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INTRODUCTION

Predation is an important structuring agent in ma-
rine communities, and its intensity is strongly depen-
dent on the presence of refuges, and hence spatial
complexity. In seagrass meadows there are multiple
elements of plant morphology or architecture that con-
tribute to habitat structural characteristics, from the
simplest (e.g. leaf surface area) to the most complex
(e.g. number and size of blades, branching pattern,
presence of a bare root-rhizome layer). All of these ele-
ments can provide refuge for a variety of organisms
(e.g. Orth et al. 1984, Heck & Wilson 1986). In fact, sea-

grass habitat serves as refuge from predation for vari-
ous prey fish and invertebrate species (Savino & Stein
1982, Orth et al. 1984, Heck et al. 1989, Orth 1992,
Harris et al. 2004). Additionally, vegetation is con-
stantly affected by multiple biotic and abiotic pro-
cesses (i.e. seasonal leaf loss, leaf loss by storms or cur-
rents, grazing), which can potentially modify habitat
structure and, consequently, influence predatory inter-
actions (Savino & Stein 1982).

Sea urchins are known to play an important role in
the control of submersed aquatic vegetation (Lawrence
1975, Harrold & Pearse 1987, Dayton et al. 1992,
Shears & Babcock 2002), and variation in their abun-
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dance and population structure can significantly alter
the structure and function of benthic communities. In
seagrass meadows, sea urchin densities can vary
greatly, resulting in important consequences for her-
bivory rates (Prado 2007); sea urchin population out-
bursts can result in major overgrazing events and have
been implicated in decline or local extinction of sea-
grasses (e.g. Camp et al. 1973, Heck & Valentine 1995,
Rose et al. 1999). The mechanisms governing such
population outbursts in seagrass meadows are not
clearly understood, although they appear to be the
result of a combination of successful recruitment,
refuge availability and release from predation pres-
sure (Parker & Shulman 1986, Rose et al. 1999, Prado
2007).

The seagrass meadows of the Mediterranean Sea
are characterised by the high physical complexity of
the dominant species, Posidonia oceanica (L.) Delile,
which typically has dense leaf canopy (Heck & Orth
1980) and robust rhizomes coated with the remains of
old leaf sheaths. The net of interlacing rhizomes, roots
and sediment form a dense root-rhizome layer (Romero
et al. 1994) that can be either buried or partially
exposed. When exposed, its crevices can provide po-
tential refuges for prey species. Hence, in P. oceanica
meadows, in addition to leaf canopy, gaps and burrows
within the root-rhizome layer structure can be a poten-
tially important factor in the survival of prey. However,
the availability of these possible shelters often varies
according to the biological features of the meadow and
local environmental variables. Seagrass burial levels,
for instance, can vary depending on the hydrodynamic
regimes or sedimentation rates (Gacia et al. 1999), and
the root-rhizome layer structure may be completely
buried or exposed at different levels. In addition, shoot
density and leaf length can be controlled by abiotic
(e.g. hydrodynamic regimes, light conditions or water
turbidity; Den Hartog 1970) or biotic conditions (e.g.
herbivore activity; Heck & Valentine 2006). In par-
ticular, herbivory pressure in the Mediterranean ex-
hibits strong seasonal patterns, and can substantially
modify seagrass leaf length (Tomas et al. 2005), thus
altering refuge suitability of the seagrass canopy and
opening the possibility of complex interactions be-
tween herbivores.

