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INTRODUCTION

Canopy-forming brown algae, in particular Fucales
and Laminariales, are habitat formers on understorey as-
semblages, modifying physical and biological factors
(Reed & Foster 1984, Ballesteros et al. 1998, Jenkins et al.
1999a,b, Bulleri et al. 2002) and leading to biological
habitat amelioration (sensu Moore et al. 2007), but their
loss is reported worldwide (Steneck et al. 2002, Airoldi &
Beck 2007).

The genus Cystoseira (Fucales) is represented by 45
species (Guiry & Guiry 2007), most of them endemic to
the Mediterranean Sea (Barceló et al. 2000). They rep-
resent the highest level of Mediterranean seaweed
complexity, are long-lived (Clayton 1990, Ballesteros
et al. 2002), can reach high biomass values (Ballesteros
1989), and dominate in several communities (Giaccone

& Bruni 1973); therefore they are generally considered
the ‘Mediterranean kelps.’

Loss of low shore Cystoseira assemblages in the
Mediterranean Sea has been shown in a large number of
studies (for a short review see Thibaut et al. 2005). Spe-
cies of Cystoseira seem to be sensitive to a variety of
environmental stressors, as a consequence of which,
they are now used in ecological status assessment (sensu
Water Framework Directive 2000/60/EU, Ballesteros et
al. 2007, Mangialajo et al. 2007). The ecological con-
sequences of the loss of Cystoseira species on under-
storey assemblages, however, are little known.

In the Ligurian Sea (NW Mediterranean), Cystoseira
amentacea var. stricta, (hereafter C. amentacea) and
C. compressa form non-continuous belts at low shore
level. They are patchily distributed, with the upper
limit of C. compressa distribution generally occurring
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above that of C. amentacea var. stricta, but their rela-
tive abundance and distribution are locally variable,
due to erratic recruitment and interactions of abiotic
and biotic factors at different spatial scales (Benedetti-
Cecchi et al. 1996, 2000). C. amentacea, endemic to the
Mediterranean Sea, is very sensitive to changes in
water quality (Pinedo et al. 2007, and references there-
in), while C. compressa shows a wider distribution
(present also in the Atlantic Ocean) and seems to be
more tolerant. It has been suggested that one of the
first noticeable effects of urban wastewater pollution
is the replacement of C. amentacea var. stricta
by C. compressa (Giaccone 1993); along the Albères
coast, Thibaut et al. (2005) recorded the loss of all Cys-
toseira spp. (including C. mediterranea, vicariant of
C. amentacea), except for C. compressa. The replace-
ment of C. amentacea by C. compressa has also been
observed following large-scale experimental removals
of Cystoseira canopies (mostly C. amentacea) by Bene-
detti-Cecchi et al. (2001).

Coastal development in Europe is among the major
drivers of the loss of complex macroalgal beds, mainly
due to the degradation of water quality (Airoldi & Beck
2007). The Ligurian Sea coastline has been historically
very urbanised, which has led to severe modifications
of natural rocky coastline, as well as pollution, local
eutrophication, and increased water turbidity. Urbani-
sation increases towards Genova city; which is
reflected by gradients in water column characteristics
(in particular an increase of nutrients and faecal bac-
teria, Mangialajo et al. 2007), but knowledge of the
effects of urbanisation on canopy-forming macro-
algae and associated species is limited. The aim of this

study was to test whether the relative cover, biomass
and morphology of Cystoseira amentacea and C. com-
pressa changed along a gradient of urbanisation of the
coastline, and whether the composition and structure
of understorey assemblages differed in relation to the
presence or absence of C. amentacea and C. com-
pressa, taking into account any such differences along
the same gradient of urbanisation.

