
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 380: 129–135, 2009
doi: 10.3354/meps07954

Published April 7

INTRODUCTION

Plankton patchiness is a well-documented phenome-
non and is of great importance for biological productiv-
ity, nutrient cycling, and food web dynamics in plank-
tonic ecosystems (Mackas et al. 1985, Pinel-Alloul
1995). The use of advanced optical and acoustic sen-
sors have made it possible to identify micro-scale
(<1 m) and fine-scale (1 to 10 m) vertical plankton
patches (Davis et al. 1992, Holliday et al. 1998, Cowles
et al. 1998) that may extend horizontally for several km
(Bjørnsen & Nielsen 1991). These plankton features,
sometimes referred to as thin layers, occur as coherent
and well-defined layers in the water column with dis-
tinct biological, chemical, optical, and physical proper-
ties (Cowles et al. 1998, Hanson & Donaghay 1998).
Thin layers may consist of high concentrations of
phytoplankton, zooplankton, bacteria, virus, or marine

snow (Johnson et al. 1995, Alldredge et al. 2002,
McManus et al. 2003), and have been detected in vari-
ous marine habitats, such as estuaries (Donaghay et al.
1992), fjords (McManus et al. 2003), river mouths
(Gentien et al. 1995), and open oceans (Bjørnsen &
Nielsen 1991).

Plankton patches are driven by physical and biologi-
cal processes (Mackas et al. 1985, Folt & Burns 1999),
and it has been suggested that physical forces domi-
nate the formation of large-scale plankton patches
while biotic processes become more important at
smaller spatial scales (Pinel-Alloul 1995). Highly pro-
ductive fine-scale layers are typically found in associa-
tion with physical and chemical discontinuities (Dek-
shenieks et al. 2001, Gallager et al. 2004), and may
persist for several hours to a few days (McManus et al.
2003). The formation of fine-scale structures may be
attributed to several physical processes, such as water
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column stratification, vertical shear, shearing by inter-
nal waves, and breakdown of thicker layers into thin
layers (Franks 1995, McManus et al. 2005). Biological
mechanisms that may influence the development of
zooplankton layers include diel vertical migration
(DVM), predator avoidance behaviour, locating food
patches, and mate search (Folt & Burns 1999).

Video plankton recorder (VPR) systems enable clas-
sification and quantification of plankton, and are use-
ful in resolving distributional structures of plankton at
a broad range of spatial scales (Davis et al. 1992, Ben-
field et al. 1996, Norrbin et al. 1996). The VPR is a non-
invasive sampling system, and delicate organisms like
gelatinous zooplankton, egg-bearing copepods, and
colonial plankton can be surveyed and quantified
accurately in their natural orientations without being
damaged. Abundance estimates from VPR data of non-
fragile zooplankton such as copepods have been
shown to be comparable to estimates from net sam-
pling (Benfield et al. 1996). In contrast, fragile plankton
such as cnidarians and ctenophores can be underesti-
mated significantly by net samplers compared to opti-
cal methods (Remsen et al. 2004). The main goals of
the present study were to (1) describe the existence of
fine-scale vertical layers of zooplankton populations in
nearshore areas using a high resolution sampling
scheme, and (2) determine if fine-scale plankton layers
were associated with patterns of physical parameters,
such as density discontinuities. To resolve the relative
spatial distributions and abundances of different zoo-
plankton groups, we used a digital autonomous VPR.

MATERIALS AND METHODS

The present study was conducted on 19 June 2006 in
Nordbotn (Håkøybotn), a semi-enclosed bay 10 km
southwest of Tromsø, northern Norway (69° 40’ N,
18° 48’ E). Nordbotn is approximately 3 km long and
2 km wide, and is connected with the surrounding
waters through 2 sounds with sill depths of 4 and 12 m,
respectively (Fig. 1). The maximum depth of the bay is
55 m, and the average depth is ca. 30 m. Model simu-
lations have revealed that water exchange in Nord-
botn is particularly low compared to the adjacent fjords
and sounds, which are more influenced by tidal cur-
rents (Audunson & Næser 1975).

