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INTRODUCTION

Byers & Pringle (2006) and Pringle & Wares (2007)
(hereafter BWP) discuss when populations and gradi-
ents in allele frequency can be retained in the pres-
ence of a mean downstream dispersal of propagules
from the parents’ location, as occurs, for example, in
benthic species in the coastal ocean. However, in their
analysis they make a number of assumptions which
they do not fully justify. In particular, they assert that it
is the lifetime fecundity of the species in the absence of
density dependence that governs the persistence of the
species and alleles; however, they only test this result
for the case in which reproductive output is constant
with time over the lifetime of the organism. This is
clearly not always a good assumption; many inverte-
brate marine species produce more larvae as the adults
grow older and larger (Llodra 2002). These authors
also assume a Gaussian dispersal kernel and assure
the reader that any kernel that is ‘close to a Gaussian’
will lead to similar results to those obtained with a

Gaussian kernel. Unfortunately, they do not define
what ‘close’ means, thus leaving the reader uncertain
as to how to apply the results to real world dispersal
kernels. Thus, the reader is unsure what to do when; to
use an example from Byers & Pringle (2006), a species
reproduces in multiple seasons in which the mean and
variability of the currents are different, so that even if
the dispersal kernel for each reproductive event is
Gaussian, the net larval dispersal kernel is a composite
of the distribution for each spawning event and will not
be Gaussian.

In the following section, we will provide 2 results
that address these issues. First, we will show that the
criteria for retention of a species is, for a Gaussian dis-
persal kernel,

(1)

where N is the total number of larvae which would
recruit and reach reproductive competency in the
absence of density-dependent effects per adult per
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lifetime. Ladv and Ldiff are the mean and standard devi-
ation of the larval dispersal distance, as discussed in
BWP. This is the same as Eq. (6) of Byers & Pringle
(2006) when the reproductive output of the adults is
constant with age, but is also correct when the repro-
ductive output of the adult varies with age. Second, we
show that if the kernel is non-Gaussian, the criteria for
retention becomes approximately

(2)

where γ2 is the ‘excess kurtosis’, and is equal to
μ4/L4

diff – 3, where μ4 is the fourth central moment of the
kernel. The kurtosis is a measure of how many of the
larvae of a given kernel are in the edges of the dispersal
kernel relative to the center of the kernel for a given
standard deviation of larval dispersal distance, Ldiff.
This can be seen in the 2 panels of Fig. 1, where the
kernels with larger and more positive kurtosis have
more larvae in their tails and, in order to keep the stan-
dard deviation constant, more larvae concentrated at
the center of the distribution. Excess kurtosis is defined
with respect to a Gaussian distribution, so that a posi-
tive excess kurtosis indicates more larvae in the tails of
the distribution than a Gaussian kernel would have,
and a negative value indicates fewer. Thus, a Gaussian
kernel has an excess kurtosis γ2 of zero, and the above
criterion reduces to that of BWP for that kernel. The ex-
cess kurtosis for other kernels can be found in Lutscher
(2007). This criterion for retention can be used to judge
how important the deviations from a Gaussian kernel
are, and, if the effect is large, numerical methods can
then be used to calculate the exact retention criterion
(the code to do so is available in the online supplement
to this article; Appendix 1, www.int-res.com/articles/
suppl/m377p013_app/). This result can be transferred to
Pringle & Wares (2007) by substituting the right-hand
side of Eq. (2) for the right-hand side of Eqs. (3), (4) and
(10) in that paper. It is also shown below that when
there is no mean downstream dispersal of larvae, the
excess kurtosis does not affect the persistence of a spe-
cies, consistent with Lockwood et al. (2002).

The impact of non-Gaussian kernels, such as those
shown in Fig. 1, can be very important when there is a
mean downstream transport of larvae. In Fig. 2, the
critical value of N needed to allow retention is shown
as a function of the mean larval dispersal distance Ladv

for these 3 non-Gaussian dispersal kernels, each rep-
resentative of a certain kind of deviation from an ideal-
ized Gaussian kernel. For each kernel, the standard
deviation of the dispersal distance of successfully
recruiting larvae Ldiff is 30 km while the mean disper-
sal distance varies from 1 to 50 km. The first kernel is
the composite of 2 Gaussian kernels, such as might
occur if the species spawns in 2 different seasons with

different mean currents. This has a negative γ2 of
–1.89, indicating that the tails of the dispersal kernel
are relatively small for a given value of Ldiff. Thus,
fewer larvae settle far from the center of the larval
recruitment distribution, increasing the N needed to
allow retention above the prediction of for a given Ladv