Posidonia oceanica meadows are commonly inhab-
ited by the sea urchin Paracentrotus lividus (Lamarck),
the most important invertebrate herbivore in the Medi-
terranean (Boudouresque & Verlaque 2001). This sea
urchin has been reported to consume up to an average
of 17% of the annual leaf production, thus playing a
central role in the trophic dynamics of the system;
however, consumption withstands considerable spatial
variation (from ca. 6 to 36% of the annual leaf produc-
tion; Prado et al. 2007). Juvenile sea urchins seem to be

present only in those meadows where the root-rhizome
layer is unburied (Tomas et al. 2004, Prado 2007),
which highlights the potential effect of this structure as
a refuge for juveniles. In contrast, young adults are too
large to hide within the root-rhizome layer (e.g. Tomas
et al. 2005), yet not large enough to deter predators
(Sala & Zabala 1996). In the present study we investi-
gated the relative refuge potential of different seagrass
structural features for the sea urchin P. lividus against
fish predation. We examined the role of the existence
of the root-rhizome layer in order to confirm previous
correlation results (Prado 2007), and the role of leaf
length to explore possible indirect interactions among
herbivores. We used a combination of field- and labo-
ratory-based manipulative experiments, manipulating
under controlled conditions these 2 features of sea-
grass habitat.

MATERIALS AND METHODS

The role of structural elements of Posidonia oceanica
meadows (i.e. leaf canopy and root-rhizome layer) as
refuges against predation for sea urchins was evalu-
ated in different experiments, according to the size of
the organisms involved. For small sea urchins (juve-
niles, 0.2 to 1.2 cm test diameter, TD) we tested the
effects of leaf canopy and the presence of the root-
rhizome layer on survival. For young adults (3 to 5 cm
TD), we only investigated the effects of leaf canopy, as
the crevices in the root-rhizome layer are too small to
allow young adult sea urchins to enter (Tomas et al.
2004). Predation experiments were conducted both in
the field and the laboratory. For young adults, experi-
ments were performed in a Marine Protected Area
(Medes Islands Marine Reserve, 42° 16’ N, 03° 13’ E)
where large predators (consumers of adult sea urchins)
are abundant (Hereu et al. 2005). Juvenile sea urchins
were too small to be successfully manipulated under
field conditions, and predation experiments on these
individuals were conducted in an aquarium, with a
high density of potential predators.

Predation on juveniles. Two experiments were con-
ducted with juvenile sea urchins within the aquaria
facilities of the Aquàrium de Barcelona. Sea urchins,
seagrass and sand were collected in February 2005
between 5 and 7 m depth off Blanes (NE Spain) using
SCUBA and immediately transported to the Aquàrium
for further sorting. Experimental units consisted of
open transparent plastic boxes (25 cm wide × 30 cm
long × 16 cm high) with thin net walls (2 × 2 mm mesh
size) in which different seagrass structures were con-
structed (see below and Fig. 1). A preliminary experi-
ment revealed that juveniles were not able to escape
from such experimental units.
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A number of seagrass shoots, including their respec-
tive rhizome and roots, similar to the natural density of
local shallow meadows (i.e. 400 to 500 shoot m–2) and
bearing, on average, 5.9 ± 0.7 leaves shoot–1 (Alcoverro
et al. 1995) were placed in each of the boxes and
anchored with cable ties. If necessary, sand was added
to completely cover the rhizomes in order to eliminate
crevices or other potential refuges. In the first experi-
ment, we evaluated the role of seagrass canopy in
decreasing fish predatory efficiency. To simulate dif-
ferent canopy conditions, leaves were cut as appropri-
ate, and 3 treatments, each with 3 replicate units
(boxes), were assembled: absence of leaves (0 cm),
short leaves (all leaves longer than 7 cm were cut to
7 cm length) and long leaves (all leaves longer than
20 cm were cut to 20 cm length). In all 3 treatments, the
rhizome layer was completely covered with sand
(Fig. 1a). In the second experiment, we combined 2
treatments of leaf canopy (long leaves vs. short leaves)
with 2 treatments of root-rhizome layer (presence vs.
absence) in which rhizome crevices were available or
filled with sand respectively (Fig. 1b). For each combi-
nation of treatments 3 replicates (independent experi-
mental units, i.e. boxes) were used.