MATERIALS AND METHODS

Sampling. The study was performed in a microtidal
environment (tidal amplitude around 30 cm) in the typ-
ical Mediterranean infralittoral fringe (Pérès & Picard
1964). Three sections of shoreline about 1.5 to 2 km
long, characterised by the presence of both Cystoseira
amentacea and C. compressa, were selected along an
increasing gradient of inhabitant density and distance
from the city of Genova (Fig. 1), as in Mangialajo et
al. (2007): Genova Quarto (highly urbanised, HU),
Bogliasco (moderately urbanised, MU) and Portofino
(scarcely urbanised, SU). All sections have natural car-
bonatic rocky bottoms (limestone in HU and MU, pud-
ding stone in SU) and similar geographical exposition,
fetch and exposure to wave action. Within each section,
we chose at random 3 sites about 300 to 500 m long and
hundreds of meters apart, and for each site we consid-
ered 3 types of habitats: (1) C. amentacea, (2) C. com-
pressa, (3) absence of fucoid algae. Percentage cover of
C. amentacea and C. compressa was estimated along
10 independent 20 m transects at each site in May 2004
by quantifying the proportion of coastline covered by

dense clumps of either C. amentacea or
C. compressa, or lacking fucoids.

Biomass and morphological features of
Cystoseira amentacea and C. compressa
were quantified in patches where popu-
lations showed high densities (canopy
cover between 80 and 100%). In order to
limit disturbance to these endangered
species, primary axes were cut near the
holdfast in 3 replicate 400 cm2 plots for
each site. The surface covered by hold-
fasts was visually quantified in situ, while
lengths of 10 randomly chosen axes and
primary branches were measured in the
laboratory. Biomass was calculated as
dry weight (after 48 h at 70°C). To avoid
overweight due to epiphytes (mostly ar-
ticulated Corallinales), branches and
axes were roughly cleaned with a pair of
tweezers, slightly centrifuged and
treated with hydrochloric acid (4%) for
60 min.
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Fig. 1. Location of the 3 shores along the urban gradient near Genova city, together
with inhabitant densities; *density at Portofino village, 5 km east of the core zone
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The composition of understorey assemblages in each
habitat was analysed by sampling three 400 cm2 plots
at each site. Percentage cover of understorey species
was visually estimated by using a frame with twenty-
five 4 × 4 cm subquadrats (Meese & Tomich 1992,
Dethier et al. 1993) after the removal of canopies of
Cystoseira. Mobile animals (except limpets) were not
considered. When the identification to the species level
was not possible in situ, specimens were collected and
identified in the laboratory; in order to reduce the sam-
pling effort, some organisms were grouped in taxo-
nomic or morphological groups, hereafter called taxa.

Due to the high seasonal variability of biomass of
fucoids and associated algal diversity, the studies
of biomass, morphological features, and structure of
assemblages were conducted twice, in spring (May
2004), when biomass and algal diversity are highest,
and in autumn (October 2004), at the beginning of the
Cystoseira resting period.

Data analysis. The full models (including the factor
Time) in both univariate and multivariate analyses
would have not provided the correct denominators to
test the effects of Habitat and Urbanisation, and of
their interaction. In order to avoid complicated pooling
procedures, we chose to analyse the 2 sampling times
separately, because temporal variability is not specifi-
cally addressed in our hypotheses.

For the univariate analyses on biomass and holdfast
cover, for each sampling time the ANOVA model
included 2 factors: Urbanisation (fixed, orthogonal)
and Site (random, nested in Urbanisation). Analyses on
axis and branch lengths included the additional factor,
Plot (random, nested in Site).

Changes in the composition of understorey assem-
blages were tested by multivariate analyses. For each
sampling time, the model included 3 factors: Habitat
(fixed, orthogonal), Urbanisation (fixed, orthogonal)
and Site (random, nested in Urbanisation). Differ-
ences among assemblages were tested by non-para-
metric ANOVA (PERMANOVA, Anderson 2001) on a
Bray-Curtis similarity matrix calculated on square-
root transformed data. PERMANOVA p values were
obtained from Monte Carlo asymptotic-permutation
distributions (Anderson & Millar 2004). The relative
importance of each factor in the analysis was
assessed using estimates of the magnitude of effect
sizes of fixed factors, based on mean squares of the
full model (Underwood 1997, Anderson & Millar
2004), expressed as the ratio among the effect size of
each fixed factor (θ2

i) and the sum of the effect sizes
of all fixed factors and their interactions. In our case,
the factor magnitude was expressed by the formula
θ2

i/Σ(θ2
Ha + θ2

Ur + θ2
Ha × Ur), where i corresponds, alter-

natively, to Habitat (Ha), Urbanisation (Ur) or their
interaction (Ha × Ur).

