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ABSTRACT: We provide a proof-of-concept demonstration using a novel method for estimating
depth-integrated distributions of chlorophyll from archives of data from ships, buoys or gliders com-
bined with remotely sensed data of sea surface temperature (SST) and surface chlorophyll a (chl a)
from satellites. Our area of application has contrasting hydrographic regimes, which include the
dynamic southern Benguela upwelling system and the stratified waters of the Agulhas Bank, South
Africa. The method involves using self-organising maps (SOMs), a type of artificial neural network,
to identify ‘typical’ chl a profiles regardless of their statistical form, provided several of a similar
shape have been found in the training set. These are arranged in a linear array, ranging from uniform
profiles low in chl a to profiles with high surface or subsurface peaks. We then use generalised mod-
elling to relate these characteristic profiles to remotely sensed surface features, viz. surface chl a and
SST, as well as area, season, and water depth (a proxy for distance offshore). The model accounts for
87 % of the variability in chl a profile and is used to predict the type of profile likely for each pixel in
monthly remote sensing composites of SST and surface chl a and then to estimate integrated chl a
and primary production with the aid of a light model. Primary production peaks in mid-summer,
reaching 5 mgC m2 d™! locally, with an average over the whole area and all seasons of 1.4 mgC m2
d!. Seasonal variation is greatest in the southern part of the west coast, and lowest in the stratified
southeast. Annual primary production for the southern Benguela region including the Agulhas Bank
is ca. 156 million tC yr~!. This is the most robust estimate of primary production in the Benguela sys-
tem to date because it combines the spatial and temporal coverage provided by remote sensing with
realistic vertical chl a profiles.
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INTRODUCTION

Marine phytoplankton play a major role in the global
carbon cycle by fixing large quantities of atmospheric
CO, and sequestering it to the bottom of the ocean.
Phytoplankton also modify the surface of the oceans by
absorbing light and heat energy, altering the physical
and chemical properties of the surface ocean layers
(Morel & Maritorena 2001). They also form the basis of
marine food webs, which ultimately support all fish-
eries world-wide. In particular, phytoplankton play a
crucial role in coastal upwelling areas characterised by
short food webs; despite representing only 2 to 3% of
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marine areas and 8 % of the global marine primary pro-
duction (Antoine et al. 1996), they sustain 20 to 30 % of
global marine fisheries production (FAO 2005).
Remote sensing provides a powerful tool for measur-
ing dynamic ocean properties synoptically, such as
phytoplankton biomass and productivity (Longhurst
1995). Primary production can be estimated over large
scales from the surface chlorophyll a (chl a) concentra-
tion and the surface solar irradiance through the use of
photosynthesis models of various complexity (Morel &
Berthon 1989, Platt & Sathyendranath 1993, Behren-
feld & Falkowski 1997). Although the performance of
each model in estimating in situ production is not
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related to their intrinsic complexity (Campbell et al.
2002), few of them directly incorporate information on
the vertical distribution of phytoplankton.

Sensitivity analyses of primary production models
(Platt & Sathyendranath 1988) show that the error in
estimates of photosynthesis can be considerable when
the chlorophyll maximum is near the surface. This is
generally the case in coastal upwelling areas, where
profiles are variable due to the wide range of oceanic
conditions from active upwelling cells and filaments
inshore to stratified waters offshore.

Several methods have been developed for describ-
ing non-uniform biomass profiles in the oceans. How-
ever, these methods tend to produce profile categories
that are fixed for large spatial and temporal scales and
may not be representative of the smaller scale vari-
ability in chl a profiles.

Recently, more flexible approaches using a suite of en-
vironmental variables have been used to estimate the
shape of chl a profiles. Techniques such as self-organis-
ing maps (SOMs), a type of artificial neural network par-
ticularly adept at pattern identification (Kohonen 1997,
Hewitson & Crane 2002, Richardson et al. 2003) have
been used to identify limited sets of characteristic chl a
profiles from archives of vertical chl a traces (Silulwane
et al. 2001, Richardson et al. 2002). However, these stud-
ies did not use raw chl a profiles, but first
parameterized the profiles using the
shifted Gaussian model (Platt et al. 1988,
Longhurst et al. 1995, Sathyendranath
et al. 1995) and then based the SOM on
these parameter values. This not only
constrains the patterns identified to be
Gaussian in shape, but the more un-
usual profiles that do not fit the shifted
Gaussian model also have to be re-
moved prior to analysis (e.g. ~15% of
the profiles in Silulwane et al. [2001]
and Richardson et al. [2002]). Another
approach has been to use generalised
modelling to estimate the 4 parameters
of the shifted Gaussian model from sev-
eral environmental variables (Richard-
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describing the variation in vertical profile shape. We
illustrate this approach by applying it to an area off
southern South Africa that includes the dynamic
upwelling cells of the southern Benguela region and
the warm stratified conditions of the Agulhas system
(Hardman-Mountford et al. 2003). Relatively few pri-
mary productivity estimates have been made in this
region (but see Brown et al. 1991, Probyn et al. 1994,
Carr et al. 2002), and none have used dynamically
varying chl a profiles in their estimates. We first use
self-organising maps to identify a limited set of gener-
alised chl a profiles from an archive of nearly 2500 pro-
files in the region. We then use a generalised model-
ling approach to predict the characteristic chl a profiles
from a suite of easily measured environmental vari-
ables. These are used to produce the most robust
regional estimates of integrated chl a and primary pro-
duction in the Benguela upwelling and Agulhas Bank
systems to date.

MATERIALS AND METHODS

Collection of chlorophyll profiles. Oceanographic
data were collected during fisheries surveys off the
west and south coasts of South Africa (Fig. 1) by

son et al. 2003). These studies have had
some success (r? of parameter values
ranging from 15 to 74 %) in predicting
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the subsurface shape of chl a profiles
from predictors that can be estimated
from satellite (sea surface temperature,
SST; surface chl a) or are known (water
column depth, season and location).