All boxes were placed in the bottom of a large tank
(3500 l, 2 m diameter) with continuous seawater flow
and containing the main guild of fish species known to
prey on juvenile sea urchins (Boudouresque & Ver-
laque 2001). Specifically, the tank contained a total of
31 Coris julis (L.), Labridae; 7 Diplodus sargus (L.) and
7 D. vulgaris (Geofr.), Sparidae, which were starved for
1 wk prior to the start of the experiment. In addition, to
reduce potential behavioural artefacts, boxes with no
urchins were left inside the tank to allow acclimation of
fish. After 4 d, sea urchins (n = 15) were added to each
box and the experiment started. Three empty plastic

control boxes with sea urchins (n = 15) adhered to the
bottom (using 2-component Ivergor putty) were also
placed in the tank. These boxes allowed for the moni-
toring of predation when urchins were readily avail-
able to predators; these controls were used to deter-
mine the end-point of the experiments. After 15 h,
ca. 90% of individuals had been consumed in the con-
trols, and experimental boxes were closed with a fine
plastic mesh cover and removed from the tank; the
number of remaining individuals in each treatment
was then counted.

Predation on young adults. The protective effect of
seagrass canopy against fish predation for young
adults was evaluated in a shallow Posidonia oceanica
meadow (ca. 5 m depth) at the Medes Islands Marine
Reserve, where predators are very abundant and large
enough to prey on young adults (Garcia-Rubies &
Zabala 1990). In addition, the experiment was con-
ducted in summer (August 2005), when predators are
more active (Sala & Zabala 1996) and predatory poten-
tial is highest. We compared predation rates between
plots (in natural stands) with short leaves (cut to 7 cm)
and plots with long leaves (cut to 20 cm), and we also
built control plots where urchins were totally exposed;
the latter determined the end-point of the experiments
(Fig. 1c).

Plots were 180 × 180 cm in size, and 3 replicated
plots were used for each treatment and control. Sea-
grass treatments (i.e. short leaves and long leaves)
were marked with metal stakes and always carried out
in areas where rhizomes were covered by sand. Con-
trol plots were set on unvegetated patches within the
meadow, in which we placed a plastic mesh (2 cm pore
size, attached to the sand with stakes) to facilitate teth-
ering of urchins.

Sea urchins (3 to 5 cm TD) were collected from rocky
substrates near the study site using SCUBA. For each
experimental plot, 12 ind. were pierced through the
test with a hypodermic needle, threaded with mono-
filament line (50 cm length) and tied to a metal stakes
(Aronson & Heck 1995). Each tethered urchin was
uniquely identified with a number and placed ran-
domly inside the plot. The experiment concluded when
more than 50% of individuals in the control plots had
been consumed. This occurred within a 4 d period,
after which stakes were removed and the remaining
sea urchins counted.

Data analyses. We used ANOVA to assess the signif-
icance of differences among treatments, using sea
urchin mortality (as a percentage relative to the initial
number) in each box as the dependent variable. For
the aquarium experiments, the effects of leaf length on
predation pressure were tested with a 1-way ANOVA
with leaf length as a fixed factor (3 levels: no leaves,
short leaves and long leaves). Subsequently, the con-
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a. Predation on juveniles
– Long, short, or absent leaves
– Buried root–rhizome layer

b. Predation on juveniles
– Long or short leaves
– Unburied or buried 
   root–rhizome layer

c. Predation on young adults
– Long or short leaves
– Buried root-rhizome layer

Fig. 1. Setup of predation experiments for juvenile and young
adult sea urchins in different refuge conditions. Substrate
type: buried (dashed) or unburied (dotted) root-rhizome layer. 

Leaf canopy length: long (20 cm), short (7 cm) or absent.



Mar Ecol Prog Ser 377: 131–137, 2009

current influence of leaf canopy and availability of
unburied root-rhizome layer structure on predation
pressure was assessed using a 2-way ANOVA (with
leaf length and root-rhizome layer structure as fixed
factors, with 2 levels each).

