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INTRODUCTION

Understanding the consequences of alteration in
biodiversity for ecosystem processes and society’s use
of natural resources (Vitousek 1994, Costanza et al.
1997, Chapin et al. 1998), has become one of the main
issues in ecology (Hooper et al. 2005). In the last 2
decades, a large number of studies have focused on
the importance of changes in number and identity of
species in terrestrial habitats (Hooper & Vitousek
1997, Tilman 1997, Loreau & Hector 2001), with the
ultimate goal of discriminating between complemen-
tarity and sampling effect models (Huston 1997,
Loreau et al. 2001). More recently, however, experi-
ments conducted in the marine realm have con-
tributed to this debate, as documented in the review
by Stachowicz et al. (2007).

Most studies that stressed a negative effect of loss of di-
versity on ecosystem processes were conducted in meso-
cosms or through synthetically assembled experiments,
based on the assumption of random loss of species (e.g.
Aarssen 1997, Huston 1997, Emmerson et al. 2001,
Schmid et al. 2002). A few studies have focused on the se-
lective removal of key species in the field, to simulate
non-random changes in patterns of distribution and
abundance of organisms (Schläpfer & Schmid 1999,
Loreau 2000, Dìaz & Cabido 2001, Dìaz et al. 2003). These
studies have emphasized the importance of focusing on
species that have a clear functional role on the basis of
their contribution to ecosystem processes (Schwartz et al.
2000, Geider et al. 2001, Loreau et al. 2002, Smith &
Knapp 2003); from this point of view, habitat-forming
species (or ecosystem engineers; Hawkins & Harkin
1985, Jones et al. 1994) warrant particular attention.
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In the marine environment, seaweed canopies (Day-
ton 1975, Menge 1978, Eckman et al. 1989, Bertness et
al. 1999, Jenkins et al. 1999, 2004), seagrass (Orth 1977,
Irlandi & Peterson 1991), or mussel beds (Suchanek
1985, Witman 1987) may play an important role in
structuring assemblages, by modifying the physical
features of the habitat through their morphologies. Re-
moval experiments have been historically used to show
these effects, but mostly in terms of presence or ab-
sence of a single species (Dayton 1975, Santelices &
Ojeda 1984, Connolly 1994). Multiple habitat-forming
species can, however, coexist in the same place. Low-
shore portions of rocky coasts in the north-western
Mediterranean, for example, are characterised by
mixed stands of the canopy-forming brown alga Cysto-
seira compressa (Esper) Gerloff & Nizamuddin and the
mussel Mytilus galloprovincialis Lamarck (Benedetti-
Cecchi et al. 1996a). Canopy-forming algae and mus-
sels are known to modify levels of light, temperature,
water movement and sedimentation (Reed & Foster
1984, Duggins et al. 1990, McCook & Chapman 1991,
Seed & Suchanek 1992, Seed 1996, Commito et al.
2005), influencing other members of assemblages ei-
ther positively, by ameliorating physical conditions and
by providing opportunities for colonization, or nega-
tively, by monopolizing resources (mostly space) and
thereby preventing colonization (e.g. Dayton 1975,
Kanter 1978, Paine & Suchanek 1983, Bertness et al.
1999, Benedetti-Cecchi et al. 2001, Bulleri et al. 2002).
Deletion experiments have clarified the roles of
individual mussels and canopy algae in influencing the
distribution and abundance of other species in these as-
semblages (Rodríguez-Prieto & Polo 1996, Benedetti-
Cecchi et al. 1996a, 2001). How assemblages respond to
simultaneous changes in the abundance or presence/
absence of these species remains unknown.

In the present paper, we examined the effects of
changes in number and identity of habitat-forming
species (hereafter HFSs) on assemblages of algae and
invertebrates on rocky shores in the north-western
Mediterranean, through the selective removal of Cys-
toseira compressa and Mytilus galloprovincialis.
Although common, these species may undergo drastic
fluctuations in abundance and distribution due to nat-
ural and anthropogenic processes (Seapy & Littler
1982, Rodríguez-Prieto & Polo 1996, Benedetti-Cecchi
et al. 2001). In addition to the presence/absence of tar-
get species, we also manipulated their abundances in
various combinations to control for density-dependent
effects (Benedetti-Cecchi 2004, 2006). Because C.
compressa and M. galloprovincialis can have both pos-
itive and negative effects on other members of assem-
blages, we expected strong interactive effects associ-
ated with changes in the number, identity and
abundance of these HFSs.

