparent large excesses of
homozygotes consistent with null alleles. Although a
small number of controlled crosses involving Acan-
thopagrus butcheri × A. butcheri, and A. australis × A.
butcheri have revealed simple Mendelian inheritance
and no evidence of null alleles for the 8 microsatellite
loci (4 pairs; 30 larvae per pair) (Roberts et al. 2009), we
have opted to present the results here based on just 6
loci, acknowledging the possibility of null alleles at
pAb2A5 and Acs3* in A. australis.

We estimated Weir & Cockerham’s (1984) formula-
tions of Wright’s (1969) F-statistics using the program
Tools for Population Genetic Analyses (TFPGA; Miller
1997). Our hierarchical sampling of juveniles within
south coast lagoons allowed us to partition genetic vari-
ation into separate variance components. In the present
study, the hierarchical levels in the data were denoted
by FSL and FLT, which respectively represent genetic
differentiation among sites within a specified lagoon,
and among lagoons relative to the total. FIS and FIT are
measures of the deviation from Hardy-Weinberg ex-
pectations within subpopulations (i.e. lagoons) and in
the total population (sample) respectively, and are pre-
sented in the conventional way. The estimates were
based on microsatellite allele frequencies for individual
loci, and as an average across loci. Bootstrapping and
jackknifing over loci were used to estimate SDs and
95% CIs. F-statistics were considered statistically sig-
nificant when the lower 95% CI did not overlap 0. Com-
parable F-statistics for ocean-caught adults were also
included, although our sampling did not permit a hier-
archical assessment of population differentiation. We
tested for differentiation of adult and juvenile Acan-
thopagrus australis by calculating FST (i.e. allele fre-
quency differentiation among subpopulations) for the
overall sets of adult and juvenile fish. Finally, to visually
display any geographic structuring within our mi-
crosatellite data set, we performed factorial correspon-
dence analysis (FCA) in GENETIX 4.03 (Belkhir et al.
2002) on the pooled sample of juveniles from each la-
goon together with the sample of ocean-caught adults.
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RESULTS

The overall collection of juvenile Acanthopagrus aus-
tralis comprised a genetically diverse group with little
evidence of genetic subdivision. Numbers of alleles per
locus ranged between 9 and 30, with an average (±SE) of
17.7 (±3.0). We detected similar levels of genetic varia-
tion at all sites within each lagoon. The mean number of
alleles per locus ranged between 11.3 and 13.0, while
mean observed heterozygosity was >0.75 for each site
(range: 0.76–0.83). Between 64.2 and 73.6% of all alleles
were present at each site. Private alleles (alleles unique
to a single site) were extremely rare (16/106 alleles de-
tected), and were found at low frequency (<0.05) when
they occurred. Private alleles were distributed evenly
among sites within lagoons (Table 1).

Our estimates of genetic variation among sites
within lagoons (FSL: 0.001 ± 0.002) and among lagoons
(FLT: 0.002 ± 0.002) were extremely low and not signif-
icantly different from 0 (based on 95% CIs), indicating

no genetic subdivision at either spatial
scale. Our estimates of FIS and FIT

were also consistently close to 0
(0.021 ± 0.008 and 0.022 ± 0.009
respectively), which together with the
lack of spatial variation in allele fre-
quencies, imply a single outcrossed
population (Table 2).

Genetic diversity in ocean-caught
adults on the north coast was compa-
rable to levels of genetic diversity in
the set of juveniles within lagoons on
the south coast. The mean number of
alleles per locus ranged between 11.5
and 12.2, while mean observed hetero-
zygosity was similarly ≥ 0.75 for each
location (Table 3).