For the field experiment, the effect of the seagrass
canopy on predation pressure was assessed using
a 1-way ANOVA with leaf length as a fixed factor
(2 levels: short leaves and long leaves)

For all analyses, data were first tested for normal-
ity (Kolmogorov-Smirnov test) and homogeneity of
variance (Cochran’s test). When overall significant
differences were detected, a posteriori pairwise com-
parisons of means were performed using a Student-
Newman-Keuls (SNK) test (Zar 1989).

RESULTS

In the absence of exposed root-rhizome layer
(first experiment), we detected that predation activity
on juveniles was highly influenced by the presence of
leaves. Mortality of juveniles was significantly lower
when leaves were long (29.1 ± 11.0% mortality, mean
± SE) than when they were either short (68.0 ± 6.6%
mortality) or absent (56.7 ± 5.1% mortality; SNK, F =
6.327, p = 0.033) (Fig. 2).

When the effects of leaf canopy and root-rhizome
layer were tested simultaneously (second experiment),
both variables showed a strong influence on the preda-
tion of juveniles. Predation was lowest (mortality
reaching values as low as 11 ± 4.4%) when the un-
buried root-rhizome layer was present, independent of
leaf length (Table 1, Fig. 3). When the root-rhizome
layer was buried, the treatment with long leaves
showed less predation than that with short leaves (i.e. significant leaf length × root-rhizome layer interaction)

(Table 1). Similarly, in the field experiment we
observed that mortality of young adults was signifi-
cantly lower in plots with long leaves (27.8 ± 5.6%
mortality) than in the treatment with short leaves
(80.6 ± 12.1% mortality; ANOVA, F = 22.26455, p =
0.009) (Fig. 4).

DISCUSSION

The present study provides strong support for the
importance of refuges in alleviating predation pres-
sure on sea urchins in seagrass meadows. Rates of pre-
dation on juvenile and young adult sea urchins were
strongly influenced by variations in leaf canopy and
the presence of bare rhizomes. Although we only ma-
nipulated leaf length to modify canopy structure, it is
plausible that other structural features, such as shoot
density, also influence the capacity of leaf canopy to
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Table 1. Two-way factorial ANOVA used to assess differences
in predation pressure (% mortality) on juvenile sea urchins by
fish between substrate (root-rhizome layer: buried in sand vs.
unburied) and canopy conditions (leaf length: short vs. long) 

and their interaction

Source df MS F p

Substrate (S) 1 0.2896 25.5850 0.0009
Leaf length (L) 1 0.0778 6.8950 0.0304
S × L 1 0.0792 7.0090 0.0293
Error 8 0.1132
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provide refuge against predation, particularly when
rhizomes are buried. In fact, other authors have ob-
served the existence of a threshold level in vegetation
density which reduces predation intensity in other
organisms inhabiting seagrass meadows (see Heck &
Orth 2006).

In the present study, the unburied root-rhizome layer
appeared to be a key refuge for juvenile sea urchins, as
its presence drastically reduced mortality, indepen-
dently of leaf length. However, when this structure was
unavailable to juveniles (i.e. buried by sand), dense
seagrass canopy still provided some degree of protec-
tion. In contrast, dense seagrass canopy was the only ef-
fective refuge for young adults. These individuals are
too large to hide within the root-rhizome layer (e.g.
Tomas et al. 2005), yet not large enough to deter or re-
sist predators (Sala & Zabala 1996). Indeed, survival of
young adults was significantly lower when leaf canopy
was reduced or absent.

As these seagrass features are highly variable in
space and time, the susceptibility of sea urchins to pre-
dation in seagrass meadows will depend not only on
the abundance and size of predators and sea urchins,
but also on the temporal availability of refuge sites.
Burial of the root-rhizome layer depends on the sedi-
mentary budget, which, in turn, is driven by local con-
ditions (Gacia et al. 1999). For instance, a recent exten-
sive survey of shallow seagrass meadows along 500 km
of coastline in the NW Mediterranean reported that
only 4 seagrass meadows, out of 10 sampled, showed a
conspicuous presence of an exposed root-rhizome
layer (Prado 2007). Leaf canopy structure, determined
by leaf length and shoot density, is still more variable,
as a result of light and nutrient availability (Alcoverro
et al. 1997), grazing activity (see Heck & Valentine
2006) and environmental conditions such as hydro-