In the present study we develop a
generic quantitative approach to
derive primary production estimates
using a simple light model and by

Fig. 1. Benguela and Agulhas systems showing sampling locations and bathy-
metry, with 200 m and 1000 m isobaths. Sub-areas used in the generalized
model are eastern Agulhas Bank (EAB, east of 20°E), western Agulhas Bank
(WAB, from 20°E to 34°S) and west coast (WCO, north of 34°S), delimited by
dashed lines. Areas numbered 1 to 3 are those used to present the results of the
remote sensing analyses. The Namaqua cell is included in Area 1, and the St.
Helena Bay (32°S) and Cape Peninsula (33-34°S) cells plus the western Agul-
has Bank (from Cape Point to Cape Agulhas, 18.5 to 20°E) are all in Area 2. The
south coast includes the central and eastern Agulhas Bank (up to 29°E) and
forms Area 3. The offshore limit used is the average position of the 0.5 mg m™3
surface chl a isopleth (thick black line); dots represent positions where ship’s
data was gathered
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Marine and Coastal Management, Department of
Environmental Affairs and Tourism, South Africa.
Generally, each transect started 2 miles (1 statute
mile = 1.609 km) from the coast, had stations 10 miles
apart, and extended to the shelf-edge, although some
transects were extended farther offshore. Fluores-
cence and temperature profiles were measured at each
of 2500 stations down to 100 m or to within 5 m of the
seabed (Fig. 1) by a thermistor and profiling fluoro-
meter (Chelsea Instruments AquaTracka MKIII) be-
tween 1985 and 2002. Water samples were collected in
Niskin bottles at the surface and at the depth of maxi-
mum fluorescence and assessed for chl a using stan-
dard techniques (Parsons et al. 1984).

Despite the well-known problems of using chla as a
surrogate for phytoplankton biomass (e.g. Cullen 1982,
Legendre & Michaud 1999), we used it in this study
because it is the biological variable most easily mea-
sured by satellite ocean colour (Morel & Berthon 1989,
Sathyendranath & Platt 1993). The relationship be-
tween chl a and fluorescence is dependent upon the
phytoplankton community present, which can change
seasonally and spatially. We computed the linear rela-
tionship between extracted surface chl a (log;o trans-
formed) and fluorescence separately for each cruise
and for different areas within each cruise. High
extracted surface chl a values corresponding to low
fluorescence values measured by the fluorometer dur-
ing the daytime were considered to be photo-inhibited
(Cullen 1982, Cullen & Lewis 1995) and were excluded
from the regression. Unfortunately, most of the ship-
board data were collected before SeaWiFS data
became available, and only 240 shipboard stations
overlap with the ocean colour measurements.

Seasons were defined with a 1 mo lag from con-
ventional seasons (e.g. summer: January to March)
because of the lag in ocean response to atmospheric
forcing. Three areas were defined (Fig. 1) based on
their physical oceanographic characteristics and the
number of shipboard observations available in each
region. The west coast has seasonal upwelling, the
western Agulhas Bank has some upwelling with a
deep thermocline, and the eastern Agulhas Bank has a
shallow thermocline. Depth of the water column was
chosen to indicate the position in relation to the shore
and continental shelf, and was estimated from the lati-
tude and longitude of each profile using the latest
General Bathymetric Chart of the Oceans (GEBCO)
bathymetric chart release (I0C, IHO and BODC 2003).

Identification of characteristic profiles. The Self
Organizing Map (SOM) is a dimension-reducing pro-
cedure whereby a multidimensional input is mapped
onto a lower (usually 2-) dimensional continuous out-
put space. The output space consists of a number of
patterns characteristic of the data, with similar patterns

neighbouring, and dissimilar patterns farther apart. As
the output patterns resemble the input format, they are
often more easily interpreted than data obtained using
output from conventional multivariate techniques.

SOMs were applied to raw chl a profiles; thus, we
did not need to exclude any profiles as was the case in
previous studies. We first smoothed the profiles using
a 3-point running mean and then interpolated these
smoothed profiles at 1 m intervals. For profiles in
water shallower than 100 m, a missing data code was
used to make all input rows the same length (Koho-
nen et al. 1996). Missing data do not bias SOM results
(Richardson et al. 2003). Thus, input data consisted of
a table of the chl a at 100 depth intervals (columns) by
the 2498 profiles (rows). The SOM was performed
using the SOM_Pak software Version 3.1 for Windows
(Kohonen et al. 1996), which is produced by and
freely available from the Neural Network Research
Centre at the Helsinki University of Technology
(www.cis.hut.fi/research/som_lvq_pak.shtml). This pro-
cedure generates an array of generalised chl a pat-
terns (Richardson et al. 2002). For more details on the
SOM procedure, consult Kohonen (1997), Hewitson &
Crane (2002) or Richardson et al. (2003). The step-
by-step detailed presentation of the SOM method as
applied to chl a profiles can be found in Richardson
et al. (2002).

The SOM arranges the output of the analysis into a
rectangular diagram of characteristic patterns. Each of
the characteristic profiles has chl values for 100 depths.
In the current analysis (see Fig. 2) we chose a 1D con-
figuration of the rectangular topology (15 columns by
1 row). The 1D configuration rather than a 2D configu-
ration was chosen to capture a continuum of change in
the profile shape that could more easily be used to pre-
dict the characteristic profile from environmental vari-
ables (see information on generalised modelling in the
following subsection). Both smaller and larger dimen-
sion maps were explored with similar results, but 15
nodes (i.e. 15 characteristic profiles) appeared to cap-
ture the variability in the profile shape adequately. Too
many nodes do not adequately reduce the data to char-
acteristic patterns, whereas too few nodes do not allow
differentiation of underlying patterns.

To perform the SOM, a number of parameters need
to be set. Various values of the learning rate, initial
update radius, and the number of cycles were tested to
determine the best overall map, with the best combina-
tion, in terms of the minimum overall error and, thus,
the best fit to the input data, being a 2-step training
process (Step 1: learning rate = 0.2, initial update
radius = 3, number of cycles = 1000; Step 2: learning
rate = 0.1, initial update radius = 0, number of cycles =
10000). The SOM was randomly initialised and run 50
times to obtain the lowest quantisation error (a good-
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ness-of-fit measure that minimises errors between the
characteristic and raw profiles).

