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ABSTRACT: Symbiotic reef corals exude large volumes of mucus when exposed to environmental
conditions that challenge the integrity of the coral-algae endosymbiosis. Here, the physiological con-
sequences of CO,-limitation within the ‘dark’ photosynthetic reactions of the algal endosymbionts
(‘zooxanthellae') are investigated as the possible cause of the release of 2 different forms of mucus:
mucus-polysaccharide and mucus-lipid. This mechanism may explain why the experimental addition
of specific host-derived free amino acids (commonly referred to as 'host factors') enhances photosyn-
thate release and carbon fixation rates from in vitro zooxanthellae. Furthermore, it reinforces the
often-ignored importance of the coral host in maintaining the stability and functioning of the intact
symbiosis in the face of environmental stress, even supporting the possibility that disruption to host-
controlled processes ultimately triggers the breakdown of the symbiosis leading to the mass expul-

sion of zooxanthellae (‘coral bleaching’).
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INTRODUCTION

In favourable environmental conditions, the symbio-
sis between corals and dinoflagellate algae of the
genus Symbiodinium (‘zooxanthellae') is characterised
by a translocation of excess fixed-carbon photosyn-
thetic products (‘photosynthates’) from the zooxanthel-
lae to the coral host (Fig. 1a; Trench 1993). This ready
supply of energy-rich photosynthate benefits the coral
host by fuelling its production of tissues, skeleton and
gametes. Indicative of these physiological benefits, the
coral host maintains a range of homeostatic strategies
to maximise its receipt of photosynthate. This includes
‘CO,-concentrating mechanisms’ (CCMs) that en-
hance the intracellular supply of CO,,q needed for
intensive zooxanthellae photosynthesis (Weis et al.
1989, Goiran et al. 1996, Leggat et al. 2002). It has also
been speculated that the diversion of photosynthate
away from zooxanthellae metabolism towards release
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is stimulated by putative 'host factor’ signalling mole-
cules (Gates et al. 1995, Wang & Douglas 1997).

Given these active host strategies, it is a surprising
(enigmatic) characteristic of the intact symbiosis that a
significant proportion of the net carbon assimilated by
zooxanthellae is simply released as exudates, includ-
ing coral mucus. For example, mucus release has often
been reported to constitute ~50 % of the daily carbon
balance in shallow-water reef corals (Crossland et al.
1980, Davies 1984), though at certain times this value
can be much higher (e.g. ~98%; lkeda & Miyachi
1995). Whilst a role for mucus has been assigned to a
variety of homeostatic processes (e.g. a release mecha-
nism for excess assimilated carbon, desiccation resis-
tance, defence against pathogens, feeding, sediment
cleaning), the current understanding of the composi-
tion, production and symbiotic function of mucus
remains fragmentary (reviewed by Brown & Bythell
2005). One aspect of coral mucus production that has
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Fig. 1. (a) Conceptual overview of the internal carbon cycling that is main-
tained by the coral-zooxanthellae symbiosis. Zooxanthellae photosynthesis
takes place within the algal chloroplast, with the ‘light’ reactions occurring in
the thylakoid membranes and the ‘dark’ reactions (Calvin-Benson cycle) in the
stroma. (b) Conceptual representation of the breakdown of the symbiosis
(= zooxanthellae expulsion), as triggered by a limitation of COy,q) substrate for
the 'dark’ reactions of zooxanthellae photosynthesis (after Wooldridge 2009).
With no means to turn over ATP and NADPH, the photosynthetic electron
transport chain becomes blocked, which damages the light-sensitive photo-
systems and generates damaging reactive oxygen species

received only limited consideration is its
strong relationship to the breakdown of the
coral-algae association, in which the zoox-
anthellae are released en masse (‘coral
bleaching') (Fig. 2; Kato 1987). Indeed,
enhanced mucus release is associated with
many known bleaching risk factors, includ-
ing heat stress (Neudecker 1983, Kato
198%), cold stress (Steen & Muscatine 1987,
Saxby et al. 2003), aerial exposure (Krupp
1984, Kato 1987, Romaine et al. 1997), low
flow (Coffroth 1985, 1988), salinity stress
(Coffroth 1985, Kato 1987, van Woesik et
al. 1995), excess solar radiation (Drollet
et al. 1993, 1997), excessive sedimen-
tation (Coffroth 1985), cyanide exposure
(Cervino et al. 2003), or herbicide exposure
(Jones & Kerswell 2003).