MATERIALS AND METHODS

Study site. The present study was conducted
between November 2003 and November 2005, along
the rocky coast of Calafuria, 10 km south of Livorno,
Italy (43° 30’ N, 10° 20’ E). Assemblages occurring be-
tween 0 and –0.3 m below mean low water level on this
coast were characterised by mixed stands of the brown
alga Cystoseira compressa (Esper) Gerloff & Nizamud-
din and the mussel Mytilus galloprovincialis Lamarck.
Assemblages also included encrusting algae (the
coralline Lithophyllum orbiculatum [Foslie] Foslie and
the brown Nemoderma tingitanum Schousboe ex Bor-
net) and articulated corallines (Corallina elongata Ellis
and Solander, Jania rubens [Linné] Lamouroux and
Haliptilon virgatum [Zanardini] Garbary & Johansen),
filamentous (Ceramium spp., Polysiphonia spp. and
Cladophora spp.), coarsely branched (Laurencia
obtusa [Hudson] Lamouroux, Chondria boryana [De
Notaris] De Toni and Gastroclonium clavatum [Roth]
Ardissone) and thin tubular sheet-like algae (Padina
pavonica [Linnaeus] Thivy, Dictyota dichotoma [Hud-
son] J. V. Lamouroux and Dictyopteris membranacea
[Stackhouse] Batters). The most common grazers were
the limpets Patella ulyssiponensis Gmelin and P.
caerulea Linnè and the topshell Osilinus turbinatus
Von Born. Sessile invertebrates included the barnacle
Balanus glandula Darwin and the tube-forming gastro-
pod Vermetus triqueter Bivona-Bernardi (Menconi et
al. 1999, Benedetti-Cecchi 2001). Organisms were
identified to species level if possible and to morpholog-
ical groups otherwise.

Experimental design. At the beginning of the study,
33 plots of 30 × 30 cm, with a cover of Cystoseira com-
pressa and Mytilus galloprovincialis of no less than
30%, were chosen along a stretch of coast of 1 km and
marked at their corners with epoxy-putty (Subcoat S,
Veneziani). Given the small size of the organisms sam-
pled and the small spatial scales at which most of the
variability occurs in these assemblages (Benedetti-
Cecchi 2001), the size of the quadrats was considered
appropriate to obtain representative estimates of
abundance (Andrew & Mapstone 1987). The percent-
age cover of these and other sessile organisms was
estimated using a plastic frame divided into 25 sub-
quadrats of 6 × 6 cm, and giving a score from 0 to 4%
for each species in each sub-quadrat. Final cover was
obtained by summing the values over the 25 sub-
quadrats (Dethier et al. 1993, Benedetti-Cecchi et al.
1996b). The abundance of mobile animals was quanti-
fied as the number of individuals per quadrat.

The percentage cover values of Cystoseira com-
pressa and of Mytilus galloprovincialis were adjusted
experimentally to 30% in 3 randomly selected plots,
which were designed as controls (unmanipulated
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plots; UP). Ideally, plots in which the 2 co-dominant
species each covered 50% of the substratum would
have been desirable for the experiment. Unfortunately,
C. compressa and M. galloprovincialis rarely attained
such large coverage values when sampled simultane-
ously at the scale of our plots. In contrast, plots in
which the 2 co-dominant species each covered 30 to
40% of the substratum were common, and these were
selected for the experiment. The other treatments were
obtained by reducing the total cover of HFSs to 50, 40
and 30% through the selective removal of C. com-
pressa (PC; partial removal of C. compressa), M. gallo-
provincialis (PM; partial removal of M. galloprovin-
cialis) or both species (PCM; partial removal of C.
compressa and M. galloprovincialis, in equal propor-
tions), resulting in 9 treatment combinations. Reducing
the total cover of HFSs to 30% resulted in experimen-
tal conditions in which either C. compressa or M. gal-
loprovincialis were totally eradicated (indicated as TC

and TM, respectively). Hence, these treatments
included only 1 HFS. Finally, there was a treatment in
which both C. compressa and M. galloprovincialis
were completely removed, so the cover of HFSs was
0% (TCM) (Table 1).