Predicting chl a profiles from environmental vari-
ables. To predict the characteristic profile (i.e. profile
number 1 to 15) from a suite of easily measured envi-
ronmental variables, we used a 2-step generalised
modelling approach (see Richardson et al. 2003). In the
first step, relationships between the 15 ordered charac-
teristic profiles from the SOM and various surface
observations collected with the profiles were assessed
using Generalised Additive Models (GAMs). A GAM
estimates the relationship between the response and
each predictor, assuming no a priori form (Hastie &
Tibshirani 1990). Such a non-linear approach was used
because of the complex interaction of biology (e.g.
physiological state and particular species present) and
physics (e.g. shear between water parcels, currents)
controlling the shape of profiles. Continuous predictor
variables used were surface chl a, SST, and water col-
umn depth. Predictors were selected because they
influence profile shape (Richardson et al. 2002) and
can be measured from satellite (SST and surface chl a
concentration) or are known (season, locality, and
depth of water column). Two of these predictors were
categorical, viz. season and area. The response (profile
number) was treated as a continuous variable because
of the relatively large number (15) of categories.

The response is modelled as a sum of smooth func-
tions of the predictors using a Loess smoother (effec-
tively a form of moving average). Upon visual inspec-
tion of normality and homoscedasticity, it did not
appear necessary to transform the response. The
GAMs were built using a backward stepwise approach
using Akaike's Information Criterion to identify the
most parsimonious model (MathSoft 2001). Although
GAMs are good at characterising non-linear relation-
ships through their use of smoothers, they do not pro-
vide a predictive equation (Hastie & Tibshirani 1990).
Therefore, in the second step of the generalised mod-
elling process we visually assessed the form of the
relationship between profile number and each contin-
uous environmental predictor by inspection of the
GAM plots, and then parameterised these using piece-
wise linear regression. Categorical variables were
parameterised in an identical fashion to the GAMs.
Parameterisations were implemented as a Generalised
Linear Model (GLM), producing a predictive equation.

Remote sensing data. Several types of remotely
sensed data were used in this study. Surface chl a con-
centration data from September 1997 to August 2003
used in the generalised modelling and in the primary
production model were extracted from the SeaWiFS
Global Area Coverage (GAC) database (currently pro-
cessed with the empirical OC4V4 algorithm; O'Reilly
et al. 1998, Patt et al. 2003) using the SeaDAS software

(Baith et al. 2001). The spatial resolution was kept at
4.5 km, and maps of monthly arithmetic averages were
computed from daily level 2 images. To obtain decon-
taminated averages, a preliminary elimination of resid-
ual cloud contaminated pixels was performed using a
multiple detection of pixels whose value is at least
3 times higher than the surrounding values in a 3 X
3 to 5 x5 box.

A time series of monthly averages of the Photosyn-
thetic Available Radiation (PAR, see oceancolor.gsfc.
nasa.gov/DOCS/seawifs_par_algorithm.pdf) is used to
consider the inter-annual variability of the incident
light available for photosynthesis. This product is gen-
erated from the SeaWiFS top of the atmosphere radi-
ances using standard procedures and statistical rela-
tionships (Frouin et al. 2003).

Monthly averages of SST used in the generalised
modelling were computed from multi-daily METEO-
SAT infrared data over the same time period at a
spatial resolution of 6 km. The lower resolution of the
sensor (5 to 6 km), compared with the 4.5 km of GAC
AVHRR data, is largely compensated by the higher
frequency of observation that allows better cloud
elimination (Demarcq & Citeau 1995).

Primary production. Comparisons of different mod-
els of primary production based on different assump-
tions regarding their spectral resolution have shown
that the broad-band model of photosynthesis irradi-
ance (P-E) gives realistic estimates of production
(Kyewalyanga et al. 1992, Campbell et al. 2002). This
model has a theoretically null bias for values of chl a
around 2 mg m~3, which is close to the average value
found in the region. Primary production was calcu-
lated using a broad-band light transmission model
proposed by Smith (1936) and used by others (e.g.
Platt & Sathyendranath 1993, Carr 2002). The bio-
optical model uses the vertical structure of biomass
to estimate the attenuation coefficient of light with
depth (ky, hereafter referred to as k). The statistical
uncertainty associated with the instantaneous mea-
surement of light is largely subsumed by monthly
averaging of individual daily SeaWiFS measurements
at each pixel location. This is particularly suited
to modelling the inter-annual variability of primary
production.

Benguela waters are mostly of the Case 1 type
(Morel et al. 2006), since there is minimal riverine
inflow. Detailed studies of the relationships between k
and the chl a concentration for Case 1 waters have
been done by Morel (1988) and Giles-Guzman &
Alvarez-Borrego (2000) whose average results are very
close to the result of Riley (1956) that we use below.
The resulting k values averaged from the 3 relation-
ships in the 1 to 10 mg m™3 of chl a interval (typical
values for our region) exhibit a coefficient of variation
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of only 8% (4% in the 1 to 6 mg m™ of chl a interval.
The light calculation was performed each metre down
to the euphotic depth, assumed to be where the PAR is
1% of its surface level.

The whole production model was then applied at
every pixel location on each SeaWiFS monthly image
for 6 yr from September 1997 to August 2003, and the
profile estimated from the GLM relationship based on
environmental predictors. According to the classifica-
tion of primary production models by Behrenfeld &
Falkowski (1997), our model belongs to the category
of the time-integrated models (TIMs) in which depth
is resolved, but both time and wavelength are inte-
grated.

The primary production associated with a given
photosynthetic biomass (P?) can be expressed as:

PP =(E,a®, PE) (1

where of is the initial slope of the P-E curve (in mgC
chl"! h™' [pumol m~? s7'|"!), E is irradiance and P£ the
light-saturated rate of photosynthesis normalized to
chlorophyll (in mgC chl™* h™!). Both parameters are
determined from in situ measurements. The full func-
tion can be expressed by:

P(2)=[B(2)0BE(z)]/V1+[0PE(z) PE] (2)

P(z) represents primary production and B(z) biomass,
as a function of depth; the light at a given depth z, E(z),
is expressed as a decreasing exponential function of
the light at the sea surface (representing the PAR). We

use the relationship first proposed by Riley (1956) and
used by Nelson & Smith (1991) and Carr (2002):

k=k, +0.0088xC +0.054x C?:5° (3)

where k, is the attenuation coefficient of pure sea
water (equal to 0.04).

