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INTRODUCTION

The increasing pace of human-induced environmen-
tal change worldwide has created a demand for effec-
tive bioindicators allowing its assessment and monitor-
ing, and improving our understanding of its biological
and ecological significance. However, the choice and
combination of measurable, sensitive and integrative
variables that adequately reflect these environmental
alterations is still a challenge for the scientific commu-
nity (Rice 2003). A bioindicator is an organism, a part of
an organism or a set of organisms that contains infor-
mation on the quality of the environment or a part of
the environment (Markert et al. 1999). Monitoring

the time-integrative responses of bioindicators is use-
ful for tracking anthropogenic influences on eco-
systems over space and time. To be useful, however,
it is essential that the chosen indicators respond clearly
and unequivocally to human-induced environmental
degradation at scales relevant to management ob-
jectives.

Due to the basic problem of scale in ecology (sensu
Levin 1992), many indicators that are unequivocally
related to environmental changes at a given scale can
become unusable when applied at other scales. Since
most habitats are spatially heterogeneous, sampling at
small scales does not always directly scale up (Schnei-
der et al. 1997). Consequently, indicators that have
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been validated using manipulative or correlative
approaches in only one location may not be useful for
biomonitoring programmes that are usually deployed
at much larger scales in several locations (e.g. kilome-
tres or tens of kilometres apart; see Morrisey et al.
1992). Additionally, multiple sources of variation (nat-
ural and anthropogenic) may interact at large scales,
often causing confusing results (Norkko et al. 2006). It
is therefore important to carry out a preliminary
assessment of an indicator’s variability at a range of
scales along an environmental gradient, and to specif-
ically test the scale of interest (e.g. between-site varia-
tion) against smaller-scale variations using nested
sampling designs (Morrisey et al. 1992, Niemi et al.
2004).

The extent to which natural gradients may affect the
indicator adequacy is another critical consideration.
Since communities vary along natural gradients (e.g.
light or temperature gradients, see Margalef 1998), a
sampling design should reduce to a strict minimum the
contribution of such natural gradients to the variability
of the measured attributes (Markert et al. 1999). More-
over, the interaction between natural and human fac-
tors should be examined (Norkko et al. 2006), and sam-
pling performed where (and when) indicators show a
response to alterations separable from responses to
natural causes. For example, in relation to marine
plants, depth has large effects on most physiological,
morphological and structural parameters (Cooper &
DeNiro 1989, Alcoverro et al. 2001a), and these effects
should be clearly understood in designing and inter-
preting monitoring.

Because of the complexity of biological systems,
their inherent high variability, and the influence of
multiple environmental factors or stressors, the search
for indicators should not be confined to only one level
of biological organisation (Niemi et al. 2004). The
effects of stressors on the biota can be studied at differ-
ent biological levels, ranging from the metabolism
of a single organism to complex communities. The
response time of indicators to stressors generally
increases with the structural complexity, while their
specificity decreases (Adams & Greeley 2000). There-
fore, a multi-level approach provides a more complete
understanding of both lethal and sub-lethal effects of
stressors, and helps in the interpretation of complex
environmental gradients where multiple types of
impacts interact (Harding 1992, Adams 2005).

The requirements to be ideal biological elements
from which to obtain bioindicators are clearly fulfilled
by seagrasses (Orth et al. 2006). These marine flower-
ing plants are ecosystem engineer species (sensu
Wright & Jones 2006), and are found widely distributed
in shallow coastal waters around the world except
Antarctica (Spalding et al. 2003). They are extremely

sensitive to changes in their environment, such as avail-
ability of light (Longstaff & Dennison 1999) and nutri-
ents (Udy & Dennison 1997) and, in particular, to hu-
man-induced disturbances (Walker & McComb 1992),
which have resulted in seagrass losses reported world-
wide (Orth et al. 2006). All of these reasons have led to
the identification of seagrass meadows as a benchmark
of overall environmental health of aquatic systems by
various governments and institutions worldwide
(Council of Australian Governments Water Reform
Framework of 1994, in Australia and New Zealand; Wa-
ter Framework Directive 2000/60/EC, in the European
Union; Clean Water Act of 1972 and Endangered Spe-
cies Act of 1973, in the United States). Moreover, a
large body of research has focused on seagrass biology
and ecology, and on seagrass responses to different
stressors or impacts at different levels (physiology, pop-
ulation dynamics, trends in community composition;
see Table 1). This provides an excellent scientific basis
to use these organisms and their associated ecosystems
as indicators for assessing human-induced environ-
mental changes, in systems where these species
occurred or have occurred in the past.