Treatments were obtained by removing the bases
and erect fronds of the brown alga and shells and

byssal threads of the mussels with a hammer and
chisel, a paint scraper and a knife. Care was taken not
to damage the surrounding organisms or to alter the
morphology of the substratum by creating cracks and
crevices. Abundances of all organisms (as percentage
cover or number) were sampled at 7 dates, roughly
every 3 to 4 mo. This frequency was chosen to ensure
the detection of possible changes on the structure of
assemblages given the temporal pattern of variability
in abundance of organisms (Menconi et al. 1999,
Benedetti-Cecchi 2001).

Analysis of data. Experimental conditions were
maintained by visiting the shore approximately every
2 wk. Despite our efforts, however, rough sea pre-
vented the adjustment of treatments as frequently as
needed, so that the percentage cover of both Cystoseira
compressa and Mytilus galloprovincialis were, on aver-
age, 6% above nominal levels. Importantly, relative dif-
ferences in abundance among treatments were main-
tained for the most part over the study period, as shown
in Fig. 1. As a consequence, our analyses focused on the
average response of the assemblage over the course of
the study. For this purpose, we analyzed the data with
population averaged–generalized estimating equa-
tions (PA-GEEs; Liang & Zeger 1986, Hardin & Hilbe
2002), using the function ‘geeglm’ in the ‘geepack’
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Brief description Code

Control: Unmanipulated plots (Cover 60%) Plots where abundances of both Cystoseira and UP
Mytilus were adjusted to 30%

Treatments: Cover reduction
to 50%: 

–C
Plots where Cystoseira was partially removed 50% PC

1 species removal
(to 20%) and Mytilus left to 30%

–M 
Plots where Mytilus was partially removed 50% PM 

(to 20%) and Cystoseira left to 30% 

2 species removal
Plots where both Cystoseira and Mytilus 50% PCM

were partially removed (to 25%)

to 40%:

1 species removal
–C

Plots where Cystoseira was partially removed 40% PC

(to 10%) and Mytilus left to 30%

–M 
Plots where Mytilus was partially removed 40% PM 

(to 10%) and Cystoseira left to 30%
2 species removal Plots where both Cystoseira and Mytilus 40% PCM

were partially removed (to 20%)

to 30%:

1 species removal
–C

Plots where Cystoseira was totally removed 30% TC

and Mytilus left to 30% (1 species present)

–M 
Plots where Mytilus was totally removed 30% TM 

and Cystoseira left to 30% (1 species present)

2 species removal
Plots where both Cystoseira and Mytilus 30% PCM

were partially removed (to 15%) (2 species present)

to 0%:
2 species removal

Plots where both Cysoseira and Mytilus TCM

were totally removed

Table 1. Experimental design with treatment codes

⎧
⎨
⎪

⎩⎪

⎧
⎨
⎪

⎩⎪

⎧
⎨
⎪
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package of R 2.6.1 (R Development Core Team 2003).
PA-GEEs allow analyses of correlated data, as in the
case of experimental units repeatedly sampled through
time, using the within-unit correlation structure to ad-
just the variance and standard errors of the estimated
parameter. We used the first-order autoregressive
model AR(1) to model temporal autocorrelation in re-
sponse variables and fitted PA-GEE models assuming a
Poisson distribution of the error terms and a log-link for
the number of taxa, whereas a Gaussian distribution
with the identity link was used for analyses of abun-
dance data. Plots of standardized residuals versus fitted
values and quantile–quantile plots were examined to
check for strong deviations from the assumptions of the
fitted models.