P(z) is expressed as carbon production in mgC m3
h~!. In the southern Benguela region, of = 0.0193 and
P2 =3.61 are typical values (Mitchell-Innes 2000), ob-
tained by averaging all measured values. Despite their
large variability in space and time in upwelling sys-
tems, these values are close to those reported in
Chilean upwelling areas (o = 0.021 and PE =2.84,
Montecino et al. 2004). Although P Z is known to rep-
resent physiologically related variability and generally
has a positive relationship with temperature, no data
are currently available to explore this variability at spa-
tial and temporal scales compatible with our regional
approach. Furthermore, the value of P2 used here is
calculated for an average SST of 15°C, which is also the
average seasonal SST in most of our area of interest.

RESULTS
Characterising vertical profile shapes
The SOM map of 15 characteristic chl a profiles

obtained from 2498 data profiles is shown in Fig. 2.
Ordering of the map is based on the SOM multivariate
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Fig. 2. Self-organic maps (SOM) patterns: the output map of the 15 x 1 SOM of vertical chl a profiles using 2498 profiles as input.
The SOM output map of characteristic profiles is numbered from 1 to 15
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analysis over all depths. This produces a matrix of
characteristic depth profiles and a map in which the
characteristic profiles are ordered. The characteristic
chl a profiles represent common patterns in the data.
The procedure has arranged the profiles according to
common patterns, ranging from Profile 1 with little ver-
tical structure, low surface chl a and low integrated
chl a, to Profile 15 with clear subsurface peaks and
high surface and water-column integrated chl a, with a
gradation in between. Some of the characteristic pro-
files have highest chl a values near the surface, while
others have subsurface peaks.

Table 1 gives the surface and water-column inte-
grated chl a values of each of the characteristic profiles
identified by the SOM. Because the actual chl a pro-
files were used in this analysis, it is of interest to assess
how closely a Gaussian distribution fits these charac-
teristic profiles, which are obtained without any
assumptions about profile shape. Visually, the profile
shapes resemble the Gaussian distribution quite
closely. Generalised chl a profiles identified by the
SOM were compared with the standard shifted Gauss-
ian model (not shown). Table 1 also shows the good-
ness of fit (r?) to a shifted Gaussian curve. These values
have only been calculated down to 50 m because there
is little variation in the profiles below this depth. The
shifted Gaussian curve represents all 15 characteristic
profiles reasonably well, although Profiles 1 and 6
show some deviation from this shape

Relationships of profiles to surface variables

The GAM for predicting the 15 characteristic pro-
file shapes from the suite of surface variables is
shown in Fig. 3a. The GAM explains 88.1% of the
variability in profile shape. Each plot illustrates the
non-linear relationship between the response (pro-
file number) and each predictor (adjusted for all
other predictors in the model). The y-axis is a rela-
tive scale, and a positive y-value indicates a positive
effect on the response (see Fig. 3 caption). Note that
none of the relationships in Fig. 3a are linear, sup-
porting the use of a GAM.

Surface chl a is by far the best predictor of profile
number (note the range of the y-axis is much larger

than for other variables) and shows a generally
increasing relationship between the profile map
(ordered by the SOM) and surface chl a. Profile num-
ber is also related to season, with significantly higher
values in summer than any other season, and the pro-
file number is higher in spring than in autumn or win-
ter. Profile number also varies regionally, with the west
coast having significantly higher profile numbers than
the Agulhas Bank areas. In terms of temperature, high-
est profile numbers are found at intermediate SST
(13 to 16°C), this range being typical of warming up-
welled water, with lower profile numbers evident in
cool recently upwelled water and in warmer offshore
water. Profile number is not substantially influenced
by depth of water column (a surrogate for distance off-
shore), as the wide confidence limits suggest a weak
relationship.

The result of the GLM parameterised by inspection
of the GAM is shown in Fig. 3b. We parameterised
the non-linear continuous variables in Fig. 3a using
piecewise linear regressions, with a breakpoint at
7 mg m~ for surface chl a, and a breakpoint at 15°C
for SST (Fig. 3b). Four of the predictors are significant
and are retained in the GLM (see ANOVA table for
the GLM in Table 2), as the fifth (Depth) was not sig-
nificant and was dropped from the predictive model.
The total variance explained by the GLM is 87.4%.
Surface chl a concentration (73.3%) is the most
important predictor of profile number, followed by
area (7.1%), season (6.8%) and SST (0.2%). The
GLM equation to predict profile number is given in
Table 3.

Table 2. ANOVA table for the generalised linear model pre-

dicting the characteristic profile number (1 to 15) from the

SOM in Fig. 2 from 4 predictors. The variance explained (r?)

by the model is 87.4 %. The predictor, water column depth,

was not significant and was removed from the model. Sums of

squares (deviance), degrees of freedom (df), F-ratio, and
significance level (p) are given

Effect Deviance df F P
Area 2053.34 2 702.65 0.0000
Chlterm  21093.70 2 7218.27  0.0000
SST term 42.69 2 14.608 0.0000005
Total 28783.16 2497

Table 1. Characteristics of the 15 profiles from the SOM in Fig. 2 including: surface value, integrated value, and goodness of fit (r?)
to a shifted Gaussian curve (Platt & Sathyendranath 1988, Longhurst et al. 1995, Sathyendranath et al. 1995) down to 50 m depth