Multivariate patterns of distribution were plotted
using a principal coordinates analysis (PCO, Anderson
2003) on Site centroids, while SIMPER analysis was
performed to identify the species most responsible for
the differences between the 3 habitats. Species diver-
sity was estimated as log2 based Shannon-Wiener
diversity index (H’, Shannon & Weaver 1949) and
ANOVA was applied to test for significant effects of
Habitat and Urbanisation. All the multivariate analyses
were performed using PRIMER software (Clarke &
Gorley 2006).

RESULTS

Percentage cover of habitats dominated by Cysto-
seira amentacea or C. compressa and habitats lacking
fucoids at the 3 shores along the urbanisation gradient
are reported in Fig. 2. Percentage of cover by C. amen-
tacea decreased along the urbanisation gradient from
nearly 50% at SU to less than 10% at HU, while per-
centage of cover by C. compressa showed the opposite
trend, increasing from less than 10% cover at SU to
about 20% at HU. Percentage of habitats lacking
fucoids was high all along the urbanisation gradient,
exceeding 70% of rocky bottoms at HU.

While overall canopy cover changed notably along
the urbanisation gradient, the biomass or morphologi-
cal characteristics of the 2 species of Cystoseira with-
in each habitat did not seem to vary as much (Fig. 3,
Table 1). The only exception was axis length of C. com-
pressa, which significantly increased from SU to HU in
both May and October. Also in October, length of
branches of C. compressa increased slightly but signifi-
cantly from SU to HU; this pattern was not observed in
May (Table 1, SNK tests). Overall, biomass and branch
length showed high variability at the lowest spatial
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scales (Site and Plot, respectively) and between the 2
sampling times. In May, C. amentacea showed longer
branches and axes, and higher holdfast cover (and con-
sequently, higher biomass) than C. compressa, while in
October there were smaller differences between the 2
species, especially for branch length and biomass.

Overall, 83 taxa were visually sampled in the 3
assemblages; they were grouped in 52 variables for
the data analysis (Table 2). PERMANOVA (Table 3)
showed significant differences in the structure of
understorey assemblages as a function of both Habitat
and Urbanisation. In May, an interaction between
these 2 terms was recorded, showing that the structure
of the understorey assemblage always differed signifi-
cantly between habitats dominated by any Cystoseira
spp. and habitats lacking canopies, while differences
between the 2 canopies of Cystoseira were significant
only at MU (Table 4). The structure of understorey
assemblages in habitats dominated by either of the 2
Cystoseira species was always significantly different
among the 3 levels of urbanisation, while in habitats
lacking canopies, it was more homogeneous (Table 4).
In October a strong urbanisation effect was recorded,

while the effects of habitat varied
among sites; nevertheless, at all sites,
the strongest differences were always
found between habitats dominated by
C. amentacea and habitats lacking
fucoids (Table 5). C. compressa habi-
tat seemed to represent an intermedi-
ate state, being in some cases not
significantly different from the C.
amentacea habitat and in other cases
not significantly different from habitat
lacking fucoids. The relative magni-
tude of the 2 main fixed factors (Habi-
tat and Urbanisation) at both sampling
times highlighted the larger effect of
Habitat (0.52 in May and 0.66 in Octo-
ber) in affecting variability in the
understorey assemblages. Urbanisa-
tion effect was lower at both sampling
times (0.31 in May and 0.28 in Octo-
ber) and the interaction between the 2
factors had the lowest weight (0.18 in
May and 0.06 in October).

The relevance of the 2 factors is
portrayed by PCO of site centroids
(Fig. 4). The species that mostly drove
the distribution of points along this
axis was Corallina elongata (together
with Hypnea musciformis in October),
which was associated with habitats
devoid of fucoids in HU. In contrast,
invertebrates, encrusting corallinales

and other light-sensitive algae (e.g. Valonia utricolaris
and Pterocladiella capillacea) were associated to Cys-
toseira amentacea habitats, especially in SU. The sec-
ond axis was mostly driven by photophilic algae, in-
cluding species belonging to the genus Dictyota and to
the Laurencia complex, which were associated with
habitats lacking fucoids in SU. The SIMPER analysis
(Table 6) highlighted that Corallina elongata was the
species mostly contributing to discrimination among
the different habitats and urbanisation levels. Also,
thin, articulated and encrusting corallinales, Hypnea
musciformis, mussels, barnacles and vermetids con-
tributed to among group dissimilarity.