In this study, we performed a selection process of opti-
mal seagrass indicators for biomonitoring the environ-
mental status of coastal waters. Firstly, we collated a list
of ca. 60 candidate indicators based on previous knowl-
edge of specific responses of seagrass ecosystems to di-
verse stressors at different levels of the biological organ-
isation. Secondly, we empirically validated and tested
their indicator value on a temperate seagrass ecosystem
(Posidonia oceanica) along an existing and documented
environmental status gradient (independently as-
sessed) within a relatively large geographical scale (ca.
500 km). We used a nested hierarchical design to test the
effects of spatial scale at 2 different depths, and we ap-
plied multivariate techniques to explore the behaviour of
candidate indicators in a continuous way, to detect re-
dundancy between potential indicators, and to verify
that the combined suite of selected indicators behave to-
gether as expected along an environmental gradient.
Additionally, we tested whether any of the descriptors
selected individually discriminated between the entire
gradient of environmental quality.

MATERIALS AND METHODS

List of candidate indicators. The preliminary list of
candidate indicators was based on an exhaustive bibli-
ographical review, from which we identified 59 sea-
grass attributes at different levels of biological organi-
sation. All attributes were sensitive to environmental
changes, and their response to environmental deterio-
ration is well documented (summarised in Table 1).
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Study area and anthropogenic pressure gradient. The
study was conducted along the Catalan coast (ca. 500 km
of coastline) in NE Spain (42° 19’ N, 3° 19’ E to 41° 02’ N,
1° 00’ E, Fig. 1). This area is densely populated, with
ca. 4.5 million people living in coastal municipalities,
and suffers a strong tourist pressure, as more than 20
million tourists per year visit it, most of them in summer.
Human pressures are unevenly distributed; beach
regeneration, big harbours, large cities and main indus-
trial areas (Barcelona and Tarragona) are localised in

the central part, and are uncommon in the northern
and southernmost coasts. Other anthropogenic pres-
sures are agricultural practices outside of metropolitan
areas, the discharge of the main river (Ebro) along the
southernmost coast, and fishing mainly off the northern
coast. Healthy sites, including some marine protected
areas, can be found on the northern coast.

We sampled sites encompassing the maximum range
of environmental quality in the area. To this end, the
status of potential sampling sites was first determined
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Biotic level and descriptors Expected response to increasing anthropogenic disturbances and reference(s)

Light deprivation Nutrient inputs Metals Organic Mechanical/ Aquaculture
matter/ Sedimentary
anoxia disturbances

Physiological and biochemical level
N and P content a73,89,67,60 a37,87,85,36,5, a37

in seagrass tissuesa 23,86,60,58

Free amino acid content a46 a37,84,87,85, _72 a37
in seagrass tissues 36,86

C content, and carbohydrate _73,47,2,74,4,67 _84,36,5 _35 _6 _75,15
reserves in seagrass tissues

δ13C in seagrass tissues _46,29,1 _34

δ15N in seagrass tissues a37,29,57,56,12, a/_6 a90
92/_87,85,61,86

δ34S in seagrass tissues a11 _/a65,25

Trace metals in a72,11,8, a71
seagrass tissues 21,69,22,55,

77,70,49

Individual level
Plant morphological descrip- _73,46,74,78, a/_b87,42,80,66, _13/a55 _19,35 _41,10, _75,15,18/

tors (e.g. shoot biomass 28,64,89/a80 89,44,33 59/a52 a68,16,71
no. of leaves, leaf length)

Shoot necrosis a5,88 a48,50 a82

Population level
Shoot density and _73,46,74, _80,38,79,7 c _82,35 _24,79,7,41, _75,15,68,
meadow cover 80,28,67 30,51,6,10,59 9,14,71,18

Rhizome growth type a24,26
(plagio/ortho)

Rhizome baring a24,53,52,17 _54

Community level
Leaf epiphyte biomass _73,64,60,83 a31,40,91,41,63, a55/_68 a15,68,

62,3,81,44,83 16,9,71

N and C content in _39 a45
leaf epiphytes

Herbivore pressure a76,41,33,27 a75,68,
14,71,18

aThe ratio leaf N / leaf mass has been described as a sensitive indicator of early eutrophication (43)
ba/_: depending on the existence of growth limitation by specific nutrients (20) or/and on the presence/absence of grazers (32) 
cIndirect effect of shading due to phytoplankton or epiphyte overgrowth enhanced by nutrient enrichments has been suggested
as a major likely cause of seagrass (density and cover) losses (63,81,31,83)

Table 1. Preliminary list of seagrass descriptors with potential indicator value and supporting reference(s) of the expected
responses to increasing human-induced environmental stressors (a: increase; _: decrease). References are listed in the additional
literature cited list at the end of the article. Since studies are unable to discern which factor (light reduction, nutrients or organic
matter increases) or interactions lead to the effects caused by aquaculture activities, the effect of this activity is shown separately
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based on independent available information. Data on
chlorophyll (chl) a and water transparency (Secchi
readings), algal bioindicators (cartography of littoral
and upper-sublittoral rocky-shore communities, CAR-
LIT), and global pressure from human activities were
compiled and used to classify potential sites into 3 cat-
egories (Table 2): (1) healthy (not or slightly disturbed),