A digital autonomous VPR (Seascan) was used to
obtain depth distribution samples of zooplankton in a
bay-wide grid (2 km2) consisting of 44 sampling sta-
tions distributed between 5 transects (Fig. 1). Sampling
started 08:30 h and finished around 13:00 h. At each
station we sampled a vertical profile of the water col-
umn by lowering the VPR at an average speed (±SD) of
0.41 ± 0.03 m s–1 from the surface and down to 5 m

above the bottom. Only down-casts were used because
of the disturbance of the water by wires and tow body
during up-tows. The VPR was equipped with a 1.45
megapixel digital camera (Hitachi KP-F120CL black
and white), sampling ca. 20 image frames s–1. We used
a camera setting with a field of view of 1.25 × 1.7 cm, a
focal depth of 5.49 cm, and a calibrated image volume
of 11.6 ml. Illumination was provided by a Xenon
strobe (10 W, 1 J per flash) channelled through a 0.2 m
diameter ring illuminator, from which a converging
cone of light was generated in front of the camera to
achieve a dark field geometry illumination of the tar-
gets. The strobe light pulse duration was 3 µs and was
synchronized with the camera shutter. Power was sup-
plied by a 24 V NiMH battery.

The VPR was supplied with environmental sensors: a
Wetlabs ECO Puck fluorometer/turbidity sensor and
a Seabird Fastcat CTD sensor (SBE49) operating at
16 Hz. Video image frames were recorded simultane-
ously with hydrographic and fluorescence data.
Images and hydrographic data were recorded by the
internal PC104 processor, and the compressed files
were stored on a removable hard drive. This hard drive
was disconnected from the VPR after deployment, and
the data files were downloaded to a computer for de-
compression and further processing of data.

Plankton images were extracted as regions of inter-
est (ROIs) using the Autodeck image analysis software
(Seascan) and saved to the computer disc as TIFF files.
Taxonomic identification of plankton was done manu-
ally by examining each ROI obtained from down-cast
profiles. Vertical movement of the ship may cause vari-
able speed of the VPR through the water column.
Duplicate ROIs may appear at speeds below ~0.3 m s–1;
these were easy to spot and remove manually. Envi-
ronmental data were obtained using Visual Plankton
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software (Woods Hole Oceanographic Institution,
www.whoi.edu/page.do?pid=11348). For each vertical
profile, the abundance of different taxa was presented
as average water column densities and depth interval
concentrations. Identified plankton images were re-
lated to environmental data using a timestamp. Post-
processing of data was done using specially developed
Matlab routines. The stability of the water column was
calculated using the buoyancy frequency N 2 =
–(g/ρ)(δρ/δz), where g = gravitational acceleration
(9.8 m s–2), ρ = density, and z = depth. The buoyancy
frequency (rad s–1)2 specifies the strength of the den-
sity gradient.

RESULTS

Temperature, salinity, density and buoyancy fre-
quency, and fluorescence data were averaged over all
sampling stations along 1 m depth bins (Fig. 2a–c).
Temperature near the surface was ca. 8°C, decreasing
to 4.7°C below 25 m. Salinity ranged from 31.5 psu at
the surface to 33.5 psu below 20 m. The structure of the
water column in Nordbotn was characterized by the
existence of a density gradient formed between 15 and
18 m depth, corresponding to a seasonal temperature
and salinity gradient. Across this transition region, the
increase in temperature was on average 1°C, salinity
0.4 psu, and density 0.4 σt. The buoyancy frequency
(N 2) reflected the increase in density around 17 m,
which was followed by an average N 2 of 0.0015 (rad
s–1)2. The fluorescence maximum occurred between 10

and 15 m depth, with an average peak around 13 m
coincident with relatively moderate buoyancy fre-
quencies of 0.0001 to 0.0005 (rad s–1)2.

The major zooplankton groups identified were
hydromedusae (Rathkea octopunctata and Obelia sp.),
copepods (Acartia longiremis, Pseudocalanus acuspes,
Microsetella norvegica, and Oithona sp.), ctenophores
(Pleurobrachia pileus and Bolinopsis infundibulum),
and appendicularians (Fritillaria borealis and Oiko-
pleura sp.). Of the total hydromedusa observations, R.
octopunctata constituted 87% and Obelia sp. 13%.

The bathygraphy of Nordbotn varied considerably
along the sampling path, and sampling depths fluctu-
ated from 16 to 50 m. The majority of hydromedusae
(79%) were strongly aggregated from 15 to 20 m
depth, and a distinctive peak occurred at 18 m depth
(Fig. 2d). Copepods were distributed throughout most
of the water column and observations peaked at 9, 11,
and 21 m depth (Fig. 2d). Ctenophores showed peaks
at 5 (20%) and 7 m depth (22%), and appendicularians
around 14 m depth (23%). The fraction of the different
zooplankton groups sampled below 25 m was on aver-
age 2% for hydromedusae, 15% for copepods, 4% for
appendicularians, and none for ctenophores.