The abundances of Corallina elongata and of inverte-
brates are reported in Fig. 5 and the corresponding
ANOVA in Table 7. At both sampling times, Corallina
elongata increased from SU to HU, while invertebrates
showed the opposite pattern, particularly in May. Coral-
lina elongata was by far the most abundant species in
habitats lacking fucoids (reaching >90% of cover at HU
in May) and its abundance significantly decreased in
habitats of Cystoseira compressa and even more in habi-
tats of Cystoseira amentacea, where it reached values

66

OctoberMay

0

200

400

600

800

D
ry

 w
ei

gh
t 

(g
 m

–2
)

C. amentacea

C. compressa

0

10

20

30

40

H
ol

d
fa

st
 c

ov
er

 (%
)

0.0

0.4

0.8

1.2

1.6

2.0

A
xi

s 
le

ng
th

 (c
m

)

0
2
4
6
8

10
12
14

B
ra

nc
h 

le
ng

th
 (c

m
)

0

200

400

600

800

0

10

20

30

40

0.0

0.4

0.8

1.2

1.6

2.0

0
2
4
6
8

10
12
14

SU MU HU SU MU HU
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near 5% at SU (Fig. 5). Invertebrates
were inversely affected by habitat,
being most abundant in habitats of
Cystoseira amentacea and signifi-
cantly decreasing in habitats of Cys-
toseira compressa and even more in
habitats lacking fucoids. In May, in-
vertebrates decreased linearly from
SU to HU, while in October, although
always significantly less abundant at
HU, invertebrates were more abun-
dant at MU than SU (Fig. 5). This pat-
tern was mostly driven by mussels
(SU: 3.5% ± 1.3; MU: 6.9% ± 2.1; HU:
2.8% ± 0.9).

Overall diversity of understorey
assemblages decreased significantly
as a function of both Urbanisation
(maximal diversity at SU, minimal at
HU) and Habitat (maximal diversity
in habitats of C. amentacea, minimal
in habitats lacking canopies, Fig. 6).
In May (period of maximum algal
development in the Mediterranean
Sea), there was an interaction
between the 2 factors (Table 8),
which can be explained by lack of
differences between the 2 Cysto-
seira habitats at SU.

DISCUSSION

Several factors have been sug-
gested to trigger the loss of large
brown algae, including urbanisation
and eutrophication (Munda 1993,
Benedetti-Cecchi et al. 2001, Soltan
et al. 2001), increase in water turb-
idity and sedimentation (Vogt &
Schramm 1991, Eriksson et al. 2002,
Airoldi 2003, Schiel et al. 2006), over-
grazing (Jenkins et al. 1999a,b,
Benedetti-Cecchi et al. 2000, Steneck
et al. 2002, Thibaut et al. 2005, Hereu
2006) and climate change (Serio et al.
2006, Moore et al. 2007). While this
study is correlative and therefore
cannot reveal cause–effect relation-
ships, urbanisation remains the most
plausible explanation for the ob-
served patterns, highlighting that
some Cystoseira spp. are more sensi-
tive than others to coastal urbanisa-
tion. Our results indicate that C.
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Taxon Species Acronym

Ocrophyta Colpomenia sinuosa Col
Filamentous phaeophyta (Sphacelaria tribuloides) FP
Dictyota spp. (D. dichotoma, D. fasciola) Dic
Dictyopteris polypodioides D.po
Stypocaulon scoparium Sty
Taonia atomaria Tao
Padina pavonica Pad

Chlorophyta Bryopsis duplex Bry
Caulerpa racemosa Cau
Cladophora spp. (C. albida, C. coelothrix, C. hutchinsiae, C. laetevirens) Cla
Filamentous chlorophyta (Flabellia petiolataa, Pseudochlorodesmis furcellata) FC
Ulva spp. (U. compressa, U. laetevirens) Ulv
Valonia utricularis Val