(2) intermediate (moderately disturbed), and (3)
unhealthy (severely disturbed). According to this, we
chose 9 sites as representative of these 3 categories
(Table 3). The minimum and maximum spatial dis-
tances between 2 adjacent sites was 5 and 70 km,
respectively, and the distance between the northern-
most and the southernmost sites was 360 km (Fig. 1).
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Fig. 1. (a) Sampling sites (black triangles) along the Catalan coast (NE Spain), where main rivers, larger cities (grey circles),
and marine protected areas (grey outlines along the northeastern part of the coast) are shown. (b) Sampling design to test the
spatial variability within each sampling site. Three circular zones (A, B and C) of ca. 300 m2 were marked to obtain both in situ
measurements (quadrats of 50 × 50 cm for cover and 40 × 40 cm for shoot density) and shoots (only 3 are shown in the scheme

for the sake of clarity)

Environmental Environmental Physico-chemical parameters Algal bioindicators Anthropogenic pressure
status status value Chl a range Secchi range CARLIT range

(µg l–1) (m)

Healthy 1 ≤  2 > 12 > 0.60–1 Not significant
Intermediate 2 > 2–4 12–10 > 0.40–0.60 NA
Unhealthy 3 > 4 < 10 0–0.40 Significant

Table 2. Range of values for the different criteria used for the environmental status assessment of sites. Physical-chemical
parameters are from Vila et al. (2005); CARLIT cartography of littoral rocky-shore communities from Ballesteros et al. (2007); 

anthropogenic pressure from Agència Catalana de l’Aigua (2005). NA: not applicable
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Sampling design and data acquisition. From the 9
sites, we selected 8 deep meadows (15 m) and 5 shal-
low meadows (5 m, Fig. 1a). The absence of shallow
meadows in unhealthy sites prevented us from exam-
ining the whole quality gradient at both depths. At
each meadow, sampling was performed by SCUBA
diving using 2 nested levels of spatial replication.
Three ca. 300 m2 circular zones (10 m radius) were cho-
sen at random along the same isobath, with the centre
of the zones separated at least 25 m from each other.
Within each zone, we obtained replicate samples to
evaluate the following variables: (1) shoot density, rhi-
zome growth type, and rhizome baring, which were
measured in four 0.16 m2 (40 × 40 cm) quadrats ran-
domly placed; (2) meadow cover, which was estimated
in nine 0.25 m2 (50 × 50 cm) quadrats placed 3 m apart
from each other along linear transects positioned in 3
random directions; and (3) 12 shoots, which were ran-
domly collected for all variables requiring laboratory
analysis (Fig. 1b).

We performed all sampling in the shortest possible
interval (1 mo; October 2001), to avoid the masking
effect of seasonal variability (Ward 1987, Alcoverro et
al. 1995). Samples were stored and treated as required
using common methods reported elsewhere (Table 4).
We obtained at least 3 replicate measurements for
each descriptor in each sampling zone, except for free
amino acid content, which was only measured in a sin-
gle sample per zone (no estimate of small-scale vari-
ability) due to analytical constraints.

Data analysis. To examine the adequacy of candi-
date indicators, we first used a 2-way nested analysis
of variance (ANOVA) to test the variability at the scale
of interest (i.e. between-site variation) against smaller-
scale variations. We partitioned the variance of each

measured descriptor into differences between sites
(i.e. along the environmental status gradient, fixed fac-
tor), differences between sampling zones (medium-
scale spatial variability, random factor, nested in site)
and within sampling zones (small-scale spatial vari-
ability, error term), and assessed their significance. To
avoid the masking effects of depth, and due to the
unequal number of sampled meadows, we analysed
data for deep and shallow meadows separately. Prior to
the analyses, the dependent variables were tested for
normality and homogeneity of variances using Kol-
mogorov-Smirnov and Cochran tests, respectively. We
found departures from normality and homoscedasticity
in some of the variables analysed. However, the large
number of cases used led us to consider ANOVA to be
robust enough to allow departures from these assump-
tions (Underwood 1997). ANOVAs were performed
using STATISTICA v.7 software. After these analyses,
we only retained the descriptors for which differences
among sites were significant.