Profile number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Surface value 0.38 194 091 2.16 3.1 3.11 4.02 6.02 582 6.18 8.89 11.23 14.72 2768 14.24
Integrated chl a 37 121 61 73 139 253 121 96 196 344 161 308 222 382 589
r? Gaussian 0.82 099 097 100 098 082 099 100 100 099 1.00 1.00 1.00 1.00 0.96
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Fig. 3. Generalised models relating vertical profile shape to a suite of predictors: (a) The generalised additive model (GAM) predicts the
characteristic profile number (1 to 15) from the SOM in Fig. 2. The y-axes are transformed relative to the predictor variables on the x-axes
(Hastie & Tibshirani 1990). The y-axis is a relative scale, so that a y-value of zero is the mean effect of the adjusted environmental variable
on the response, a positive y-value indicates a positive effect on the response, and a negative y-value a negative effect on the response. The
mean and 95 % confidence intervals are shown in each plot, and a rug plot indicating the distribution of raw data is included on the x-axis.
Predictors used were season, area, surface chl a concentration, SST and water column depth. (b) The corresponding generalised linear
model (GLM) using a piecewise linear regression for chl a and temperature (see Table 3 for equation details). Water column depth was not
significant and, thus, not included in the GLM model. EAB: Eastern Agulhas Bank; WAB: Western Agulhas Bank; WCO: West Coast; cbind:
breakpoint between 2 straight lines

Distribution of characteristic profiles

Our area of study was initially subdivided into 5
sub-areas based on the spatial and seasonal variabil-
ity of primary production and on local hydrography.
For simplicity of presentation, these were later
reduced to produce only 3 sub-areas (numbered in
Fig. 1). Note that Areas 1 and 2 are different from
sub-areas used for modelling shipboard profiles (west
coast and western Agulhas Bank, see Fig. 1). The
Namaqua cell is included in Area 1, and the St.
Helena Bay (32°S) and Cape Peninsula (33 to 34°S)
cells plus the western Agulhas Bank (from Cape
Point to Cape Agulhas, 18.5 to 20°E) are all repre-
sented in Area 2. The south coast includes the cen-
tral and eastern Agulhas Bank (up to 29°E)
and forms Area 3. Fig. 4 shows the distribution of the
15 characteristic chl a profiles for each pixel by area
and season over the 6 yr period of satellite obser-
vations, as modelled by the GLM. Profiles have been
pooled into 4 groups for simplicity, with Profiles 1 to
4 having the lowest integrated chl a and 13 to 15 the
highest.

Seasonal changes in chlorophyll and primary
production

We used this predictive relationship based on
remotely sensed SST and surface chl a to predict the
profile shape at any location and time. Surface chl a
biomass is shown in Figs. 5a & 6a; this was used to cal-
culate seasonal maps of integrated chl a (Figs. 5b & 6b)
using the generalised model and primary production
(Figs. 5¢ & 6¢) using the bio-optical model.

In terms of surface chl a, maximum densities
(>20 mg m~®) and greatest offshore extent (200 km) are
found on the west coast from St. Helena Bay north-
wards (29 to 33°S) from austral spring to autumn
(Fig. 5a). Integrated chl a (Figs. 5b & 6b) attains its
greatest offshore extent (150 to 200 km) on the west
coast in spring and summer with a local maximum of
>400 mg m2 in St. Helena Bay (Fig. 5b), while the
maximum integrated chl a appears in spring farther
north on the west coast. Integrated chl a peaks on the
south coast during autumn (Fig. 6b) corresponding to
surface chl a of >8 mg m™ and integrated values of
>200 mg m~2. Maximum rates of primary production
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Table 3. Equation of the generalised linear model (GLM) for predicting characteristic profile number (1 to 15) from the SOM in Fig. 2.
Predictors used were season, area (EAB, WAB, WCO; see Fig. 1), surface chl a concentration and sea surface temperature (SST)

0 , if season = Summer
—-0.2816, if season = Autumn
Y =10.3702+ . ]
—-0.0948, if season = Winter

0.0156, if season = Spring

0 , if region = EAB
+4-0.0749, if region = WAB
—-0.0530, if region = WCO

+{l.2876 x (chl-7), if chl < 7}+{ 0.1203, if SST <15}
0.2688 x (chl-7), if chl > 7 —-0.0830, if SST 215

seasonally reach 5 to 6 gC m™2 d™! on the west coast
(Fig. 5c). Primary production is higher from Cape
Agulhas all the way up the west coast in spring and
summer, reflecting the higher PAR. Similar to the sur-
face and integrated chl a, the centre of maximum pri-
mary production is farther north on the west coast
(north of Hondeklip Bay) during spring. Highest aver-
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Fig. 4. Distribution of 15 characteristic profiles (depicted in
Fig. 2) as modelled for each pixel, classified by area and sea-
son over the 6 yr period of satellite observations. Profiles
range from 1 (low integrated chl a) to 15 (high chl a) for the
3 areas defined in Fig. 1. Austral seasons arranged from
summer (January—March) to spring (October—-December)

age primary production (ca. 2.5 gC m™2 d!) on the
Agulhas Bank is found on the far eastern Bank (23 to
27°E) in summer (Fig. 6¢). The large distinct autumn
feature on the eastern Bank between 21 and 22°E is
clearly evident in the surface and integrated chl a
maps in autumn, but only leads to slightly faster pri-
mary production rates than in summer.

Maps of surface and integrated chl a are most differ-
ent in areas where subsurface peaks are more com-
mon. For example, elevated surface chl a values on the
Eastern Agulhas Bank (ca. 25 to 26°E) correspond
to relatively moderate values of integrated chl a. In
terms of primary production, the same area shows
even greater differences, mainly in autumn and winter
when light is limiting.

Monthly averages of surface chl a, integrated chl a,
primary production and PAR were computed for each
of our defined areas (Fig. 7). Areas 1 and 2 have simi-
lar seasonal ranges in surface chl g, integrated chl a
and primary production. Values for primary production
in Areas 1 and 2 range from 1 to 2 gC m~2 d~! through-
out the year, whereas that in Area 3 ranges from 0.75 to
1.5gCm™2d™

In terms of seasonal variation, surface chl a con-
centration in Areas 1 and 3 has less seasonality than
Area 2 (coefficients of variation [CV] of 20 and 22 %,
respectively, against 30%). However, vertically in-
tegrated chl a (Fig. 7a) is less variable seasonally in all
areas (CVs of 12, 9 and 16 %, respectively, for Areas 1,
3 and 2). The seasonality of the primary production
(Fig. 7b) is again more pronounced (average CV of
29%) than that of the surface and integrated chl a for
all areas, reflecting the seasonality of PAR.