We examined several treatment contrasts, corre-
sponding to specific hypotheses about the effects of
changing the number, identity and cover of HFSs.
First, control plots were compared with all the other
treatments to examine a general effect due to the
manipulation of HFSs (contrast UP vs. Treatments). We
then assessed the effect of losing Cystoseira compressa
and Mytilus galloprovincialis simultaneously, by com-
paring the TCM condition (0% cover) with all the other
manipulated treatments (contrast Other treatments vs.
TCM). Effects due to changes in number of manipulated
species were examined by comparing plots from which
both species were removed with plots from which only
1 species was deleted, regardless of its identity (con-
trast PCM vs. PC/PM, where PC/PM indicates the removal
of either C. compressa or M. galloprovincialis). To
examine identity effects, we contrasted plots from
which only C. compressa was removed with plots from
which only M. galloprovincialis was removed (contrast

PC vs. PM). Both these contrasts were examined in
interaction with changes in cover, to separate the
effects of number and identity of manipulated species
from those due to changes in their abundance. This
first set of tests was limited to plots in which both HFSs
were always present, i.e. at covers of 40 and 50%. Fur-
ther tests were done at the abundance of 30%, and
involved comparisons between plots that included
both species (PCM) and those that had either C. com-
pressa (because mussels were totally removed, TM) or
M. galloprovincialis (because C. compressa was totally
removed, TC) (contrast PCM vs. TC/TM, i.e. 2 vs. 1 spe-
cies present), and between treatments differing in the
identity of the species present (contrast TC vs. TM).

While these analyses were based on the orthogonal
partitioning of degrees of freedom resulting in inde-
pendent tests, they only contrasted a limited range of
abundances of manipulated species. Additional tests
were therefore performed to examine the effect of
reducing the cover of 1 species across a wide range of
experimental abundances (i.e. reductions in percent-
age cover values of individual species of 0, 10, 20 and
30%), while holding the cover of the other species at
the nominal value of 30%. We examined both linear
and quadratic contrasts to test the hypothesis that
reductions in cover of HFSs have non-linear effects on
response variables, as predicted under the general
model that species interactions are not linear (May
1973). These are non-orthogonal tests, and they may
have inflated Type I error rates. Nevertheless, we
decided to perform these tests at the conventional level
of α = 0.05 due to the limited amount of replication.

RESULTS

PA-GEEs on percentage cover of the most abundant
taxa identified significant effects associated with
changes in number, identity and abundance of HFSs.
The effects due to changes in number of manipulated
HFSs were revealed by the significant Cover × PCM vs.
PC/PM interaction for red filamentous algae, Laurencia
spp. and thin tubular sheet-like algae (Table 2, Fig. 2).
Red filamentous algae were more abundant in PCM

plots compared to PC/PM plots when the cover of HFSs
was reduced from 60 to 50%. In contrast, PC/PM plots
had more filamentous algae than PCM plots when the
cover of HFSs was reduced to 40% (Fig. 2). This inter-
action reflected the positive effect that a reduction in
cover of Cystoseira compressa to 10%, but not to 20%,
had on filamentous algae, as also suggested by a qua-
dratic trend with an estimated coefficient (hereafter E)
of 17.82 (SE = 9.97, p < 0.1) associated with the reduc-
tion of the brown alga. On the contrary, there was a
significant non-linear effect of removing mussels while
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Fig. 1. Cystoseira compressa (open bars), Mytilus galloprovin-
cialis (filled bars). Mean percentage cover over the study
period, for each level of experimental density (there were n =
12 replicate plots for 30%, n = 6 for 20 and 0% and n = 3 repli-
cates for all other experimental levels, averaged over 7 sam-
pling dates over the course of the study; error bars are ±1 SE)
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holding C. compressa constant (quadratic contrast: E =
9.392, SE = 3.773, p < 0.05), due to a decline in red fil-
amentous algae at intermediate levels of cover of the
invertebrate. These identitied effects were also evi-
denced by the significant PC versus PM contrast
(Table 2).

The same patterns just described for red filamentous
algae were also observed for Laurencia spp. (Fig. 2,
Table 2). In this case, however, there was a positive lin-
ear effect of removing Cystoseira compressa on the
response variable (linear contrast: E = 14.80, SE = 7.03,
p < 0.05). In addition, Laurencia spp. were generally
more abundant in manipulated compared to control
plots, as indicated by the significant UP versus Treat-
ments contrast (Table 2).