Whilst the environmental triggers of coral
bleaching (and associated mucus secretion
response) are self-evident, uncertainty sur-
rounds the cellular (symbiotic) conditions
underpinning the bleaching syndrome.
Recently, Wooldridge (2009) identified the
onset of CO,-limitation within the ‘dark’
reactions of zooxanthellae photosynthesis as
a potential unifying cellular mechanism
(trigger) for the classic bleaching sequence
of zooxanthellae photoinhibition, oxidative
damage, and host cell disruption (Fig. 1b). In
this case, (1) lack of CO,,q substrate
required for the 'dark’ reactions restricts the
consumption of ‘light' reaction products
(ATP and NADPH), which blocks the photo-
synthetic electron transport chain (= sink-
limitation) (Takahashi & Murata 2006); (2)
continued funnelling of excitation energy
into the over-reduced electron transport
chain triggers the onset of photoinhibition
(Jones & Hoegh-Guldberg 2001), which
damages essential photosynthetic compo-
nents (principally photosystem II, PSII), and
generates damaging reactive oxygen spe-
cies (ROS) (Lesser 1996, Warner et al. 1999);
and (3) the excess production of ROS beyond
the antioxidant defence strategies of the
coral host (and zooxanthellae) initiates the
host cell necrosis and apoptosis that under-
pins zooxanthellae expulsion (Gates et al.
1992, Dunn et al. 2002).

This scheme is consistent with light flux
being an important co-determinant of the
severity of the bleaching response, since ul-
traviolet radiation (UVR) contributes direct
damage to PSII (Nishiyama et al. 2006),
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Fig. 2. Porites cylindrica. Mucus secretion and coral bleaching
in a reef-building coral (after Kato 1987). The mucus-bleach-
ing data include field observations for a natural thermal
bleaching event (A), and laboratory responses that resulted
from various levels of thermal stress () and salinity stress (H)

whilst periods of excess photosynthetic active radiation
(PAR) (= high photosynthetic demand for CO,) can
trigger the onset of CO,-limiting conditions within the
intracellular zooxanthellae population (Muscatine et al.
1989). Environmentally driven breakdown of the host
CCMs may also trigger CO,-limitation via a disruption
in the supply of intracellular CO, (Wooldridge 2009,
Wooldridge & Done 2009). Importantly, the CO,-
limitation bleaching model identifies the potential for
zooxanthellae expulsion to occur on an almost continu-
ous (daily) basis, which is consistent with experimental
observations of daily zooxanthellae release, especially
during times of high photon flux around the midday pe-
riod (Stimson & Kinzie 1991, Jones & Yellowlees 1997).

In this article, I utilise the CO,-limitation bleaching
model as an instructive standpoint from which to
develop a new conceptual interpretation (model) for
the enhanced release of mucus in symbiotic reef corals
during ‘bleaching’ conditions. Whilst no new data sets
are introduced, new inference is drawn by reconsider-
ing (testing) existing observations from the identified
scenario of CO,-limitation within the ‘dark’ reactions
of photosynthesis during periods of excess solar irradi-
ance (sensu Wooldridge 2009). The new interpretation
delivers 2 contrasting endpoints: (1) increased mucus
excretion as a host strategy to limit the onset (and
consequences) of photoinhibition in its zooxanthellae
population, and/or (2) mucus excretion as a deleterious
consequence of host cell membrane disruption associ-
ated with zooxanthellae photodamage. These alter-
nate outcomes are explained in terms of 2 different
forms of mucus: mucus-polysaccharide and mucus-
lipid.