Rhodophyta Apoglossum ruscifolium Apo
Chondracanthus acicularis C.ac
Chondria spp. (C. boryana, C. capillaris, C. dasyphylla) Cho
Corallina elongata Cor
Encrusting corallinales (Lithophyllum incrustans, Neogoniolithon brassica-florida) EC
Filamentous rhodophyta (Boergeseniella fruticulosa, Callithamnion granulatum, C. tetragonum, FR
C. rubrum, Dasya cfr corymbifera, Falkenbergia rufolanosa, Ceramium ciliatum, 
Feldmannophycus rayssiae, Lophosiphonia cristata, L. obscura, Polysiphonia spp., 
Pterosiphonia parasitica)

Gastroclonium clavatum Gas
Grateloupia filicina Gra
Hypnea musciformis Hyp
Laurencia complex - cylindrical (L. intricata, L. obtusa, Chondrophycus thuyoides) LCC
Laurencia complex - flat (Osmundea truncata, O. verlaquei) LCF
Lithophyllum byssoides Lit
Peyssonnelia spp. Pey
Porphyra spp. (P. leucosticta, P. umbelicalis) Por
Pterocladiella capillacea Pte
Rhodymenia ardissonei Rho
Schottera nicaeensis Scho
Schyzimenia dubi Schy
Scinaia furcellata Sci
Small Gelidium like (Gelidiella pannosa, Gelidium crinale, G. pusillum) Gel
Thin articulated corallinales (Amphiroa rigida, Haliptilon virgatum, Jania corniculata, J. rubens) TAC
Wrangelia penicillata Wra

Mixed algal OTU Encrusting non corallinales (Aglaozonia stadium, Hildenbrandia spp., Ralfsia spp.) ENC

Anellida Gregarian serpulids (Filograna sp.) GS
Individual serpulids IS

Arthropoda Barnacles (Balanus perforatus) Bar

Bryozoa Encrusting bryozoans (Schizobrachiella sanguinea) EB

Cnidaria Actiniarians Act
Aglaophenids-plumularids (Aglaophenia kirchenpaueri) Agl
Corynactis viridis C.vir  
Hydrozoans (other) Hyd
Paracoryne huvey Par

Mollusca Gastrochaena dubia G.du
Mussels (Mytilus galloprovincialis, Mytilaster spp.) Mus
Limpets (Patella spp., Fissurella spp.) Lim
Vermetids (Vermetus triquetrus) Ver

Porifera Cliona spp. Cli
Encrusting sponges ES

Tunicata Didemnids (Didemnum maculosum) Did

aThis species was included in the group Filamentous chlorophyta because only its filamentous form was found in the samples

Table 2. Taxa found with visual census and their grouping for data treatment. Taxa reported in parentheses were identified in 
the laboratory
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Source of variation df May October Denominator MS
MS F p MS F p

Habitat 2 25241.426 26.48510 0.0001 22545.9773 22.0482 0.0001 Ha × Si(Ur)
Urbanisation 2 16166.822 9.2084 0.0001 10839.5802 05.8641 0.0009c Si(Ur)
Site(Ur) 6 01755.669 2.5099 0.0016 01848.4630 03.4403 0.0001 Res
Ha × Ur 4 03749.058 3.9338 0.0016a 01684.0610 01.6469 0.1044 Ha × Si(Ur)
Ha × Si(Ur) 120 00953.042 1.3625 0.0888 1022.5758 01.9032 0.0028b Res
Residual 540 00699.499 0537.2916
Total 800

A posteriori comparisons: aHabitat × Urbanisation: see Table 4; bHabitat × Site(Ur): see Table 5; cUrbanisation: SU, MU:
p = 0.2148; SU, HU: p = 0.0139; MU, HU: p = 0.0130

Table 3. PERMANOVA on understorey benthic assemblages. Bold: significant p values. Cystoseira amentacea habitat = CA; 
C. compressa habitat = CC; habitat lacking fucoids = NC