Overall changes in chlorophyll and primary
production

A space-time diagram (Hovmoller plot) summarises
the spatio-temporal variability of primary production
in the region (Fig. 8) by averaging the production
between the coast and the 0.5 mg m~3 offshore limit of
surface chl a and over the depth dimension down to
the 1% light level. This diagram summarises the pri-
mary production estimated for every pixel of coastline
and for every month, highlighting the inter-annual,



Months

Demarcq et al.: Estimating primary production 67

Fig. 5. West coast (Africa) maps of seasonal
averages for (a) SeaWiFS remotely sensed
surface chl a, (b) integrated chl a biomass com-
puted from the generalised linear model and
(c) primary production (PP) calculated from
the integrated chl a and a light algorithm. Co-
ordinates are latitude (°S) and longitude (°E)

JFM

seasonal and latitudinal variations in
primary production.

The primary production shows strong
seasonality, with clear winter minima
(between June and July), mainly driven
by sunlight. The latitudinal variability
is high and is associated with the main
upwelling cells. The west coast area is
characterised by consistently fast pro-
duction rates around 28 to 29°S
(Orange River) and 32 to 34°S (St
Helena Bay to Cape Peninsula), with
monthly average maxima between 4
and 6 g C m2 d'. A similar production
level is observed between the Cape
Peninsula and 20°E (Cape Agulhas), an
area of strong seasonality, whereas the
rest of the south coast appears to be
much less productive, except between
26 and 28°E (around Port Elizabeth)
and much more episodically between 22
and 26°E during summer (maxima
around 3 gC m2d™).

Fig. 9 shows the inter-annual dynamics
of the primary production of the 3 areas
defined in Fig. 8 (see Fig. 1 for location).
No trend is visible and no particular year
stands out dramatically above or below
the average. Some particularly high val-
ues are observed in summer in 1998
(Area 1, ca. 2.5 gC m2 d!) and in 2000
(Area 2, ca. 2.2 gC m™? d™!), and some
low values in 2001 and 2002. It is inter-
esting to note that even at the monthly
time step of the study, at least 2 peaks of
production generally occur in summer,
showing the dynamic nature of the up-
welling. There are also marked changes
in the shape of this seasonal cycle each
year. For example, Area 3 shows peaks
early in the upwelling season in 1997-98,
1998-99, 2001-02, but peaks later in
the season in 1999-2000, 2000-01, and
"3 —— 2002-03.

0.1 1.0 10.0 100 200 300 400 1 3 5 Despite these observations, the inter-
mg m= mg m= gCm?2d"’ annual CV is particularly low and stable
Surface chla Integrated chl a PP across seasons and areas (CV = 5.5%
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Fig. 6. South coast (Africa) maps of seasonal averages for (a) SeaWiFS remotely
sensed surface chl a, (b) integrated chl a biomass computed from the generalised
linear model and (c) primary production calculated from the integrated chl a and
a light algorithm. Coordinates are latitude (°S) and longitude (°E)
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Fig. 7. Monthly averages of (a) integrated chl a (bars) and surface chl a (line), and (b)
primary production (bars) and PAR (lines) for each of the 3 areas defined in Fig. 1

on average). All partial inter-annual
CVs (by areas and by seasons) range
from 3.3 to 7.8 %.

Total primary production and
sensitivity tests

The annual primary production
averaged over the 6 yr period of
study is shown in Fig. 10. Highest
values are inshore on the west coast,
delimited by the 3 gC m™2 d~! con-
tour. The contours for 2 and 1 gC
m2 d! are also given. Table 4 sum-
marises values of surface chl a, inte-
grated chl a biomass and primary
production for each of the 3 areas.
Areas 1 and 2 appear to be very sim-
ilar in terms of surface chl a (2.6 to
2.7 mg m~®) and very close in terms
of biomass (78 and 76 mg chl a m2,
respectively) and primary produc-
tion (1.6 gC m™2 d™' for both areas).
Area 3 shows lower average values
of surface chl a (1.4 mg m™7), but
comparatively high values of produc-
tion (1.2 gC m™2 d!). Total primary
production in all 3 areas reaches
156 million tC yr .

Several tests were performed to
evaluate the sensitivity of production
values to input variables of the model:
surface chl a, PAR and the photosyn-
thesis parameters, o (alpha) and P2
(hereafter given as P,x), as well as
the potential sensitivity of P, to tem-
perature (not included in the model).
The tests involved applying a range of
variability (-50%, +50%) to the 4
main input variables, with the excep-
tion of PAR (-30%, +30%) because
the observed variability of PAR is
lower and less subject to variability at
the monthly scale we used.

Results are expressed in terms of a
sensitivity factor, defined as the ratio
of the observed variation of the output
variable (primary production) to the
variation applied to the tested input
variable. Thus, a sensitivity factor of
+0.5 indicates that we observed a pos-
itive increase of production of only
50 % corresponding to an increase of
100 % of the input variable.
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Fig. 8. Hovmoller plot of primary production on the west and south coasts

of southern South Africa over the 6 yr period of satellite observations. The

geographic areas numbered on the right are those of Fig. 1. Values are aver-
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Fig. 9. Smoothed time series from 1997 to 2003 of average monthly primary
production in the southern Benguela and Agulhas Bank systems for each of the
3 areas defined in Figs. 1 & 8

Fig. 11 shows that the sensitivity of modelled pri-
mary production varies among the P-E variables by a
factor of >3, from 0.4 to 1.3, being the least sensitive

to surface chl a and most sensitive to
alpha. Surface chl a and P,., have
moderate and similar sensitivity fac-
tors, respectively 0.34 and 0.43. The
importance of PAR is significantly
greater (0.58), while alpha, the initial
slope of the photosynthesis function,
gives a high average sensitivity factor
of 1.15. Sensitivity decreases in a
somewhat linear manner for all 4 vari-
ables as they are changed from -50 to
+50%. These trends can be explained
by the exponential attenuation of light
through the water column; clearly
attenuation also increases with the
average algal concentration. Interac-
tion effects were also tested (results
not shown) and indicate only a slight
reduction compared with the sum of
the individual effects, notably between
surface chl a and PAR (-2 to +2 %) and
slightly more between alpha and Py
(=7 to +7 %), with a tendency to stabi-
lize the output value. The most impor-
tant conclusion is that all effects are
globally cumulative.