There was no population differentiation among
samples of ocean-caught Acanthopagrus australis
from locations that were spread across the described
range of the species (FST = 0.002 ± 0.001; 95% CI =
0.000–0.004) (Table 4). Perhaps not surprisingly, the
FCA plot that was used to compare the genetic simila-
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Locus FIS FSL FLT FIT

pAb2B7 0.045 0.004 0.003 0.049
pAb2D1 –0.0200 0.002 –0.0020 –0.0180
Acs1* 0.031 0.006 0.011 0.037
Acs6* 0.033 –0.0050 0.004 0.028
Acs-16* 0.014 0.001 –0.0010 0.015
Acs-21* 0.013 –0.0010 –0.0040 0.012
Overall ± SD 0.021 ± 0.008 0.001 ± 0.002 0.002 ± 0.002 0.022 ± 0.009
95% CI 0.004 – 0.008 –0.001 – 0.004 –0.002 – 0.006 0.004 – 0.037

Table 2. Acanthopagrus australis. Hierarchical F-statistics estimated for 6
microsatellite loci, and overall, for juveniles within 3 coastal lagoons. FSL and
FLT: genetic differentiation among sites within lagoons, and among lagoons
respectively. FIS and FIT: degree of deviation from Hardy-Weinberg expectations
within lagoons and within the total sample. F-statistics were considered 

statistically significant when the lower 95% CI did not overlap 0

Tuross Corunna Wallaga
Site 1 Site 2 Site 3 Site 1 Site 2 Site 3 Site 1 Site 2

A 11.3 11.8 11.5 11.8 11.7 11.3 11.7 13.0
(1.9) (2.1) (2.6) (2.3) (2.0) (1.7) (2.2) (1.8)

AP 0.33 0.50 0.00 0.17 0.50 0.50 0.00 0.67
(0.21) (0.22) (0.00) (0.17) (0.22) (0.22) (0.00) (0.21)

Ho 0.833 0.788 0.806 0.778 0.759 0.817 0.811 0.783
(0.092) (0.107) (0.184) (0.136) (0.090) (0.089) (0.103) (0.161)

He 0.813 0.790 0.783 0.790 0.801 0.812 0.796 0.807
(0.083) (0.104) (0.133) (0.123) (0.106) (0.099) (0.112) (0.120)

ƒ –0.009 0.020 –0.011 0.031 0.076* 0.011 –0.002 0.047*

Table 1. Acanthopagrus australis. Mean (±SE) number of alleles (A), number of private alleles (alleles unique to a particular site)
(AP), observed heterozygosity (Ho), Nei’s 1973 expected heterozygosity (He), and the estimator ƒ of the inbreeding coefficient,
FIS (Weir & Cockerham 1984) based on 6 microsatellite loci, for juveniles (representing the same year of birth) in 3 coastal
lagoons in southeastern Australia. Sample size was 30 fish per site. *Statistically significant departure from Hardy-Weinberg

equilibria, p < 0.05

Gold Coast Forster Botany Bay

A 12.2 (2.1) 12.0 (2.6) 11.5 (2.7)
AP 1.5 (0.3) 1.5 (0.7) 1.0 (0.4)
Ho 0.748 (0.061) 0.771 (0.037) 0.787 (0.051)
He 0.800 (0.048) 0.789 (0.054) 0.800 (0.048)

Table 3. Acanthopagrus australis. Mean (±SE) number of alle-
les (A), number of private alleles (alleles unique to a particular
location) (AP), observed heterozygosity (Ho) and Nei’s 1973
expected heterozygosity (He) based on 6 microsatellite loci,
for ocean-caught adults. Sample size per location was 40, 40 

and 30 fish, respectively
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rity of individual juveniles within lagoons on the south
coast to that of ocean-caught adults on the north coast
revealed a wide scatter of points along both axes but
with the plotted positions of points for the juveniles
and adults overlapping (Fig. 2). No sets of juveniles or
adults formed clusters of individuals from the same
sampling location. Moreover, FST based on comparison
of the overall data set of adult and juvenile fish re-
vealed no genetic differentiation (FST = 0.000) (Table 4).