MUCUS RELEASE AS A
PHOTOPROTECTIVE MECHANISM

Mucus-polysaccharide is a gel-like organic exudate
associated with specialized mucus-producing cells (i.e.
mucocytes) that are primarily located in the oral
epithelium of the coral host (reviewed by Brown &
Bythell 2005). Though still requiring further experi-
mental verification, it is commonly believed that muco-
cytes convert free lipid droplets stored within the host
cytoplasm into mucus-polysaccharides, which are then
secreted onto the surface of the coral (Fig. 3; Brown &
Bythell 2005). The presence of UVR-absorbing myco-
sporine-like amino acids (MAAs) in the surface-
covering exudate (Drollet et al. 1993, 1997) draws
attention to the role of mucus-polysaccharides in pro-
tecting (screening) the coral and their zooxanthellae
from the deleterious physiological impacts of excessive
solar irradiance. This inference is strengthened by
the observation that maximal release of mucus-
polysaccharides coincides with the midday-peak in the
diurnal irradiance cycle (Fig. 4; Crossland et al. 1980,
Crossland 1987). It remains to be tested whether
mucus-polysaccharides also attenuate (i.e. absorb
and/or scatter) PAR and thereby help to limit the dele-
terious CO,-limitation bleaching sequence. It appears
relevant that mucus-polysaccharide secretion is most
common during periods when the coral polyps are
retracted (Coffroth 1988). Daytime polyp retraction
lowers the intensity of PAR reaching the endosymbiont
population (Salih et al. 2000, Brown et al. 2002); there-
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Fig. 4. Acropora acuminata. Diurnal variation in the incorporation rate of
labelled “C into mucus-polysaccharide and mucus-lipid (after Crossland et

al. 1980)

fore, its association with the release of mucus-
polysaccharides fits with the notion that the coral host
actively seeks to moderate the midday photon flux
entering the photosynthetic apparatus of its zooxan-
thellae —thereby effectively lowering the maximum
instantaneous (endpoint) demand for CO,,q within
the ‘dark’ photosynthetic reactions. Production of fluo-
rescent pigments (FPs) that dissipate excess light
energy via fluorescence and light scattering (Salih et
al. 2000) is an additional (consistent) host-dependent
photoprotection strategy.

Beyond the solar screening role, the lipid synthesis
process that supports mucus-polysaccharide secretion
may also confer photoprotection during
periods when the ‘dark’ reactions of

N
N

thellae then transfer the carbon back to
the host as newly synthesized lipids, typi-
cally as a form of wax ester or triacylgly-
cerol. By providing an alternative sink for
excess ATP and NADPH, this process can
be understood to help forestall over-
reduction of the photosynthetic electron
transport chain, thereby reducing the
potential for photoinhibition, oxidative
damage and zooxanthellae expulsion.
Support for the operation of this photo-
protective mechanism is found in the bio-
physical and biochemical responses (host
cellular cues) that accompany the bleach-
ing process. For example, in the early
stages of thermal bleaching in Montas-
traea annularis there is a dynamic (adap-
tive) increase in the abundance of muco-
cytes in the oral epidermal tissue layer
(Piggot et al. 2009). Moreover, during the early stages
of thermal bleaching in M. franski, host gastroderm
cells containing zooxanthellae become progressively
enriched with free amino acids (FAAs) and lipid prod-
ucts (Edmunds et al. 1995, Gates & Edmunds 1999). A
similar result has been recorded for the reef-building
coral Pocillopora damicornis, wherein the early stages
of thermal bleaching are associated with an enhanced
presence of lipid globules within host gastroderm cells
and associated zooxanthellae (Salih et al. 1998). In this
case, lipid globules were observed to protrude (‘bleb’)
from the surface of the zooxanthellae. Consistent with
the lipid synthesis/CO,-limitation alleviation strategy
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photosynthesis are CO,-limited. For
this proposed ‘bleaching’ condition
(Fig. 1b), lipid synthesis within the
chloroplasts of zooxanthellae may still
be achieved provided that carbon prod-
ucts (e.g. acetate) are transferred from
the host to the zooxanthellae (Fig. 5;
Patton et al. 1977, Blanquet et al. 1979).
In this scheme, zooxanthellae absorb
acetate which is produced by break-
down of lipids and/or digestive and
degradative protein metabolism (‘ami-
no acid catabolism') in the host cell.
Once inside the =zooxanthellae, the
acetate molecules are activated and
converted to fatty acids, using excess
ATP and NADPH to power the energet-
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Fig. 5. Proposed cellular pathways by which the host recycles acetate, and by