Secondly, we applied multivariate techniques to ex-
plore the behaviour of variables in a continuous way.
We used a principal components analysis (PCA;
Hotelling 1933) with the descriptors retained after the
first step (ANOVA, see above) to identify common
trends of continuous variations among descriptors,
their correlation with environmental status, and to
evaluate redundancy. Since our descriptors were not
dimensionally homogeneous, we computed the princi-
pal components from the correlation matrix. Data of
some descriptors (amino acid content, isotopic signa-
tures, fish bite marks, baring and rhizome growth type)
were not available for 1 site (Torredembarra); this site
was therefore added as a supplementary object in the
PCA. As the first component clearly discriminated
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Site, abbreviation Chl a Secchi CARLIT Anthropogenic Average Environmental
pressure status status

Jugadora (5 m and 15 m), Jug 1 1 1 1 1 Healthy
Montjoi (5 m and 15 m), Mjoi 1 2 1 1 1 Healthy
Montgó (15 m), Mgo 1 1 2 1 1 Healthy
Fenals (5 m and 15 m), Fen 1 1 1 3 2 Intermediate
Mataró (15 m), Mat 1 2 2 3 2 Intermediate
Sitges (15 m), Sit 2 3 3 3 3 Unhealthy
Comarruga (15 m), Coma 2 3 2 3 3 Unhealthy
Torredembarra (5 m), Torr 1 3 1 3 2 Intermediate
Montroig (5 m and 15m), Mrig 1 2 2 1 2 Intermediate

Table 3. Values for the different criteria used and classification of the sites under study into the 3 environmental status classes
based on Table 2. Physico-chemical parameter values (Camp et al. 2001) were calculated by averaging sampling points near each
meadow (averaged available data from 1994 to 2001). Areas with a clear continental influence (river discharges) and/or heavily
polluted sites (harbours) were not included in the calculations, since Posidonia oceanica meadows are not present in these areas.
Cartography of littoral rocky-shore communities (CARLIT) values (Ballesteros et al. 2001) were calculated using municipality
data from 2001. The categorisation of the anthropogenic disturbances (Agència Catalana de l’Aigua 2005) was performed in only
2 classes (non-significant and significant), and values of 1 and 3 were respectively assigned to them. This assessment was 

performed prior to sampling
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Descriptor (units) Sample size Standard method
per zone (site)

Physiological and biochemical
level (plant descriptors)a

C, N and P 3 (9) Leaf 2b, and CNH elemental analysis using Carlo-Erba autoanalyser (for CN), or ICPc after
concentrations (%DW) rhizomes (for P) acid (HNO3 / H2O) digestion at 100°C, 24 h (for P)

Free amino acid content (total 1 (3) Rhizomes Ionic exchange chromatography after extraction from 0.5 g of frozen tissues
FAA, Asn, Ser, Pro, Arg, Gln, (–80°C) ground in 20 ml of 0.05N HCl, centrifuged 5 min at 10 000 rpm, and fil-
Ala, Asp, Val, Lys, His, Thr, tered (supernatant) using low-binding regenerated cellulose Millipore ultra-free
Glu and Cit in µmol g–1 FW) filters (Invers et al. 2002)

Soluble carbohydrates (mainly 3 (9) Rhizomes Extracted from 0.05 g DW solubilised in hot EtOH (80°C), and centrifuged at
sucrose) contents (%DW) 4500 rpm (4 times). EtOH was evaporated to dryness under an N2 stream, extracts

were redissolved in distilled water and analysed spectrophotometrically (λ =
626 nm) using anthrone assay standardised to sucrose (Alcoverro et al. 1999, 2001b)

Isotopic ratio δ13C, δ15N, 3 (9) Leaf 2b EA-IRMSe (for δ13C, δ15N) and IRMS (for δ34S)
δ34S (‰) and scalesd

Metals (Fe, Mn, Zn, Cu, Ni, 3 (9) Leaf 2b Optic ICPc (for Fe, Zn and Mn) or mass ICPc (for the rest) analyses after acid
Pb, As, Cr in µg g–1DW) and rhizomes digestion of 0.1 g DW in 4 ml of HNO3 / H2O solution (3/1) at 100°C, 24 h (modified

from Cai et al. 2000). The analytical procedure was checked using standard refer-
ence material (Ulva lactuca, CRM 279)

Individual level (plant descriptors)
Number of leaves, maximal 3 (9) Shoots Direct measurement of each shoot in the laboratory
leaf length, and leaf width (cm)

Shoot biomass (g) 3 (9) Shoots Drying of leaves without epiphytes at 70°C to a constant weight

Shoot necrosis (%) 3 (9) Shoots Calculation (as percentage) after quantifying the number of leaves with necrosis for
each shoot in the laboratory.

Broken leaves (%) 3 (9) Shoots Direct observation for each shoot in the laboratory of the frequency (as a per-
centage) of leaf apex broken.