and Ldiff. The second kernel is tent shaped and there is
no dispersal outside of a finite distance. Its excess kur-
tosis is γ2 = –0.6. This models the truncation of the tails
of the dispersal kernel which can occur because there
is a practical upper limit on the speed of the currents in
the ocean, and thus a limit to the dispersal distance of
a larvae. This tends to increase the N needed to allow
retention relative to the Gaussian prediction by elimi-
nating the rare long-distance dispersal of larvae. The
third set of results are for a Gaussian kernel, for which
γ2 = 0 and the results of BWP and Eq. (2) agree. The last
kernel is a Laplacian kernel, with γ2 = 3.0. With this
kernel, the density of larval recruitment is increased
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Fig. 1. (a) The 4 larval dispersal kernels examined in Fig. 2.
For each, the standard deviation of the distance the larvae
disperse, Ldiff, is 30 km, while the mean distance Ladv is 0 in
these plots (though not in Fig. 2). (b) The right-hand tails of
the same kernels, expanded from the shaded portion of (a).
The double Gaussian kernel’s tail is too close to zero to be 

seen on this scale. γ2: excess kutosis
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both near the center of the larval distribution and far
from the center, leading to a sharply peaked distribu-
tion with long tails of dispersal distance. These tails
tend to increase the ability of larvae to be retained for
a given fecundity and recruitment rate N relative to an
equivalent Gaussian kernel.

For each non-Gaussian kernel, the approximation in
Eq. (2) is more accurate than the criteria in BWP calcu-
lated under the assumption of a Gaussian kernel. It suc-
cessfully captures the increase in N needed for reten-
tion when γ2 < 0, and the decrease when γ2 > 0. Further
discussion of the dynamics behind these results is given
in the context of invasion speeds in Lutscher (2007).
When the magnitude of the excess kurtosis of the dis-
persal kernel or Ladv becomes large, the approximate

formula (Eq. 2) becomes increasingly inaccurate. In
practice, it would be prudent to use Eq. (2) to estimate
the effect of the excess kurtosis on the critical value of
N needed to allow retention and, if this effect is large,
then to calculate the exact critical value of N numeri-
cally using the code in Appendix 1.

The following sections lay out the derivations of
these results, but present no further results.

RETENTION AND REPRODUCTION

Neubert & Caswell (2000) derive a method for deter-
mining the invasion speed of a population in a stage-
structured population given any dispersal kernel with
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Fig. 2. The critical value of N needed to allow the retention of a population as a function of the mean distance the larvae disperse,
Ladv, for the various dispersal kernels shown in Fig. 1. N: total number of larvae which would recruit and reach reproductive com-
petency in the absence of density-dependent effects per adult per lifetime. Shown is the true value, computed numerically as de-
scribed in the text, the estimate which includes the effect of the excess kurtosis (γ2) of the dispersal kernel from Eq. (2), and the
estimate assuming a Gaussian kernel from Byers & Pringle (2006) and Pringle & Wares (2007) (BWP). Plots are ordered from least
excess kurtosis, the Double Gaussian kernel with γ2 = –1.89, to the greatest excess kurtosis, the Laplacian kernel with γ2 = 3.0
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exponentially bounded tails. They argue that it is not
necessary to include density-dependent effects in this
calculation, as long as there are no allee or long-
distance density-dependence effects. We assume dis-
crete generations of an organism that only disperses
when spawned, and is afterwards sessile, as in BWP.
Following Neubert & Caswell (2000), and assuming
that the dispersal kernel K is independent of the par-
ents location and includes the mean transport of the
larvae, the population at location x and time t + 1 in
generations, p(x, t + 1), is given by the convolution:

(3)

Here, p(x,t) is a vector whose elements are the popu-
lation age structure, y is a dummy variable of integra-
tion, and A is the matrix that describes how the larval
settlement is distributed in space and how each gener-
ation ages (the combined KsB of Neubert & Caswell
(2000)):

(4)

Subscripts indicate the age in generations, ri is the
likelihood that an individual of age i will live to i + 1, Ni

is the fecundity of an adult of age i, n is total number of
generations an organism can live, δ is the Dirac delta
function, indicating that adults are sessile, and both K
and δ are functions of (x – y). (In BWP, Ni is uniform for
each generation and is called Nfec.) Neubert & Caswell
(2000) show that the invasion speed can be found from
the matrix formed by computing the moment generat-
ing function of each element of A, which is calculated
by multiplying each element by esx, and integrating
over x from – ∞ to ∞. This results in

(5)

where M(s) is the moment generating function of the
dispersal kernel K.