DISCUSSION

Our findings suggest that Acanthopagrus australis
forms a genetically diverse and homogeneous popula-
tion despite the potential for population subdivision

suggested by its close association with estuaries. These
results are consistent with the great mobility of this
species that has been predicted from tagging studies
(Henry 1983, West 1993), and imply that fish have no
persistent associations with their natal spawning sites
or nursery estuaries. Indeed, all estuarine populations
were genotypically diverse and genetically homoge-
nous over spatial scales ranging from several hundreds
of meters to tens of kilometres. Estuaries can provide
unique opportunities for divergence (see Watts &
Johnson 2004 for review), and there are examples
where species of fish that are otherwise ‘good dis-
persers’ (i.e. mobile adults, with dispersive pelagic lar-
vae) exist as estuary associated, genetically subdivided
populations (Johnson et al. 1986, Gold et al. 1999). Our
data show that dispersal is clearly sufficient to prevent
geographic differentiation of A. australis populations
despite the acknowledged association of adult A. aus-
tralis with estuaries as feeding and spawning sites.
However, this need not imply vast amounts of migra-
tion, but simply enough migration to homogenise allele
frequencies (Wright 1931). The lack of genetic hetero-
geneity in A. australis among estuaries sharply con-
trasts with the pattern of genetic subdivision that has
been reported for its estuary restricted congener, A.
butcheri, in at least some parts of its range (Chaplin
et al. 1998).

The complete lack of spatial variation in allele fre-
quencies for collections of ocean-caught adult and
juvenile Acanthopagrus australis from several estuar-
ies suggests that this species effectively forms a single
large panmictic population on Australia’s east coast.
Our data for ocean-caught adults alone could reflect
the post-spawning migration and possible mixing of
adults from genetically distinct estuary associated sub-
populations (i.e. marine admixture). Species that dis-
play strong philopatry and consequent genetic sub-
division of spawning aggregations often forage or
migrate over vast distances before returning to natal
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Locus Adult Adult & juvenile
FIS FST FIT FIS FST FIT

pAb2B7 0.085 –0.0050 0.085 0.059 –0.0010 0.059
pAb2D1 0.034 0.005 0.039 –0.0010 0.001 –0.0010
Acs1* 0.059 0.000 0.059 0.041 –0.0030 0.039
Acs6* 0.034 0.005 0.039 0.031 –0.0010 0.030
Acs-16* 0.035 0.001 0.036 0.021 0.001 0.022
Acs-21* 0.024 0.001 0.026 0.017 –0.0010 0.016
Overall ± SD 0.046 ± 0.010 0.002 ± 0.001 0.047 ± 0.010 0.029 ± 0.008 –0.001 ± 0.001 0.029 ± 0.008
95% CI 0.031 – 0.066 0.000 – 0.004 0.033 – 0.066 0.015 – 0.045 –0.002 – 0.001 0.015 – 0.044

Table 4. Acanthopagrus australis. F-statistics estimated for 6 microsatellite loci, and overall, for ocean-caught adults, and for the
pooled set of juvenile (estuarine) and adult fish. FIS and FIT: degree of deviation from Hardy-Weinberg expectations within 

lagoons and within the total sample; FST: allele frequency differentiation among subpopulations (i.e. sampling locations)
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Fig. 2. Acanthopagrus australis. Factorial correspondence
analysis based on the 6 locus genotype of all 350 fish. 
njuveniles = 240 (Tuross, Corunna and Wallaga); nadults = 110
(Gold Coast, Forster and Botany Bay). Juveniles were caught
within coastal lagoons, while adults represent ocean-caught 
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sites to spawn (e.g. Bowen et al. 2005). Thus, the limi-
tation of our data set based on ocean-caught adults
alone is that we are unable to distinguish between
rangewide genetic homogeneity and marine admix-
ture of a set of genetically distinct estuary associated
subpopulations. However, the genetic homogeneity of
juveniles provides more compelling evidence of the
lack of any persistent genetic subdivision of pop-
ulations that is attributable to an association with
estuaries.