Finally, we tested the potential in-
fluence of SST on P, by simulating
incorporation of the classic relationship
of Eppley (1972):

P

max

(T) = 1.065T2)x P (20°) (4)

(where T is temperature) which is
included in several bio-optical models
(e.g. Morel 1991), keeping in mind the
lack of consensus on the effect of tem-
perature on primary production. In our
area of interest, the upwelling is maxi-
mum during summer, so that the sea-
sonal amplitude of the SST is reduced
(Demarcq et al. 2003) and varies from
12 to 18°C. Following the Eppley
(1972) relationship, the effect on P«
ranges from —-13 to +15 %, correspond-
ing to an effect on primary production
ranging from -6 to +6 % (from the pre-
vious sensitivity of P, itself). Conse-
quently, accounting for SST would
moderately increase the seasonal am-
plitude of our modelled primary pro-
duction with a slight increase in sum-
mer values and a slight decrease in

winter. No significant bias is expected since the para-
meters of the P-E function used in the model are
calculated from in situ measurements collected for an
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Fig. 10. Annual average primary production from 1997 to
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Fig. 11. Sensitivity of primary production to the input para-
meters of the primary production model (X: surface chl g,
Vv: PAR, m: alpha, A: P4y

average SST of 15°C (Mitchell-Innes 2000), which is
also the average SST for our area of interest. A future
improvement would be to use a full vertical profile of
temperature instead of the SST alone to test more
accurately the influence of the temperature on P,
at each depth level.

DISCUSSION

The approach outlined here, of applying a simple
primary production model to identify probable profiles
from remotely sensed data, has produced robust esti-
mates of primary production in the Benguela and
Agulhas Bank systems, especially in terms of capturing
its spatial and temporal variability. Previous estimates
have been based on limited sets of in situ data, with lit-
tle information on the spatial and vertical distribution
of the biomass and even less on its temporal variability,
with the exception of preliminary studies using remote
sensing data sets based on chl a concentrations (De
Villiers 1998, Demarcq et al. 2003). Our method com-
bines results from nearly 2500 in situ profiles with
monthly satellite images, allowing us to capture the
spatio-temporal variability in upwelling. This simple
approach can also be applied easily to other regions of
the world, provided that there are sufficient vertical
chl a profiles to develop models linking surface to in
situ measurements. Such profiles are becoming in-
creasingly available from national oceanographic data
centres as chlorophyll sensors are added to floats, glid-
ers, and yo-yo buoys as part of the Global Ocean
Observing System (GOOS).

The procedure of estimating in situ chl a profiles is
consistent with the growing need for data assimilation
techniques to integrate measurements and knowledge
of ecological processes on large spatio-temporal scales.
This is particularly the case in marine science where
sampling is generally coarse compared with the
dynamic nature of the environment, even at the pri-
mary production level. Physical and coupled biogeo-
chemical models provide useful information from a
dynamic point of view, but only make use of in situ
data for calibrating internal processes or for model val-
idation. At the regional scale, the use of relatively sim-
ple generic statistical approaches can distil information
from large in situ data sets, which is particularly useful
for integrating the large volumes of ocean surface data
acquired from space.

Table 4. Annual average surface chl g, integrated biomass and primary production by areas and overall temporal variability
computed from monthly values. Also shown are seasonal primary production values. (-): no data available

Parameter Unit Total SD CV (%) Area 1 Area 2 Area 3
Surface chl a mg chl m™3 2.2 0.52 24 2.6 2.7 1.4
Integrated chl a mg chl m™ 69.8 7.04 10 77.7 76.1 58.9
Primary production gCm2d! 1.4 0.37 26 1.6 1.6 1.2
Summer gCm=2d! -~ _ _ 1.9 2.0 1.4
Autumn gCm2d! _ _ _ 1.2 1.2 1.0
Winter gCm2d! _ _ _ 1.3 1.1 0.9
Spring gCm2d! _ _ _ 2.1 1.9 1.4
Area km? x 1000 302 _ _ 83 99 119
Annual production million tC yr! 156 0.06 0.04 49 56 51
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Possible sources of error and model sensitivity

We have chosen a primary production model that
makes maximum use of the information about the ver-
tical dimension for biomass and light propagation,
although the spectral influence of the light attenuation
is not resolved in the model. The consequence is gen-
erally a slight under-estimation of the values of pri-
mary production corresponding to surface chl a values
of <2 mg m™. No data on the seasonal or spatial
dependence of the parameters of the P-E relationship
in the region were available for use in the model. In
addition, our production estimates may be lower than
in situ measurements because it is not easy to consider
photo-adaptation of phytoplankton at this scale.

The tests on the model sensitivity supply useful
information on the most important variables to be con-
sidered in the production model. Behrenfeld &
Falkowski (1997) state that ‘85% of the variability in
primary production can be attributed to changes in
depth-integrated biomass and less than 15% to PAR.'
This does not consider the uncertainty in variability of
the photosynthesis parameters, but it does show the
importance of considering the vertical structure of the
biomass, rather than making an indirect estimate from
the depth of the mixed layer, as other models do. The
recent comparison of global estimates of primary pro-
duction from the third generation algorithm of primary
production (Carr et al. 2006) clearly shows that most
models (none of which use a global coverage of chl a
profiles) generate a sensitivity factor of 0.75, which is
by far the most sensitive input variable of all the global
models tested. This value is approximately more than
twice the sensitivity factor we found for the surface
chl a in our model. Also, chl a is the variable to which
our model is the least sensitive.