Buoyancy frequency in the transition layer (Fig. 3b)
peaked at 17 to 18 m depth at Stns 13 to 15 (Transect
3), 29 to 31 (Transect 4), and 36 to 39 (Transect 5).
Peaks of fluorescence (Fig. 3c) were observed at 13.5
(Transect 3), 11 (Transect 4), and 10 m (Transect 5). The
highest fluorescence value was recorded at Transect 5
(4.39 µg chl a l–1). Hydromedusae were observed as a
consistent layer between 15 and 20 m depth along the
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stations (Fig. 4a). The average medusa abundance
along this depth interval from Stns 1 to 44 was approx-
imately 2500 ± 1080 ind. m–3. Peaks of high hydrome-
dusae abundances (6000 to 10 000 ind. m–3) were cal-
culated for 11 profiles, and these narrow regions of
dramatic abundances were associated with an N 2 of
0.0006 to 0.0025 (rad s–1)2. Dense aggregations of cope-
pods were found above and below the hydromedusae
layer (Fig. 4b), showing concentrations of >7000 ind.
m–3 at Stn 1 (Transect 1) at 19 m depth, and Stns 30 and
35 (Transect 4) at 8 and 21 m depth, respectively. Aver-
age copepod abundance along the depth interval of
the hydromedusae layer was 920 ± 712 ind. m–3.

The hydromedusae layer corresponded with moder-
ate to high buoyancy frequencies and 95% of the
medusae were located within N 2 > 0.1 × 10–3 (rad s–1)2

(Fig. 5). Average water column abundance of hydrom-

edusae for all 44 profiles was 581 ± 234 ind. m–3

(Rathkea octopunctata 511 ± 246 ind. m–3 and Obelia
sp. 70 ± 69 ind. m–3), copepods 944 ± 368 ind. m–3,
ctenophores 70 ± 68 ind. m–3, and appendicularians
40 ± 40 ind. m–3. The deepest profiles were found in
the innermost transect (Transect 1), which had an aver-
age depth of 37 ± 10 m. Total water column abundance
of zooplankton was averaged over this transect: for
hydromedusae it measured 26 300 ± 5800 and for cope-
pods 38 480 ± 15 800 ind. m–2.
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The images of different zooplankton categories were
distinctive and some individuals could be identified to
species level. Images showed Obelia sp. with clearly
defined gonads and Rathkea octopunctata with the
characteristic bell shape and tentacles. Several indi-
viduals of R. octopunctata had manubrial buds (Fig. 6).

DISCUSSION

The present study revealed unusually high abun-
dances of the small hydromedusae Rathkea octopunc-
tata and Obelia sp. throughout the entire sampling
area. These occurred in a relatively uniform, fine-scale
layer, with peak abundances centered within density
interfaces of high buoyancy frequency, indicating
regions of density stratification and possibly low mix-
ing rates. Many zooplankton taxa, including gelati-
nous zooplankton, show a general tendency to aggre-
gate in association with temperature and salinity
discontinuities (Arai 1992, Graham et al. 2001), or
remain in convergent structures such as Langmuir
cells (Hamner & Schneider 1986). At rest in surface
waters, most hydromedusae species are negatively
buoyant and sink slowly, and in order to remain at a
specific depth they need to attain neutral buoyancy
(Mills 1984). Hydromedusae are slow osmoconformers,
and when they encounter abrupt salinity differences
they may be constrained within these interfaces for
hours until osmotic adjustment has occurred (Mills
1984, Mills & Vogt 1984). Buoyancy regulation in
medusae can also be achieved by swimming (Arai
1973, 1976), actively excluding sulphate ions from the
mesogloea in order to descend (Mackay 1969), or accu-
mulating lipids in the gastrovascular tract to provide
lift (Larson & Harbison 1989).

In Nordbotn, salinity and temperature discontinu-
ities were linked, which is common in fjords and bays.
Because both of these physical characteristics deter-

mine the density of the water column, it is difficult to
separate their individual effects on hydromedusae
aggregation. However, Arai (1976) demonstrated ex-
perimentally that ctenophores Pleurobrachia pileus
and hydromedusae Sarsia tubulosa aggregated in tem-
perature discontinuity layers, and when these organ-
isms were exposed to coincident transitions of temper-
ature and salinity, the organisms aggregated more
strongly. In semi-enclosed basins, the water column
above the sill depth is governed by advection, while
below the sill depth there is a stable body of water
(Farmer & Freeland 1983). The hydromedusae in
Nordbotn may have aggregated below the maximum
sill depth in response to currents or turbulence, which
could have prevented them from being transported out
of the bay by tidally induced currents (selective tidal
transport, Forward & Tankersley 2001). Kopacz (1994)
suggested that the medusa of Rathkea octopunctata
and other small hydromedusae achieved retention in a
tidal channel by ascending to the surface at flood tides
and descending to the bottom at ebb tides. In the pre-
sent study, sampling started 1 h after high tide and fin-
ished close to the following low tide. During that
period, no major changes in the depth distribution of
the hydromedusae were observed between the pro-
files. However, due to the relatively short sampling
period in the present study, we cannot exclude the
existence of tidally induced migration.