dynamic regimes and water turbidity (Longstaff &
Dennison 1999). Posidonia oceanica canopies can, for
example, be strongly reduced by the grazing activity of
herbivorous fish (Tomas et al. 2005, Prado et al. 2007)
and, consequently, this can stimulate predation on
young sea urchins. However, to adequately under-
stand the effects of predation on sea urchins it should
be recognised that predators of juveniles are different
from those of young adults and adults. In effect, preda-
tion on juveniles is exerted by small fishes such as
Coris julis and other small labrids (Hereu et al. 2005),
while for young adults the most frequent predators are
large sparids; while the latter are strongly affected by
overfishing, the former are not (García-Rubies 1996,
Sala 1997). Therefore, predation on juvenile sea ur-
chins is likely of general occurrence and the abun-
dance of juveniles may be dependent on the presence
of the unburied root-rhizome layer. This contention is
supported by Prado (2007), who reported that juveniles
were only detected in meadows where a prominent
root-rhizome layer was present.

In contrast, due to the loss of large predators as a
result of fishing (Sala & Zabala 1996), predation pres-
sure on young adult and adult sea urchins is probably
low in most seagrass meadows. However, the abun-
dance of large fish predators is higher inside marine
reserves than elsewhere (e.g. Sala & Zabala 1996), and
this can impact urchin populations. Again, this con-
tention finds support in a large-scale survey of this
region, which found lower densities of young adults as
well as lower seagrass consumption rates by sea
urchins inside marine reserves than elsewhere (Prado
2007).

In marine reserves, predation is enhanced both di-
rectly, by the increased abundance of predators, and
indirectly, by the lower availability of dense canopies:
the density of the herbivorous fish Sarpa salpa (L.)
increases in marine protected areas (García-Rubies &
Zabala 1990), to the point that it has the capacity to
strongly affect Posidonia oceanica canopies of shallow
meadows, significantly reducing leaf length (Tomas et
al. 2005). As our results indicate, this reduction in shoot
length could significantly increase predation pressure
on young adult sea urchins. This could be critically
important during the summer months, when grazing
activity by fish increases dramatically (Tomas et al.
2005) and predatory fish exert the highest predation
pressure on sea urchins (Sala & Zabala 1996). Al-
though this hypothesis needs further experimental evi-
dence, the existence of an indirect interaction between
herbivorous fishes and the survival of young adult sea
urchins seems consistent with the findings reported
here and evidenced from the literature.

It has been well established for rocky bottom com-
munities that the availability of refuges interacting
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with the size and behaviour of both predator and prey
is crucial to the regulation of sea urchin populations
and, consequently, in determining the state of algal
communities (Witman & Dayton 2001, Hereu 2004,
Guidetti 2006, and references therein). In contrast,
predator–prey interactions and their potential conse-
quences are less studied in seagrass ecosystems and,
within this context, the data presented here constitute
a first step towards understanding this potentially
important interaction. The present study has shown
that the biotic (i.e. herbivory) and abiotic (i.e. sedimen-
tation and hydrodynamic regime) processes that influ-
ence meadow architecture or structure have the poten-
tial to significantly affect predators’ ability to control
sea urchin population density. Any mechanism affect-
ing a strongly interactive consumer (i.e. those poten-
tially capable of causing community-wide effects) may
have repercussions for the entire trophic dynamic of
seagrass ecosystems. Through predation processes,
herbivores are directly controlled by carnivores which,
therefore, indirectly regulate plant abundance. This
study highlights the existence of other factors and
interactions that can indirectly alter this general top-
down control. In this case, seagrass habitat structural
complexity is a crucial element in regulating predation
of a key herbivore in time and space by providing
different refuges for different life stages.
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