The significant Cover × PCM versus PC/PM interaction
observed for thin tubular sheet-like algae reflected the

negative effect of reducing to 10% either Cystoseira
compressa or Mytilus galloprovincialis compared to
values for plots in which the 2 HFSs were manipulated
simultaneously (patterns at 40% in Fig. 2), a trend that
was reversed when the cover of either one or the other
HFS was reduced to 20% (patterns at 50% in Fig. 2). In
this case the removal of C. compressa resulted in a
larger abundance of thin tubular sheet-like algae com-
pared to that in plots where both HFSs species were
manipulated or where only M. galloprovincialis was
removed. This was evidence of an identity effect that
was also present when the cover of HFSs was reduced
to 30%, as indicated by the significant TC versus TM

contrast in Table 2.
A main significant effect of changes in number of

manipulated HFSs (PCM vs. PC/PM) was observed for
Patella ulyssiponensis/caerula (Table 2), with an
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Red filamentous Laurencia spp. Thin tubular Articulated Encrusting
algae sheet-like algae corallines corallines

E SE E SE E SE E SE E SE

Intercept 7.810*** 0.58 3.823*** 0.32 9.140*** 0.04 12.966*** 1.49 16.988*** 1.50 
UP vs. Treatments –0.206 0.18 –0.407*** 0.11 0.596 0.83 –0.852 0.50 –1.512* 0.71
TCM vs. Other treatments –0.170 0.59 –0.539* 0.23 0.426 0.63 1.781 1.63 0.569 1.12

At cover of 40–50%:
Cover 0.183 0.74 –0.618 0.58 –1.618 0.91 –1.062 1.52 1.875 2.12
PCM vs. PC/PM 0.338 0.47 0.220 0.36 0.419 0.54 –0.392 0.98 –0.892 1.51
PC vs. PM 2.753** 1.00 1.904* 0.79 1.700 1.27 1.572 2.01 –4.485 2.59
Cover × PCM vs. PC/PM 1.463** 0.47 0.999** 0.36 –1.390* 0.54 0.604 0.98 –0.303 1.51
Cover × PC vs. PM –1.321 1.00 –0.588* 0.79 0.405 1.27 –0.010 2.01 0.393 2.59

At cover of 30%:
PCM vs. TC/TM 0.677 0.67 –0.350 0.38 –0.849 0.70 0.322 1.12 1.064 2.61
TC vs. TM –0.451 1.03 0.004 1.08 3.946** 1.51 –3.290* 1.31 4.513 3.74

Correlation parameter –0.09 0.07 0.29 0.14 0.25 0.09 0.05 0.08 0.69 0.05
Scale parameter 76.93 12.19 19.72 5.23 60.61 7.89 115.11 21.06 178.99 27.37

Brown encrusting Vermetus Patella ulyssiponensis/ Taxa
algae triqueter caerulea

E SE E SE E SE E SE

Intercept 2.259*** 0.40 5.175*** 0.54 2.910*** 0.36 2.468 0.02
UP vs. Treatments –0.270 0.16 0.019 0.36 –0.298 0.16 –0.013 0.01
TCM vs. Other treatments 0.848 0.47 1.062** 0.41 –0.077 0.28 –0.005 0.01 

At cover of 40–50%:
Cover 0.180 0.19 –0.873 0.53 0.507 0.52 0.006 0.02
PCM vs. PC/PM 0.090 0.14 0.082 0.41 –0.772** 0.28 –0.000 0.01
PC vs. PM –0.350 0.23 1.862** 0.59 –0.957 0.76 0.030 0.03
Cover × PCM vs. PC/PM –0.195 0.14 –0.046 0.41 –0.404 0.28 0.000 0.01
Cover × PC vs. PM –0.350 0.23 –0.087 0.59 –0.004 0.76 –0.010 0.03

At cover of 30%:
PCM vs. TC/TM 0.213 0.15 0.178 0.65 –0.133 0.47 0.019 0.02 
TC vs. TM –0.982* 0.42 –1.766** 0.54 1.008 1.02 0.046 0.05 

Correlation parameter 0.08 0.09 0.24 0.08 0.62 0.05 0.11 0.06
Scale parameter 7.93 4.21 38.53 6.69 12.39 2.98 0.64 0.06

Table 2. Analyses of data using population-averaged generalized estimating equations (PA-GEEs). E: estimated coefficient; SE: 
standard error; *: p < 0.05; **: p < 0.01; ***: p < 0.001. Number of data points for each treatment = 21
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increase in number of limpets especially when only
mussels were reduced to 10 and 20% (Fig. 3).