required for the addition of each
2-carbon (acetate) unit. The zooxan-

which lipid droplets are synthesized and secreted by symbiotic zooxanthellae
(adapted from Kellogg & Patton 1983). TG: triacylglycerol, WE: Wax ester
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outlined here, the quantity of lipid globules within the
zooxanthellae showed a strong interaction with PAR,
with the highest number of lipid globules present for
the combined high PAR and temperature treatment,
followed by the high PAR alone treatment—both treat-
ments showing a dramatic increase compared to dark
or shaded treatments.

The postulated involvement of zooxanthellae pro-
cesses with the release of coral mucus is consistent
with previous studies which have detected significant
amounts (up to 47 mol%) of arabinose in coral mucus
(Ducklow & Mitchell 1979, Meikle et al. 1988). Arabi-
nose is not a common constituent of animal cells, sug-
gesting the likely involvement of the zooxanthellae, as
it is a universal constituent of plants.

MUCUS RELEASE AS AN INDICATOR OF
HOST CELL DISRUPTION

Coincident with the midday-maximum secretion of
mucus-polysaccharide is the release of a liquid mucus-
lipid (Fig. 4; Crossland et al. 1980, Crossland 1987). In
fact, the release rate of mucus-lipid represents about
3 to 4 times that of mucus-polysaccharide (Crossland
1987). From the discussions above, it is evident that pe-
riods of excess irradiance which promote the bleaching
syndrome can cause the host gastroderm cells (in which
the zooxanthellae reside) to become temporarily en-
riched in mucus-lipids. Photooxidative damage, lead-
ing to the disruption in the integrity of the host cell
membranes (Gates et al. 1992), can trigger the release
of this mucus-lipid material together with (healthy and
degraded) zooxanthellae. For example, histological ob-
servations by Hayes & Bush (1990) confirm that during
the thermal bleaching of the symbiotic reef coral Mon-
tastraea annularis, disruption to the cellular integrity of
the oral gastroderm causes the release of zooxanthellae
and mucus-lipid into the gastrovascular cavity. Similar
histological observations have been noted for other
bleaching stress factors, such as reduced salinity (van
Woesik et al. 1995), cold stress (Steen & Muscatine
1987) and cyanide exposure (Cervino et al. 2003). Im-
plicit with such a mechanism is the release of mucus-
lipid and zooxanthellae from out of the coelenteral
mouth of the coral host, as opposed to the mucocyte
cells in the case of mucus-polysaccharides. In this re-
spect, it is noteworthy that several Faviid spp. have
been observed ‘streaming’ mucus material through
their mouth (detailed in Brown & Bythell 2005). Indeed,
the potential correspondence of this process with the
well-described (daily) coelenteral release of mucus ac-
cumulations (‘pellets’) containing both degraded and
healthy zooxanthellae (see e.g. Steele 1977, Titlyanov
et al. 1996) deserves further attention.