Nevertheless, it is clear that photosynthesis-related
parameters remain among the most sensitive in the
model, particularly alpha, the slope of the P-E function,
but also P,.x, which is less sensitive, but whose natural
range of variation is probably higher. Its variant
prt (optimum photosynthetic biomass), is believed to
account not only for light, but for the photo-adaptive
yield, which itself depends on numerous in situ condi-
tions, such as temperature, nutrient concentration and
the functional group of phytoplankton, a set of vari-
ables for which little is known. As stated by Carr et al.
(2006), 'The large divergence in response to SST per-
turbations illustrates the need to improve our under-
standing, and ability to model, the effect of tempera-
ture on photosynthesis." From the same study, it
appears that along with a better formulation of the
quantum yield and the light field, more data are gen-
erally needed on the vertical distribution of chl a. In
particular, ‘assumptions of steady state and balanced

growth inherent to bio-optical primary production
models cannot reproduce the unsteady disturbed
environment of cells in the ocean.’

Spatial and temporal variability

Platt & Sathyendranath (1988) have shown that a
biogeographical approach including water column
considerations is strongly recommended when apply-
ing primary production algorithms on a large scale.
The spatial and temporal variation of surface chl g,
integrated chl a and primary production estimates pro-
duced in this study are a consequence of the large-
scale meteorological forcing of the area. The major
up-welling cells of Namaqua, St. Helena Bay and the
Cape Peninsula are clearly identified as areas of
enhanced chl a biomass and primary productivity.
Upwelling occurs during spring and summer in these
seasonal cells of the southern Benguela, coinciding
with the times when the trade winds are farthest south
and wind in the region is strongest (Parrish et al. 1983,
Shannon 1985, Hardman-Mountford et al. 2003). This
movement of the trade winds leads to strong seasonal-
ity in integrated chl a and primary productivity off the
west coast of southern South Africa (Areas 1 and 2),
reaching a maximum in spring and summer (Fig. 5). By
contrast, the relatively stable Agulhas Bank (Area 3)
has consistent values of integrated chl a and primary
productivity throughout the year, with only a moderate
dip in autumn and winter (Fig. 6).

This seasonal movement of the wind field also affects
the shape of chl a profiles. Areas 1 and 2 on the west
coast have shallower peaks (i.e. profile number > 5) in
spring and summer (Fig. 4). These areas have high fre-
quencies of the low biomass profiles in autumn and
winter. The more stratified Agulhas Bank area has a
high frequency of pixels (>80 %) with chl a profiles that
have low and uniform biomass (Area 3 in Fig. 4), a con-
sequence of the reduced southerly winds in this area.
During winter, the dominant winds over the Agulhas
Bank are mid-latitude westerlies (Boyd & Shillington
1994), which result in deep mixing, and at this time
profiles with low integrated chl a are more common
than in other seasons.

Estimates of primary production

Our estimates are similar to, but slightly lower than,
estimates made in earlier studies of phytoplankton
productivity off the southwest of Africa (Table 5). For
the area from 29°S to Cape Point (ca. 34°S), the total
primary production is 70 million tC yr!, which is
slightly lower than previous values of 76 million t C yr-!
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Table 5. Comparisons of primary production, surface of productive areas, total biomass (B), annual primary production (P)
and P:Bratio, averaged over the southern Benguela from 29°S to Cape Point (ca. 34°S)

Surface chl a Primary production  Productive area Total biomass  Annual primary P:B Data source
(mg chl m™3) (gCm2d") (km? x 1000) (million t C) production (dh

(million tC yr!)
2.9 1.6 119 0.94 70 0.21 Present study
2.2 2.0 104 0.67 76 0.31 Brown et al. (1991)
2-3 2.6 95 _ 100 _ Carr (2002)

(Brown et al. 1991) and 100 million t C yr~! (Carr 2002).
Our annual average estimate for primary productivity
for the central and eastern Agulhas area (Area 3) of
1.2 gC m™2 d°! (Table 4) is also lower than the few
observed values for this area that have been collected
with a seasonal bias (Probyn et al. 1994).

The first detailed time series of estimated primary
production along the South African coastline provided
here can be used to tease apart contributions of
primary production, transport and retention to the
recruitment of small pelagic fish (Bakun 1996). For
example, there has been no increase in primary pro-
duction over the period of this study, but there has
been an increase in the biomass of pelagic fish (van der
Lingen et al. 2006). The small inter-annual range in
primary production and its lack of trend would not sup-
port the increased production of sardine and anchovy
over this period if the fishery were driven by bottom-
up processes alone (van der Lingen et al. 2006). This is
especially the case during the summer of 2001-2002
when there was lower than average primary produc-
tion (Fig. 9), but record recruitment of sardine. Thus, it
appears that primary production may not be the most
important limiting factor for these stocks in the south-
ern Benguela region at present levels of exploitation,
and physical factors such as advection and retention
may be important (Bakun 1993, Lett et al. 2006).

In conclusion, this paper provides a novel method for
combining the advantages of frequent spatial coverage
of the ocean surface from satellites with sparser
archives of vertical chl a profiles. This has been illus-
trated by data from the southern Benguela upwelling
region and the seasonally stratified Agulhas Bank. We
were able to simplify the inherently complex 3-dimen-
sional spatial variability of primary production by inte-
grating both through depth (1 % light level) and across
an adequate boundary offshore (the 0.5 mg m™3 limit of
surface chl a) along the coast. This integration strongly
reduces the uncertainty of the modelling regarding the
influence of surface chl a values. We provide the most
detailed vertically integrated estimates to date of chl a
and primary production in both time (monthly over
6 yr) and space (ca. 25 km? pixels). Our work esti-
mates the total primary production in the Benguela

system together with the Agulhas Bank at ca. 156 mil-
lion t C yr~!. This estimate should be of use to existing
and future mass balance and simulation models within
the region (e.g. those by Shannon et al. 2004a,b), since
it covers the range of migration of many fish species.
We suggest that this approach could be applied in dif-
ferent biogeochemical provinces of the world's oceans,
given appropriate data for each region in accord with
Platt & Sathyendranath (1988) who argued in favour of
a biogeographical approach with water column con-
siderations when applying primary production algo-
rithms at a large scale. With the imperative to adopt
an ecosystem approach to fisheries by 2010 (United
Nations 2002), we also hope that the time series of pri-
mary productivity estimates provided here will help
underpin ecosystem models that can be used to sup-
port fisheries management in the future.
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