Population level (meadow descriptors)
Shoot density (shoots m–2) 4 (12) In situ Shoot number was counted in a total of 12 quadrats of 0.16 m2, randomly placed

measurements over ca. 1000 m2 area, excluding zones with zero cover

Meadow cover (%) 9 (27) In situ Visual estimation in a total of 27 quadrats (0.25 m2) as 1 of the following classes
measurements (for each sub-quadrat): 0, 10, 25, 50, 75 and 100% over a ca. 1000 m2 area

Rhizome baring (cm) 12 (36) In situ In situ measurement of the distance between the sediment surface and the leaf
measurements base in 3 shoots per 0.16 m2 quadrat

Rhizome growth type 4 (12) In situ In situ estimation of an index from 1 (completely plagiotropic) to 0 (completely
(plagio/ortho) measurements orthotropic) in each 0.16 m2 quadrat

Community level
Leaf epiphyte biomass (mg g–1) 3 (9) Shoots Epiphytes were obtained by scraping the leaf surface with a razor blade, and

weighed after drying at 70°C to a constant weight. Results expressed relative to
shoot biomass.

Leaf epiphyte nutrients (%DW) 3 (9) Shoots Carlo-Erba CNH elemental analysis of dried and finely ground samples of epi-
phytes obtained by scraping the leaf surfaces with a razor blade.

Herbivore (fish and sea urchins) 3 (9) Shoots Direct observation for each shoot in the laboratory of the frequency (as a percent
bite marks (%) age) of the leaf apex eaten by the fish Salpa sarpa or by sea urchins (Boudouresque

& Meinesz 1982)

aPhysiological and biochemical level descriptors were analysed from dried (70°C, to a constant weight) and finely ground samples, except
FAA

bPhysiological level descriptors vary with leaf age and are influenced by the presence of epiphytes. To avoid these sources of variability, the
second youngest leaf in the shoot (without conspicuous epiphytes) was used

cICP: inductively coupled plasma spectrophotometry
dIsotopic traces of dead sheaths (scales) corresponding to 1-yr-old and 5-yr-old tissue (determined lepidochronologically) were analysed to
assess its ‘memorisation’ capacity (Pergent 1990)

eEA-IRMS: elemental analyser isotope ratio mass spectrometry

Table 4. Standard methods used to obtain in situ measurements and to process samples in the laboratory
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among healthy, intermediate and unhealthy deep
meadows (see ‘Results’), those indicators that had the
highest correlation (r ≥ 0.70) with component I were
selected. Exceptionally, we included some descriptors
of high ecological relevance or sensitivity to specific
anthropogenic disturbances with 0.60 < r < 0.70.
Descriptors that weakly correlated with axis I were dis-
carded.

To verify that the combined suite of selected indica-
tors behave as expected along an environmental gradi-
ent, and discriminate together among healthy, inter-
mediate and unhealthy sites, we performed another
PCA including only the selected indicators and using
the deep-meadow dataset. An additional PCA was
used to evaluate the variability between the zones of
the same site. The software used for all multivariate
analyses was the GINKGO package (De Cáceres et al.
2007).

Finally, to identify whether any individual indicators
are able to discriminate between the 3 discrete envi-
ronmental statuses along the gradient, we performed a
3-way nested ANOVA that included environmental
status (healthy, intermediate and unhealthy, fixed fac-
tor), site (random factor, nested in status) and zone
(random factor, nested in site). When significant differ-
ences were detected, a 1-way ANOVA using only the
fixed factor (status) was carried out in order to allow a
posteriori pair-wise comparison of means using the
Newman-Keuls test.

RESULTS

The partition of total variance into the different
sources of variability (between-sites, between-zones
and within-zones) largely differed between descriptors
and sampling depths (Table 5, Appendices 1 & 2 in
electronic supplement available at: www.int-res.com/
articles/suppl/m361p093_app.pdf). In deep and shal-
low meadows, 22 and 24 descriptors showed no signif-
icant differences among sites, respectively, and were
therefore discarded. Significant between-site differ-
ences (p < 0.05) existed for variables belonging to
almost all levels of biological organisation, and these
were retained for the multivariate analysis.

The first 2 components of the PCA, including data
from shallow and deep meadows, explained 32%
(component I) and 14% (component II) of the variance.
Deep meadows showed relatively low scores on axis II,
and their ordination along component I closely
reflected their a priori defined environmental status
(from healthy, left side, to unhealthy, right side; Fig. 2,
Table 3). In contrast, shallow meadows had relatively
low scores on component I, but their ordination along
component II followed their a priori defined environ-
mental status (Fig. 2). Descriptors that highly corre-
lated with component I (see Fig. 3, and list below) were
those the most clearly related to anthropogenic stres-
sors. In contrast, descriptors that highly correlated with
component II (e.g. herbivore bite marks, leaf length
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2-way ANOVA Descriptors showing significant variability (total number of descriptors)
Factor variability Deep meadows Shallow meadows