DISCUSSION

The extensive and continuous (daily) release of
mucus from symbiotic reef corals, particularly around
the peak-midday irradiance period, has most often
been cited as an inevitable consequence (byproduct) of
phototrophic nutrition, i.e. since the energy-rich (but
nitrogen-poor) algal photosynthate cannot itself sup-
port animal tissue growth, the coral host is compelled
to excrete excess photosynthate that is surplus to its
respiratory requirements (see e.g. Davies 1984, Dubin-
sky & Jokiel 1994). Yet, this explanation has no basis
during bleaching conditions when respiration rates (R)
exceed photosynthesis (P) (i.e. P/R < 1; Coles & Jokiel
1977, Al-Horani 2005) and host energy stores become
progressively depleted (Yamashiro et al. 2005, An-
thony et al. 2007). Furthermore, it cannot explain the
enhanced presence of lipid globules within the gastro-
derm cells (and associated zooxanthellae) from semi-
bleached rather than healthy sections (Salih et al. 1998,
Harithsa et al. 2005, Ladriere et al. 2008). On the con-
trary, release of mucus-polysaccharide and mucus-
lipid has been explained here to be consistent with
beneficial (photoprotection) and detrimental (photo-
damage) consequences arising from the predicted
occurrence of CO,-limiting conditions within the intra-
cellular zooxanthellae during periods of excess irradi-
ance (sensu Wooldridge 2009). This new explanation
need not diminish the significance of coral mucus
secretions for other important homeostatic functions
such as desiccation resistance, defence against patho-
gens, feeding and sediment cleaning. Furthermore, it
does not diminish the possibility that other host-
symbiont processes may be responsible for different
forms of mucus production and release. Indeed, the
highly variable composition and lack of universal
structure of coral mucus argue against a single ‘catch-
all’ process (reviewed by Brown & Bythell 2005).

The proposed role of mucus-polysaccharides in lim-
iting photophysiological damage within the zooxan-
thellae population contributes to the growing aware-
ness of the fundamental importance of the coral host
in maintaining the stability and functioning (i.e. re-
silience) of the intact symbiosis (Baird et al. 2009,
Wooldridge 2009, Wooldridge & Done 2009). In fact,
the postulated existence of a host-to-symbiont carbon
cycle appears to provide important context as to why
specific components of host tissue homogenate (so-
called ‘host factors’; HFs) enhance photosynthate
release and carbon fixation in freshly isolated zooxan-
thellae (FIZ) (Gates et al. 19995). In the in vitro setting,
the HFs have been identified as FAAs, in particular
taurine (Wang & Douglas 1997, Cook & Davy 2001).
Of significance is the understanding that the catabo-
lism of taurine leads to the 2-carbon product acetate
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(Moran et al. 1994) and that FIZ always exhibit photo-
inhibition (Muller-Parker 1984, Stambler 1992). Com-
parative inference (Fig. 5) therefore permits the sug-
gestion that FIZ are vulnerable to CO,-limitation (and
subsequent photoinhibition) when exposed to the
unacclimatized in vitro experimental media and irra-
diance conditions. The inclusion of host tissue
homogenate, rich in FAAs and lipid precursors, there-
fore provides FIZ with the opportunity to maintain
lipid synthesis as an alternative sink for excess photo-
synthetically generated ATP and NADPH. This
explanation diminishes support for the notion that
HFs contain signalling molecules that cause photo-
synthetically derived carbon to be diverted away from
zooxanthellae metabolism for release to the coral host
(sensu Wang & Douglas 1997). Rather, it favours the
idea that HFs are substrates that can be directly uti-
lized by the zooxanthellae to produce an array of lipid
compounds that are subsequently released to the
host. Moreover, this new explanation diminishes sup-
port for the function of HFs as natural ‘enhancers’ of
zooxanthellae physiological processes, but rather con-
siders HFs alongside other host strategies (e.g. CCMs,
MAAs and FPs) that seek to maintain the photosyn-
thetic competency of the zooxanthellae during periods
of high light flux, thereby ensuring the continued
receipt of energy-rich photosynthates needed to
maintain the stability of the intact symbiosis.