Factor Habitat patch Factor Urbanisation
SU MU HU CA CC NC

CA, CC 0.1187 0.0055 0.0873 SU, MU 0.0185 0.0136 0.0583
CA, NC 0.0049 0.0019 0.0092 SU, HU 0.0155 0.0034 0.0090
CC, NC 0.0185 0.0281 0.0141 MU, HU 0.0205 0.0291 0.4404

Table 4. A posteriori comparisons (p values) for the significant Habitat × Urbanisation interaction (May, Table 3)

SU A SU B SU C MU A MU B MU C HU A HU B HU C

CA, CC 0.0386 0.0506 0.3150 0.0221 0.0148 0.0121 0.1941 0.0176 0.2859
CA, NC 0.0151 0.0208 0.0024 0.0041 0.0027 0.0016 0.0131 0.0012 0.0402
CC, NC 0.0976 0.0309 0.0198 0.3452 0.0503 0.0206 0.0153 0.0091 0.1882

Table 5. A posteriori comparisons (p values) for Habitat × Site(Ur) significant interaction (October, Table 3); test for Habitat effect
within each level of factor Site(Ur). Levels: Site A, B and C within each level of factor Urbanisation (SU, MU and HU)

Fig. 4. PCO of site centroids. Abbreviations for urbanisation levels as in Fig. 2. Cystoseira amentacea habitats = CA; C. compressa
habitats = CC; habitats lacking fucoids = NC. Other abbreviations: see Table 2
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amentacea habitats were lost close
to urban areas, in agreement
with previous observations
(Thibaut et al. 2005, Arèvalo et al.
2007 and references therein),
while C. compressa slightly in-
creased, as also observed by Giac-
cone (1993) and Thibaut et al.
(2005). The slightly increased
abundance of C. compressa close to
urban areas could be due to re-
duced competition with C. amen-
tacea.

While habitat cover changed
notably along the urbanisation
gradient, the biomass and morpho-
logical characteristics of the 2 spe-
cies of Cystoseira did not vary as
much, and we observed a high
variability at small spatial scales
and between times, as is common
in Cystoseira spp. (Ballesteros
1988, Pizzuto et al. 1995). Only the
length of axes of C. compressa
increased towards the most
urbanised shore. This could be
related to possible release from
competition with C. amentacea,
but we cannot exclude effects of
other environmental factors. Mani-
pulative experiments involving
cross-transplantation of the 2 spe-
cies will be necessary to clarify the
causes of these patterns.

Overall, the results of the pre-
sent study suggest that while loss
of Cystoseira amentacea is a good
indicator of anthropogenic effects
related to coastal urbanisation, C.
compressa probably is not, due to
its more complex responses. Bio-
mass and morphological features
of the 2 species cannot be consid-
ered good indicators due to their
high variability in space and time.

Benthic understorey assem-
blages were significantly affected
by changes in the distribution of
Cystoseira species along the ur-
banisation gradient. Lack of any of
the 2 species of Cystoseira was the
factor mostly affecting assemblage
structure, but there were also
marked differences between the 2
Cystoseira habitats. The species
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that most responded to changes in habi-
tat structure and urbanisation was
Corallina elongata, a common species
in the northwestern Mediterranean Sea
(see also Benedetti-Cecchi & Cinelli
1992, Benedetti-Cecchi et al. 2001).
This species reached very high cover
(>90%) in habitats lacking fucoids at
the highly urbanised shore, while at the
scarcely urbanised shore it was less
abundant (<50% cover), and became
nearly absent in Cystoseira amentacea
habitats (<5% cover), where it was
replaced by invertebrates and light-
sensitive algae. The greater diversity of
understorey species under fucoid cano-
pies, especially in C. amentacea habi-
tats, suggests that these species may
have a particularly important role in the
amelioration of biological habitat (sensu
Moore et al. 2007), preventing domi-
nance by C. elongata and offering shel-
ter to a variety of species. Conversely,
canopies of Cystoseira compressa did
not seem to exert such a strong effect on
understorey species and were less
effective in preventing colonisation by
C. elongata. Algal turfs, including those
originated by C. elongata have been
suggested to inhibit the recruitment of
many canopy-forming algae (Kennelly
1987, Airoldi 1998, Connell 2005). Al-
though the concept of alternate stability
is controversial (Scheffer et al. 2001 and
references therein), turfs of corallinales
and canopy algae have been proposed
as alternative states in temperate reefs
(Airoldi 2003, Connell 2005); this study
supports the hypothesis that coastal
urbanisation could be a driver of shifts
between canopy habitats and turfs.