The identity effect described for thin tubular sheet-
like algae also occurred for articulated coralline
algae, but in the opposite direction. In this case, there
was a significant reduction in algal cover in plots
cleared of Cystoseira compressa compared to plots
where mussels were totally removed (Fig. 2 and TC

vs. TM contrast in Table 2). Similar negative effects
due to the removal of C. compressa were observed on
brown encrusting algae (Fig. 2) and the invertebrate
Vermetus triqueter (Fig. 3). In both cases there was a
significant TC versus TM contrast (Table 2). The
importance of an identity effect was also indicated for
the invertebrate by the significant PC versus PM con-
trast (Table 2), i.e. when the cover of HFSs was
reduced to 40–50% (Fig. 3). In this case, however, it
was the removal of Mytilus galloprovincialis that de-
pressed the cover of V. triqueter, rather than the
removal of C. compressa as observed for the TC ver-
sus TM contrast. When examined across the full range
of experimental densities, the effects of mussels was
strongly non-linear, with the largest effect observed
at the intermediate cover of 40% (quadratic contrast:
E = 15.167, SE = 4.964, p < 0.01).

Encrusting coralline algae were more abundant in
manipulated than in control plots (UP vs. Treatments
contrast; Table 2); in particular, there was a positive
linear effect of removing Cystoseira compressa on
encrusting coralline algae (linear contrast: E = 30.0,
SE = 15.1, p < 0.05) (Fig. 2).

Finally, there was a slight, but significant non-linear
positive effect of removing Cystoseira compressa on
mean number of taxa, with larger values of the
response variable at 40 and 50% cover of the brown
alga (quadratic contrast: E = –0.47, SE = 0.22, p < 0.05)
(Fig. 3).

DISCUSSION

The present study pointed out how the simultaneous
loss of 2 HFSs can result in complex interactive effects
on associated assemblages and emphasized the impor-
tance of examining non-random loss of species and the
need to control for density-dependent effects in biodi-
versity experiments.

Past studies conducted in terrestrial and aquatic sys-
tems highlighted variable effects of biodiversity on the
biomass, productivity and structure of assemblages.

44

Red filamentous algae

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

Laurencia spp.

M
e
a
n

 %
 c

o
ve

r 
(+

1
S

E
) 

Thin tubular sheet-like algae

Articulated corallines Brown encrusting algae

60 50 40 30 0 60 50 40 30 0

60 50 40 30 0

60 50 40 30 0

60 50 40 30 0 60 50 40 30 0

Encrusting corallines

Total percentage cover of habitat-forming species

PCM

PC

PM

TC

TM

Fig. 2. Mean percentage cover of different macroalgae over the study period for each treatment (n = 3 replicate plots averaged
over 7 sampling dates; error bars are ±1 SE). Percentage values on the abscissa refer to the cover of the habitat-forming species
Cystoseira compressa and Mytilus galloprovincialis. Treatments included in linear and quadratic contrasts were the unmanipu-
lated plots (filled bars) and those coded with either subscript C or M (i.e. excluding PCM and the 0% treatment), depending on
whether the contrasts examined the effect of removing C. compressa or M. galloprovincialis. PC: partial removal of C. compressa;
PM: partial removal of M. galloprovincialis; PCM: partial removal of both C. compressa and M. galloprovincialis; TC: total removal 

of C. compressa; TM: total removal of M. galloprovincialis



Maggi et al.: Biodiversity of habitat-forming species

Most terrestrial studies supported the conclusion that
the net effect of diversity on biomass resulted from
both species-specific selection effects and complemen-
tarity (Hooper et al. 2005, Cardinale et al. 2006).
Recent studies on aquatic biodiversity, however, have
documented strong responses to changes in species
composition among experimental treatments, empha-
sizing the importance of identity effects (e.g. Bruno et
al. 2005, O’Connor & Crowe 2005, Moore & Fair-
weather 2006, Vaughn et al. 2007). Our results have
shown how the effect of changing the identity and
number of HFSs may vary as a function of the abun-
dance of manipulated species. Abundance, identity
and richness effects could be disentangled in the pre-
sent study because we explicitly manipulated the
cover of HFSs as a factor in the experiment.