Depth distributions of hydromedusae in Nordbotn
showed extreme numbers within several vertical pro-
files. Other investigations using net sampling have
demonstrated high water column abundances of
Rathkea octopunctata (Blanner 1982, Toyokawa & Ter-
azaki 1994). Blanner (1982) calculated a maximum
abundance of 980 ind. m–3 for this species during
spring in Limfjorden, Denmark, while Toyokawa &
Terazaki (1994) found 590 ind. m–3 in Tokyo Bay.
Abundance estimates based on VPR data have demon-
strated high densities of small hydromedusae (Norrbin
et al. 1996, Broughton & Lough 2006). Broughton &
Lough (2006) described depth distributions of Obelia
sp. along the southern flank of Georges Bank, and cal-
culated peaks of abundance of >12 000 ind. m–3 around
temperature and salinity discontinuities. The abun-
dance of Pleurobrachia pileus in the present study
(37 ind. m–3) is comparable to Wang et al. (1995), who
reported an average spring net abundance of 32 ind.
m–3 for P. pileus from the Seine estuary in France.

How can the extraordinary bloom of Rathkea octo-
punctata in Nordbotn be explained? The life cycle of
this species consists of a pelagic medusa stage and a
benthic polyp stage. The medusae multiply asexually
by budding off new medusae from the manubrium
(Bouillon and Werner 1965, Boero et al. 2002), followed
by a period of gamete formation and later sexual
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Fig. 6. Rathkea octopunctata and Obelia sp. R. octopunctata
with manubrium bud (left) and mature Obelia sp. (right)
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reproduction (Werner 1958). Manubrial budding may
lead to several generations of medusae, and conse-
quently large populations can be produced rapidly
(Bouillon et al. 2006). The present study revealed many
images of R. octopunctata with manubrial buds pre-
sent, suggesting asexual propagation of medusae.
High abundance of hydromedusae often have a sea-
sonal occurrence (Hosia & Båmstedt 2007). In Nord-
botn, medusae blooms of R. octopunctata and Obelia
sp. take place from late spring to early fall, while these
species are absent from the water column outside this
period (H. P. Jacobsen & M. F. Norrbin  unpubl. data),
possibly existing as benthic hydroids. Numbers of
active and dormant benthic hydroid colonies and the
amount of reproductive structures producing medusae,
combined with favourable environmental conditions,
could play a crucial role in the activation of hydrome-
dusae blooms (Boero et al. 2008). The quantity of pri-
mary medusae liberated from benthic stages to the
water column may therefore be important for the size
of medusae blooms. Intense blooms of hydromedusae
are usually irregular events (Purcell et al. 2001). This
may be due to life cycle adjustments, where hydroid
colonies regress to resting stages during seasons of
adverse conditions and become active again when
favourable conditions return (Gili & Hughes 1995,
Boero et al. 2008).

Aggregation of hydromedusae in or around disconti-
nuities may allow predation on several food organisms
often concentrated there. More than 95% of the
hydromedusae observed in the present study had
widely extended tentacles, suggesting a typical fishing
behaviour that may have been prompted by salinity
changes, as demonstrated experimentally in Sarsia
tubulosa (Arai 1973, 1976). Rathkea octopunctata is
known to feed on several stages of copepods, including
genera such as Acartia, Pseudocalanus, and Oithona
(Zelickman et al. 1969, Matsakis & Conover 1991,
Pagès et al. 1996). Matsakis & Conover (1991) showed
that high densities of hydromedusae, dominated by R.
octopunctata, can affect copepod populations consid-
erably and may have the potential to regulate copepod
dynamics. The vertical distribution of copepods in
Nordbotn revealed peaks above and below the
hydromedusae layer, and it is possible that the
medusae may have caused extensive reduction of the
copepod population size. However, from our data it is
not possible to determine if the hydromedusae had
been feeding on copepods, or whether copepods were
actively avoiding the medusae layer.

Future work in Nordbotn using VPR sampling meth-
ods will include investigation of seasonal development
and vertical distributions of hydromedusae and other
zooplankton. Conclusions regarding the impact of
hydromedusae on other zooplankton require stomach

analysis of the medusae, and it is important also to find
potential hydroid colonies, which may provide a better
understanding of the benthic role in the formation of
hydromedusae blooms.
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