Only between zones δ15N in 5-yr-old scales, Ni in leaves and δ34S in leaves; δ15N in 1- and 5-yr-old scales; num-
rhizomes, and sea urchin bite marks (4) ber of leaves; shoot biomass and density; rhizome

growth type (7)

Only between sites Asn, Ala, Ser, Pro, P, Fe, Mn, Cr, Cu, and Asp, Cit, P, Fe, Mn, Cr, Pb, As, Cu, and sucrose in
sucrose in rhizomes; N, Mn, As, and Cu in rhizomes; C, Fe, Zn, Ni, Mn, Cr, As, Cu and P in
leaves; δ13C in leaves, 1- and 5-yr-old scales; leaves; δ13C in leaves, 1- and 5-yr-old scales; δ15N
δ15N in leaves and 1-yr-old scales; leaf width; in leaves; leaf length and width; necrosis; fish and
fish bite marks, broken leaves, necrosis; and sea urchin bite marks; meadow cover, N in epi-
shoot density (24) phytes (30)

Both site and zone Fe, Zn, Pb, and Cr in leaves; δ34S in 1-yr-old N and Pb in leaves; Zn in rhizomes; C in epiphy-
scales; shoot biomass, maximum leaf length; tes; δ34S in 1-yr-old scales (5)
meadow cover, baring level, and rhizome
growth type; epiphyte C, N and biomass (13)

None C and P in leaves; δ34S in leaves and in FAA, Asn, Arg, Gln, Ala, Val, Ser, Lys, His, Thr, Pro,
5-yr-old scales, Zn, Pb, As in rhizomes, FAA, Glu, and Ni in rhizomes; δ34S in 5-yr-old scales; bro-
Arg, Gln, Asp, Val, Lys, His, Thr, Glu and Cit ken leaves; rhizome baring; epiphyte biomass (17)
in rhizomes, and number of leaves (18)

Descriptors
Discarded (22) (24)
Pre-selected (37) (35)

Table 5. Summary of 2-way ANOVA results partitioning the variance into different spatial components (among sites, between
sampling zones, and within sampling zones) for each candidate descriptor. Discarded descriptors were those showing significant 

variability ‘Only between zones’ or ‘None’

http://www.int-res.com/articles/suppl/m361p093_app.pdf
http://www.int-res.com/articles/suppl/m361p093_app.pdf
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and width, Fig. 3) were those substantially influenced
by natural variability (e.g. herbivory, physical set-
tings), which potentially masked the response of
descriptors to differences in environmental quality.
Consequently, the descriptors that contributed little to
the formation of component I were discarded (Fig. 3).

Thus, the descriptors retained were those showing
significant between-site differences in deep meadows
(Table 5), and highly correlated with component I (Fig. 3,
Appendix 3 available at: www.int-res.com/articles/
suppl/m361p093_app.pdf). These were: asparagine, ser-
ine, phosphorus, iron, manganese, and sucrose contents
in rhizomes; iron, zinc, lead, arsenic, and copper contents
in leaves; isotopic trace δ34S in 1-yr-old scales; shoot
necrosis; meadow cover; shoot density; and rhizome
growth type. These descriptors, measured in deep mead-
ows only, were selected as reliable indicators to assess
the environmental status of coastal waters.

When using this selected subset of indicators, vari-
ability explained by component I increased to ca. 60%.
Site ordination was conserved, and variables clearly
clustered into 2 groups, one positively correlated with
component I (variables for which high values indicate
unhealthy status) and the other negatively correlated
(variables for which high values indicate healthy
status; Fig. 4).

The medium-scale spatial variability (i.e. between
zones) of the 16 selected indicators was substantial, but
lower than the variability among sites of different sta-
tus (Fig. 5). The variability among zones did not
change the positive/negative correlation with compo-
nent I of variables indicative of healthy/unhealthy con-
ditions or the site ordination pattern obtained (Fig. 6).

Finally, the 3-way ANOVAs showed that only 10 of
the 16 selected indicators detected significant differ-
ences among deep meadows of different environmen-
tal status. Of those, only 4 discriminated between all 3
environmental statuses (i.e. Zn, Pb, and Cu in leaves,
and rhizome growth), while 5 discriminated unhealthy
sites from others (i.e. Asn, P, and Fe contents in rhi-
zomes; shoot necrosis; and meadow cover), and one
discriminated healthy sites from others (i.e. sucrose
content in rhizomes) following the Newman-Keuls
comparison test (Fig. 4, Appendix 4 available at:
www.int-res.com/articles/suppl/m361p093_app.pdf).
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DISCUSSION

Biomonitoring is often an expensive and time-con-
suming activity. Therefore, the choice of optimal indi-
cators that provide the most unequivocal information
about the quality of the environment at the relevant
spatial scale for management purposes is of utmost
importance. After assessment of the behaviour of a
large list of potential biological indicators based on a
temperate seagrass ecosystem, we found that in the
geographic area examined, only 16 seagrass descrip-
tors out of the ca. 60 analysed were unequivocally
related to the environmental status gradient under
study. The fact that only 25% of the candidate indica-
tors considered adequately reflected the environmen-
tal quality of coastal waters illustrates the need for a
careful validation of indicators prior to their use in
monitoring programmes.