For several of the response variables analysed, both
identity and richness effects (limited to 2 HFSs in the
present study) occurred in interaction with the cover of
manipulated species. In general, the effect that the
removal of a particular HFS had on other organisms
changed in magnitude and direction as a function of
the relative abundance of the manipulated species. For
example, a slight decrease in the cover of HFSs (from
60 to 50%) led to an increase in abundance of some
algae (red filamentous algae and the coarsely
branched Laurencia spp.) and a decrease in others
(thin tubular sheet-like algae), but only when Cysto-
seira compressa and Mytilus galloprovincialis were
both removed (treatment PCM). At lower abundances of
manipulated species (40%), however, positive effects
were observed only in treatments where C. compressa
was removed and mussels were left intact. Identity
effects still occurred when the cover of HFSs was

reduced to 30%. In this case, however, the complete
removal of mussels was important, causing a reduction
in cover of thin tubular sheet-like algae and enhancing
the abundance of articulated coralline and brown
encrusting algae. Identity effects also influenced the
percentage cover of the encrusting invertebrate Ver-
metus triqueter and occurred at different abundances
of HFSs (50, 40 and 30%).

Our results are in agreement with the outcomes of
past studies that have documented both positive and
negative responses of species to the removal of either
canopy-algae or mussels (Dayton 1975, Kanter 1978,
Paine & Suchanek 1983, Bertness et al. 1999,
Benedetti-Cecchi et al. 2001, Bulleri et al. 2002, Chap-
man et al. 2005). By manipulating Cystoseira com-
pressa and Mytilus galloprovincialis simultaneously,
however, we generated complex responses in associ-
ated assemblages that likely involved a wide range of
direct and indirect effects (Wootton 1994, and refer-
ences therein). Importantly, in our study, these effects
were largely a function of the abundance at which spe-
cies interacted, highlighting the potential problems
that might result from employing substitutive or addi-
tive designs that do not control for density-dependent
effects in biodiversity experiments (Benedetti-Cecchi
2004, 2006).

The notion that identity effects are important deter-
minants of ecological processes, as emphasized in bio-
diversity–ecosystem functioning studies, reiterates
what ecologists and biologists have discovered in sev-
eral decades of research on species life histories. Con-
sideration of the morphology and life history of certain
species is, therefore, important in order to understand
how the removal of these species may have affected
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other organisms. Mussel shells, for example, offer a
suitable substratum for the colonization of many algae
and invertebrates, but they can also prevent coloniza-
tion of primary space by forming closed beds. Simi-
larly, Cystoseira compressa had short fronds, so the
understory environment was limited compared to that
provided by other congeneric species with larger
fronds (Benedetti-Cecchi et al. 2001, Bulleri et al.
2002). Hence, negative effects due to pre-emption of
the substratum may have outweighed the positive
effects due to the provision of an understory environ-
ment. These effects were particularly evident for Lau-
rencia spp. and encrusting coralline algae, the cover of
which increased linearly with a decrease in abundance
of C. compressa, as revealed by significant linear con-
trasts in the analyses.