Science and management demand
simplified representation of complex
systems, but such simplification de-
pends on correct understanding of nat-
ural history (Dayton & Sala 2001, Day-
ton 2003). The results of the present
study strongly indicate that it is impor-
tant to differentiate among different
species of Cystoseira in ecological stud-
ies, not only because of their different
responses to anthropogenic impacts,
but also because they seem to have dif-
ferent ‘engineering’ effects on under-
storey assemblages. Therefore, species
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Fig. 5. Percentage cover of Corallina elongata (a: May, b: October) and invertebrates (c: May, d: October). Abbreviations as in Fig. 2 
(error bar: SE)

Source of var. df May October Denominator MS
MS F p MS F p

Corallina elongata
Habitat 2 22342.57 135.92 0.0000 9708.88 52.24 0.0000b Ha × Si(Ur)
Urbanisation 2 11547.56 38.36 0.0004 4057.19 12.39 0.0074c Si(Ur)
Site(Ur) 6 301.03 2.29 0.0484 327.51 2.34 0.0439 Res
Ha × Ur 4 845.52 5.14 0.0120a 282.79 1.52 0.2575 Ha × Si(Ur)
Ha × Si(Ur) 12 164.38 1.25 0.2750 185.84 1.33 0.2294 Res
Residuals 54 131.48 139.73
Tot 80

Transf.: none; Cochran’s test: ns Transf.: none; Cochran’s test: ns

Invertebrates
Habitat 2 7526.94 71.24 0.0000 3653.67590 148.50 0.0000 Ha × Si(Ur)
Urbanisation 2 2874.44 48.83 0.0002 798.1759 15.63 0.0042 Si(Ur)
Site(Ur) 6 58.87 1.31 0.2692 051.0617 1.66 0.1500 Res
Ha × Si 4 528.89 5.01 0.0132d 237.1852 9.64 0.0010e Ha × Si(Ur)
Ha × Si(Ur) 12 105.65 2.35 0.0165 024.6034 0.80 0.6510 Res
Residuals 54 44.98 030.8457
Tot 80

Transf.: none; Cochran’s test: ns Transf.: none; Cochran’s test: ns

A posteriori comparisons: aHabitat × Urbanisation: Habitat: SU: NC > CC, CA (**); MU, HU: NC > CC > CA (**); Urbanisation:
CA: HU > MU, SU (**); CC: HU > MU > SU (**); NC: HU, MU > SU (**); bHabitat: CA < CC < NC (**); cUrbanisation: SU < HU
(**); MU < HU (*); SU, MU: ns; dHabitat × Urbanisation: Habitat: SU, MU: NC < CC < CA (**); HU: NC, CC < CA (*); Urban-
isation: CA: HU < MU, SU (**); CC: HU < SU (**), HU < MU (*), MU < SU (*); NC: ns; eHabitat × Urbanisation: Habitat: SU,
HU: NC < CC (*), NC < CA (**), CC < CA (**); MU: NC < CC < CA (**); Urbanisation: CA: HU < SU < MU (**); CC: HU,
SU < MU (**); NC: ns

Table 7. ANOVA of percentage cover in Corallina elongata and invertebrates. Bold: significant; *p < 0.05, **p < 0.01, ns = not 
significant
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identity has to be taken into account in implementing
monitoring actions (i.e. ‘ecological status’ assessment,
sensu Water Framework Directive of the European
Union). C. amentacea var. stricta is a key species in
maintaining habitat complexity and species diversity
in Mediterranean Sea low shores. This species is pro-
tected by the Bern Convention (Council of Europe
1979), but current protection measures do not seem
sufficient to stop its current retreat (Thibaut et al. 2005)
and we recommend that further conservation actions
(i.e. restoration of lost substrata by transplantation,
Susini et al. 2007) be seriously considered.
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