That heterotrophic catabolism helps underpin this
homeostatic function highlights the potential for coral
species that are well suited to external feeding and/or
are capable of maintaining thick tissue reserves to dis-
play enhanced tolerance of ‘bleaching’ conditions that
promote photophysiological damage of zooxanthellae.
This is consistent with the fact that: (1) heterotrophic
feeding helps to sustain photosynthetic quantum yields
in symbiotic reef corals during thermal stress (Borell &
Bischof 2008), and (2) mucus production predominates
in the thick-tissued massive species (Richman et al.
1975) that display the greatest resistance to the bleach-
ing syndrome (Marshall & Baird 2000, Loya et al.
2001). Indeed, the susceptibility of symbiotic corals to
bleaching displays strong coherence with the extent of
reduction/depletion of storage lipids during 'bleach-
ing' conditions (Yamashiro et al. 2005).

Declines in coral mucus production rates across the
duration of bleaching events (Glynn et al. 1985) are
likely to reflect the depletion in somatic tissue
reserves that accompanies prolonged bleaching
events (Szmant & Gassman 1990, Yamashiro et al.
2005). Interestingly, an outlined thermal bleaching
sequence for a population of massive Porites spp.
identifies mass release of zooxanthellae only upon
depletion of tissue reserves below a common lower-
threshold (True 2005). A similar pre-bleaching se-

quence has also been noted for a branching Acropora
sp. (Ainsworth et al. 2008). In this case, a significant
reduction in the thickness of the outer coral tissue
layer (epithelium) was observed several days before
the onset of bleaching (= zooxanthellae expulsion) or
reduction in dark-adapted photosynthetic yields (=
PSII disruption). The authors identify excess mucus
release and subsequent depletion of mucus reserves
as the likely cause of this reduction in epithelial tissue
thickness. Such evidence lends increasing support to
the suggestion that the breakdown (disruption) of host
homeostatic strategies may ultimately trigger the
coral bleaching response (Wooldridge 2009, Wool-
dridge & Done 2009).

The important stabilising (combative) role per-
formed by the coral host highlights the absolute neces-
sity for future experiments to be conducted on the
intact 'holobiont’ (and not the individual partners) in
order to gain a more complete understanding of the
functioning and breakdown of the coral-algae endo-
symbiosis. For example, experiments on isolated zoo-
xanthellae can be understood to have caused unneces-
sary confusion as to whether zooxanthellae release
lipid products to the host in symbio (see e.g. Muscatine
et al. 1994). Similarly, zooxanthellae in culture often
produce no MAAs or a much reduced MAA comple-
ment (Banaszak & Trench 1995) implicating the de
novo generation of the UVR-absorbing MAAs on host-
to-zooxanthellae substrate transfer.

CONCLUDING COMMENTS

It is not the intent of this paper to evaluate or cast
doubt on the importance of coral mucus secretion for
previously ascribed homeostatic functions. Nor is the
intent to establish a single ‘catch-all' process for
mucus production and release. Rather, attention has
been directed at developing an integrated (concep-
tual) framework to help understand what enhanced
coral mucus release during ‘bleaching’ conditions
may reveal about the symbiotic condition(s) that trig-
ger the breakdown of the coral-algae endosymbiosis.
In this way, the enhanced release of both mucus-
polysaccharide and mucus-lipid has been explained
as consistent (i.e. not falsified) with the postulated role
of CO,-limitation within the ‘dark’ photosynthetic
reactions of the algal endosymbionts as a key (univer-
sal) bleaching trigger (sensu Wooldridge 2009). Whilst
it is acknowledged that further experimental testing is
needed to strengthen this inference, if true, it sup-
ports the often ignored (potentially dominant) role of
the coral host partner in maintaining the resilience of
the symbiotic association in the face of environmental
stress.
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