If the mean dispersal is towards smaller x, the
upstream dispersal speed c is given by the minimum

(6)

as a function of s, where ρ(s) is the largest eigenvalue
of B (Neubert & Caswell 2000). Now, at the critical
value of population growth that just allows a popula-
tion to be retained, the upstream invasion speed must

be zero. If the invasion speed is negative, the popula-
tion is being washed downstream, and if it is greater
than zero, the population has more than enough
growth to persist (BWP). Thus, at the critical growth
rate for retention, ρ(s) must be 1. The largest eigen-
value of the matrix B is given by largest root of the
characteristic polynomial (Strang 1988)

(7)

Setting ρ = 1, and assuming that K and thus M(s)
does not vary with the age of the parents, the critical
condition of c = 0 becomes

(8)

The sum of the products above is just the likelihood 

that an adult reaches age j, , multiplied by the 

reproductive success for that age, Nj, i.e. it is just the ex-
pected total reproduction of an individual N, neglecting
density-dependence effects. Thus, the minimum total
lifetime reproduction needed for retention is given when
Eq. (8) is satisfied for the smallest value of M(s), i.e.

(9)

This condition depends only on the dispersal kernel
(which sets M(s)) and N, regardless of how the fecun-
dity of the organism varies with age. Thus, retention
is governed by the expected total number of larvae
which would settle and reach reproductive compe-
tency in the absence of density-dependent effects over
the lifetime of an adult, N, and the dispersal kernel. For
the Gaussian kernel with mean dispersal distance Ladv,
the moment generating function is given by:

(10)

Solving Eq. (9) with Eq. (10), we obtain Eq. (1) for spe-
cies with Gaussian dispersal kernels. We can recover
the results of Byers & Pringle (2006) by noting that their
Nfec is Ni above and is the same for each generation,
their Ngen is n, and they assume ri = 1. In these limits,
NfecNgen = N, and so their criteria for retention in
iteroparous species reduces to Eq. (1).

NON-GAUSSIAN KERNELS

For any arbitrary kernel, the critical value of N or
Ladv needed to allow retention can be found from
Eq. (9). However, while straightforward to do so com-
putationally, it is difficult to make analytical headway
in this manner. Instead, we take advantage of 2 results.
First, Pachepsky et al. (2005) note that the criterion for
retention of a species with a mean larval dispersal dis-
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tance per generation (Ladv ≠ 0) can be found by com-
puting the upstream invasion distance per generation
that would result from its dispersal kernel in the
absence of a mean downstream dispersal (Ladv = 0). If
this invasion speed exceeds the mean dispersal dis-
tance per generation, the species can be retained. Sec-
ondly, Lutscher (2007) computes an approximate inva-
sion speed for an arbitrary dispersal kernel which has
no mean downstream dispersal. When Lutscher
(2007)’s invasion speed in distance per generation
exceeds the Ladv, the population will persist.

Following Weinberger (1982), we note that the inva-
sion speed for an semelparous organism with Ladv = 0 is
given by:

(11)

where M(s) is the moment generation function of the
kernel discussed above. (This is just Eq. (6) written
for the semelparous case. As shown in the last section,
the semelparous results will also be applicable to the
iteroparous case.) M(s) can be expanded in the raw 

moments of the dispersal kernel . 

Since the mean downstream transport of the larvae in
this calculation is zero, the first raw moment is zero,
and we shall assume that the dispersal kernel is not
skewed, so that the third raw moment is zero. Keeping
the expansion to O(s4) in s of M(s), making a Taylor
series expansion of ln(NM(s)) in Eq. (11) to the same
order, and finding the minimum of this expansion,
leads to an estimate of the upstream invasion speed in
units of distance per generation c* of:

(12)

where γ2 is the excess kurtosis as defined in the intro-
duction. When c* is greater than Ladv, the species can
persist. Solving for this criterion leads to the expression
given in Eq. (2).

Eq. (2) provides an estimate of how the excess kurto-
sis of a dispersal kernel can alter the estimates of the
population growth rate needed to allow a population to
persist. However, if one is using dispersal kernels
derived either from observation or numerical model,
one is likely to find the kernel has non-negligible skew

(the third central moment of the dispersal kernel), and
may have higher moments that further modify the per-
sistence criterion away from Eq. (2). However, it is
straightforward to compute the persistence criteria
numerically, and in the supplemental online material
for this article there is a Python program to compute
the persistence criteria for an arbitrary dispersal ker-
nel. This code directly solves Eq. (11) for c = 0 for a
user-defined dispersal kernel.

Excess kurtosis only affects population persistence
when there is a mean downstream dispersal of larvae
(e.g. Ladv = 0), as has been pointed out by, among oth-
ers, Lockwood et al. (2002). These results are consis-
tent with Eq. (2), for when Ladv = 0, the criterion for per-
sistence becomes ln(N) > 0 or, equivalently, N > 1.
When ln(N) approaches 0, the terms involving the
excess kurtosis in Eq. (2) approach zero, and thus no
longer affect the criterion.
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