Our data are consistent with what is known of the
breeding biology of Acanthopagrus australis and east
coast oceanography, and suggest that both the
southerly migration of adults and northerly dispersal
of larvae via the EAC provide sufficient mixing to
prevent rangewide population differentiation. The
EAC is the major ocean current on the east coast. It
produces a reliable, predominantly north–south flow
of warm water originating in the tropics, but becomes
progressively weaker and less reliable from ~33° S
(central NSW), as the majority of the flow is deflected
seaward in this area (Godfrey et al. 1980). Several
authors have speculated on the EAC’s effectiveness
in transporting larvae to the far south coast of eastern
Australia (Ayre 1990, Murray-Jones & Ayre 1997);
however, genetic analysis of population differentia-
tion has often revealed genetic homogeneity for
widely separated collections of species with long-
lived pelagic larvae. These include several species
that are relatively immobile as adults because of
habitat specialisation or attachment to, or within,
benthic substrata (Banks et al. 2007, Curley &
Gillings 2009). This homogeneity is most simply
explained by a high degree of population connectiv-
ity that is maintained by dispersal of larvae within
warm-core eddies of the EAC. Although the flow of
the EAC is deflected seaward, eddies break off and
continue to flow southwards, sometimes reaching the
Bass Straight between Tasmania and the Australian
mainland (40° S) (Nilsson & Cresswell 1981). The
physical properties and southward penetration of
these eddies vary greatly in space and time (Roughan
& Middleton 2004), and have important implications
for the growth, survival and transport of larvae. How-
ever, a recent survey of the frequency of occurrence
and abundance of tropical (coral) reef fish in temper-
ate subtidal rocky reef habitats in southern NSW
highlighted the effectiveness of the warm-core eddies
in affecting larval transport (Booth et al. 2007). The
authors reported recurring recruitment of a diverse
set of reef fish along the NSW coast, remarkably
including recruitment at locations near the NSW/VIC
state border (38° S), which is ~1700 km from the typi-
cal southern range limit of these fish on the Great
Barrier Reef.

Evolutionary consequences of predicted change to
the circulation pattern of the EAC

Eastern Australia is predicted to experience severe
modification of major current flows due to climate
change. Indeed, there are already reports of urchins
(Centrostephanus rodgersii) being transported to the
far south of their previous distributional range limit by
the movement of larvae within warm-core eddies of
the EAC (Banks et al. 2010), with adult populations
now being established in Tasmania and having devas-
tating effects on subtidal kelp forests and associated
fauna (Johnson et al. 2005). For Acanthopagrus aus-
tralis, range expansion may have little direct impact on
its population structure, but could have serious impli-
cations for its estuary restricted congener, A. butcheri.
A. butcheri is distributed within estuaries from south-
ern NSW to Tasmania in the south, and Western Aus-
tralia in the west. Our earlier works suggested that
hybridisation and introgression involving A. australis
have made a massive contribution to the genotypes of
A. butcheri within NSW estuaries (Roberts et al. 2009,
Roberts et al. 2010). A northerly range expansion by A.
australis, facilitated by more frequent or further than
usual northerly penetration of warm-core eddies could
simply increase the size of this panmictic east coast
population. Alternatively, the spread of A. australis
may increase both the geographic range within which
hybridisation occurs, and the number of hybrid-
dominated lakes and lagoons. Indeed, our preliminary
broad-scale genetic survey based on a small number of
samples has already uncovered rare hybrids in Tas-
manian estuaries (Roberts et al. 2009). Frequent east-
erly dispersal seems less likely for A. australis
(although this is not impossible), as we now know that
the ‘southeast corner’ of Australia is a major biogeo-
graphic barrier for several species that are regarded as
‘good dispersers’ (Waters et al. 2007, Ayre et al. 2009).
The SE barrier region corresponds to a convergence
zone of northerly flowing warm-core eddies of the
EAC and cold waters of the westerly flowing Bass
Straight Cascade. It therefore represents an area of
extreme spatial variation in water temperature and
salinity (images can be found at www.bom.gov.au) that
presumably blocks along-shore dispersal of adults or
transport of larvae. It now seems crucial to employ fur-
ther genetic surveys of Acanthopagrus spp., beyond
the recognised southern and western range limit of A.
australis to determine baseline proportions of A. aus-
tralis and/or their hybrids.
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