While the effects of mussels in competitively exclud-
ing other invertebrates or macroalgae are well docu-
mented (Paine 1966, Dayton 1971, Menge 1976, Paine
1984, Enderlein & Wahl 2004, Miyamoto & Noda 2004),
much less is known about how small-canopy algae like
Cystoseira compressa interact with other species. In
terrestrial habitats, the balance of facilitation and com-
petition is known to vary with the life stages and phys-
iologies of interacting species and with indirect inter-
actions involving other organisms (Walker & Vitousek
1991, Chapin et al. 1994, Miller 1994, Callaway et al.
1996). In the aquatic realm, switches from positive to
negative effects have been observed along environ-
mental gradients of stress (Bruno et al. 2003), and with
different canopy- forming species, along vertical gra-
dients (Hawkins 1983, Jenkins et al. 1999). In our
analyses, switches in the direction of the effects of
HFSs on other organisms were revealed clearly by the
quadratic contrasts. These contrasts examined the
effect of reducing the cover of one HFS across a wide
range of experimental abundances, while holding the
cover of another HFS at the nominal value of 30%.
Non-linear effects were common, with mussels main-
taining high cover of filamentous algae and Vermetus
sp. when unmanipulated (30% cover) or when totally
eradicated, but not when they were present at inter-
mediate abundances. A similar relationship occurred
between C. compressa and filamentous algae. Canopy
cover was also non-linearly related to the mean num-
ber of taxa in quadrats, with the largest diversity
observed under intermediate values of canopy abun-
dance. These non-linear interactions indicated that a
small change in cover was sufficient to trigger a shift
from positive to negative (or negative to positive)
effects of the HFSs on other organisms, highlighting
the interplay between resource availability and facili-
tation in these assemblages (Bertness & Leonard 1997,
Bertness et al. 1999, Menge 2000, Bulleri et al. 2008).

Changes in cover or presence/absence of HFSs can

potentially influence both primary producers and her-
bivores. In the investigated system, the most important
grazers were limpets. These herbivores were rarely
observed on mussel shells, whilst they were common
in natural gaps within the canopy of Cystoseira com-
pressa (authors’ pers. obs.), suggesting a strong iden-
tity effect of HFSs on grazers. Our results, in contrast,
highlighted a significant effect of the number of
manipulated HFSs on the abundance of limpets, with
treatments in which only one HFS was removed hav-
ing larger densities of grazers compared to treatments
in which both HFSs were manipulated. A possible
explanation is that when present in uneven abun-
dances (especially with the prevalence of the canopy
alga), mussels and C. compressa would improve the
quality of the habitat (in terms of food and/or in terms
of substratum attachment).

Recently, some authors have pointed out the impor-
tance of considering the effects of biodiversity on
different aspects of assemblage structure and ecosys-
tem functioning (Hector & Bagchi 2007). This is partic-
ularly applicable to multilayered assemblages of rocky
shores. A number of experimental studies have re-
vealed strong responses of mobile macrofauna, includ-
ing amphipods, isopods and polychaetes, to the
removal of canopy algae or mussels (Commito &
Dankers 2001, Thrush et al. 2001, Thiel & Ullrich 2002,
Goodsell & Connell 2005, Schmidt & Scheibling 2007).
Examining the effects of HFSs on these assemblages
could, therefore, provide different answers to those
obtained by focusing on sessile macro-organisms, the
customary approach in this type of study. Our results
indicated only a slight effect of HFSs (due to the
removal of Cystoseira compressa) on diversity, mea-
sured at a coarse level of taxonomic resolution as the
total number of taxa; a different outcome might have
emerged if we had focused on mobile macrofauna,
which is an important component of the overall diver-
sity of these assemblages.

Recent biodiversity experiments in marine environ-
ments have added important insights to general de-
bate on the role of biodiversity in ecosystem function-
ing. Here, the relatively small size and fast growing
rates of organisms inhabiting assemblages dominated
by the mussel Mytilus galloprovincialis and the canopy
alga Cystoseira compressa enabled us to conduct a
complex removal experiment to examine the effects
associated with changes in number, identity and abun-
dance of HFSs. Our findings highlighted the impor-
tance of density-dependent processes in modulating
the effects due to the changes in number and identity
of HFSs. Because density-dependent processes are
pervasive in nature (Barkai & McQuaid 1988, Robinson
& Edgemon 1988, Drake 1991, Rand 2003, Griffin et
al. 2008), it is desirable that future biodiversity experi-
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ments explicitly consider density effects with the ap-
propriate designs (He et al. 2005, Benedetti-Cecchi
2004, O’Connor & Crowe 2005) to foster progress in
understanding of biodiversity–ecosystem functioning
relationships.
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