Indicator reliability was independent of biological
organisation level, as among the 16 retained descrip-
tors there were representatives of physiological or bio-
chemical, individual, and population levels of biotic
organisation. When considered individually, only 3
biochemical indicators specific of metal pollution, and
1 unspecific structural indicator (rhizome growth)
responded adequately over the whole environmental
gradient and discriminated between healthy, interme-
diate and unhealthy statuses. This is probably due to
the fact that most environmental gradients result from

a combination of anthropogenic pressures that interact
in different ways, including both antagonistic and syn-
ergistic effects on plant bioindicators. Moreover, the
complexity of the patterns and pathways of the exist-
ing pollutants interact with the high natural variability
of biological systems, thus complicating the applicabil-
ity of any single indicator (Niemi et al. 2004, Norkko et
al. 2006). Consequently, a combination of indicators of
different levels of biological organisation and speci-
ficity is needed to cover the entire environmental gra-
dient, and to reflect the different impacts that are caus-
ing the gradient.

Although the descriptors from both shallow and deep
meadows reflected the environmental quality gradient,
responses were modified by depth as component I re-
flected the gradient in deep meadows while component
II reflected it in shallow ones. Overall, the response of
descriptors to the quality gradient was clearer in deep
meadows, since the first component explained more
than twice the variability of the second component. Ad-
ditionally, the variability of the descriptors that most
correlated to the second component was mainly caused
by natural factors such as herbivory and/or physical set-
tings, potentially confounding the interpretation of
monitoring results. Indeed, the activity of the main her-
bivores is concentrated in the upper sublittoral zone
(down to ca. 10 m, see Ballesteros 1987, Tomas et al.
2005), and shallow meadows are subjected to greater
physical disturbances (current and wave action) and to
higher irradiances. All of these phenomena combined
have important effects on seagrass physiology,
morphology and structure (Fonseca & Bell 1998, Fred-
eriksen et al. 2004), and are conducive to high natural
variability in shallow seagrass meadows (Krause-
Jensen et al. 2000, Middelboe et al. 2003).

We used 3 arguments to discard descriptors from the
large list of candidate indicators. A first set of descrip-
tors was discarded because they failed to detect large
scale (i.e. between-site) variability due to the masking
effect of high spatial heterogeneity at smaller scales
(i.e. variability between zones; see Table 5). This
medium-scale heterogeneity indicates that very local
conditions (e.g. sediment composition, patchy distribu-
tion of sea urchins; see Hebert et al. 2007, Ballesteros
1987) influence the variation patterns of these descrip-
tors, making it difficult to generalise trends over large
spatial scales without a substantial increase in sam-
pling effort (Fonseca et al. 2002, Balestri et al. 2003).
Additional causes explaining this lack of between-site
differences can also be a low sensitivity to stress, the
absence of specific pollution sources (in the case of
some metals) or a poor resolution of the analytical
methods.

A second set of descriptors was discarded because,
despite the fact that they varied significantly among
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sites, these differences were not correlated to the envi-
ronmental status gradient in deep meadows. These
descriptors (see Fig. 3) seemed mostly influenced by
natural sources of variability such as herbivory and
physical settings, and showed a low effect in ordering
deep meadows. Those descriptors that mainly differed
among shallow meadows give the clearest example of
variables showing this behaviour (see above). Other
descriptors such as rhizome baring level and some
plant morphological features (i.e. shoot biomass or bro-
ken leaves) are probably heavily influenced by storms
or other episodic events causing short-term fluctua-
tions in hydrodynamic forces or sediment level (Marbà
et al. 1994, Fonseca et al. 2007).

A third set of descriptors was discarded because they
were only weakly correlated to component I (see
Fig. 3). Although these descriptors seem to be linked to
environmental status or to specific pollutants to some
extent, their response appears to be influenced by in-
teractions between different sources of pollution. For
instance, interactions between metals (Campanella et
al. 2001), and between metals and nutrients (Four-
qurean & Cai 2001) have been described. Additionally,
interactions may exist between different sources of an-
thropogenic nitrogen with distinct δ15N signature, such
as fertilisers causing δ15N-depletion on seagrass (Udy
& Dennison 1997) and aquaculture or sewage effluents
causing δ15N-enrichment (Jones et al. 2001). Similarly,

the amount and nature of epiphyte loading is the result
of various controlling factors, such as increases in nu-
trients that enhance epiphyte accumulation and/or leaf
substrate growth, and grazing organisms that control
epiphyte proliferation and/or feed on seagrass leaves
(Hughes et al. 2004). The balance between these posi-
tive and negative within-community interactions shifts
along environmental gradients (Ferdie & Fourqurean
2004), and thus thwarts the indicative value of epi-
phyte biomass to discriminate among healthy and un-
healthy systems (Frankovich & Fourqurean 1997).

The suite of indicators selected here clearly and
unequivocally respond to environmental degradation
at scales relevant to management objectives. However,
other concerns regarding the feasibility of their imple-
mentation should be taken into account before being
used in extensive monitoring programmes. Firstly,
since seagrasses are widely distributed but not ubiqui-
tous, their use is constrained by their distribution. For
example, Posidonia oceanica is absent in heavily pol-
luted areas or near river discharges. However, this lim-
itation can be addressed by combining the monitoring
results of other biological elements (Borja et al. 2004),
or by implementing bioassays with transplanted sea-
grasses (Piazzi et al. 1998). A second concern stems
from the fact that damaged P. oceanica beds show a
remarkably slow recovery after disturbance (Meinesz
& Lefevre 1984). Consequently, some of the most
widely used indicators (e.g. meadow cover, shoot den-
sity) will not show any improvement until a long time
after impact cessation (decades or centuries, Meehan &
West 2000, González-Correa et al. 2005), and can
obscure the real rates of environmental status recov-
ery. However, other selected indicators (mainly physi-
ological level descriptors) recover quickly (Longstaff et
al. 1999), and can better reflect specific actions taken
to improve water quality. A third concern is due to the
strong seasonal variability of most descriptors, espe-
cially physiological and biochemical, individual and
community level descriptors (Ward 1987, Alcoverro et
al. 1995). Great attention should be paid to remove
seasonal variability by sampling at a fixed date; for
example, October was suitable for the indicators
selected in this study. Finally, caution should be exer-
cised when applying the suite of indicators selected in
this study to other areas of distribution of Posidonia
oceanica or in habitats dominated by other seagrass
species. On the one hand, environmental particulari-
ties of some areas may require some fine-tuning of the
selected suite of indicators. On the other hand, despite
the fact that candidate indicators were selected on the
basis of well documented responses of different sea-
grass species to disturbances (see Table 1), a selection
process similar to the one conducted here is recom-
mended when using other seagrass species.
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Finally, we consider aspects concerning the design
of a cost-efficient monitoring programme. Despite their
very diverse nature, all 16 selected indicators have a
common source of variability, as demonstrated by their
clustering on either side of component I, which was
clearly correlated with environmental quality. This fact
also implies that many of these indicators are highly
correlated, suggesting a certain redundancy in the
information they provide. For instance, meadow cover
and rhizome growth type are highly correlated, as
already observed by other authors (Francour et al.
1999). Moreover, both are expected to reflect shoot
mortality due to a variety of stressors, although at dif-
ferent spatial scales (density: individual shoot mortal-
ity; cover: mortality at least in medium-sized patches).
While logistic criteria can be used to design a cost-effi-
cient monitoring programme that obliterates redun-
dant indicators, some amount of redundancy may be
desirable to guarantee the robustness of monitoring
results. This is especially true when taking into
account a potential long-term inconsistency of the
method, possible experimental errors, and the fact that
marine ecosystems and threats to them are sufficiently
diverse that indicators appropriate in one situation
may not work in another (Harding 1992). However, the
number of used indicators will also depend on the eco-
nomic criteria, and will result from a certain trade-off
among the required robustness and specificity, the
spatio-temporal resolution, and the available financial
support. The use of more holistic approaches, where
several indicators are included, is increasingly being
used in monitoring programmes, and although they
require a greater economical cost, the advantages are
clear.

We conclude that the selection of indicators for envi-
ronmental biomonitoring is not only highly dependent
on previous scientific knowledge and experience.
However, our study highlights the need to empirically
validate the responses of such candidate indicators at
relevant spatial scales and over a whole existing envi-
ronmental gradient. Additionally, our results show that
a combination of indicators of different organisation
levels and specificity to stressors is a great asset when
designing the protocol for an effective monitoring of
environmental status. The process of selection of indi-
cators unequivocally related to some kind of degrada-
tion of the system described here is an important step
that needs to take place before these indicators can be
integrated into a multimetric index for monitoring the
environmental status. The choice of an adequate suite
of indicators ensures the consistency of such multimet-
ric indices, provides an ecologically relevant interpre-
tation of the response of biota to multiple stressors, and
greatly facilitates attaining legislative, policy and man-
agement goals.
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