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ABSTRACT

Bayesian methods furnish an attractive approatimeseries data analysis. This article proposesottecasting
models that can detect trend, seasonality, auttessign and outliers in time series data relategotme
covariates. Cumulative Weibull distribution functio for trend, dummy variables for seasonality, fyina
selections for outliers and latent autoregressiorafitocorrelated time series data are used falatseanalysis.
The Gibbs sampling, a Markov Chain Monte Carlo (MCMlgorithm, is used for the parameter estimafite
proposed models are applied to vegetable pricegaries data in Thailand. According to the RMSE,REAand
MAE criteria for model comparisons, the proposediet® provide the best results compared to the exjiah
smoothing models, SARIMA models and the Bayesiadatsowith trend, auto regression and outliers.
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1. INTRODUCTION

Several classical methods have been designed to
handle those components. The Holt-Winters expoaknti

Time series data are observations obtained througtsmoothing method was first introduced more tharf &al

repeated measurements over time.
measuring product prices each month of the yearddvou
comprise time series data. Data collected irrefyular
only once are not time series data. Time series dat be
decomposed into three main components: trend whiah
long term direction, seasonality which is systemaitid
calendar related movements and irregularity whish i
unsystematic and short term fluctuations. Some rothe
components, such as outliers and autoregressioalsan
be implicit in time series data. The presence afs¢h
components could easily mislead the time seriefysina
procedure resulting in the wrong conclusion.

A good time series forecast is essential in dti$iesuch
as sciences, industry, agriculture, commerce amoggics.
The prediction of future events is a critical intb many
types of planning and decision
(Montgomeryet al., 2008).

For examplecentury ago for the trend and seasonal time series

forecast and it is still one of the most populaetasting
systems widely used in many application areas (Szmi
and Szmit, 2012). The autoregressive integratedimgov
average (ARIMA) model is usually used for time eeri
data with trend and autoregression. The seasondflAR
denoted as SARIMA is a generalization and extension
the regular ARIMA. It is used for time series whexe
pattern repeates seasonally over time (Machiwal and
Jha, 2012). Besides those methods, Yelland (2010)
proposed a Bayesian framework, using binary
selections to detect outliers, cummulaitve Weibull
distributions to detect trends and latent autoregjomn
to detect the correlated time series data.

Tongkhow and Kantanantha (2012) proposed Bayesian
forecasting models by applying and adjusting thedeho
proposed by Yelland (2010) in the way that theriblistion

making  process of outliers, autoregression and some prior distiding were

different. The proposed models were applied to tadie
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prices in Thailand which were used in the previgtusly of seasonal factor parameters for the order of autessiye,
Tongkhow and Kantanantha (2011) in which multiple integration and moving average parts of the motlkeé

regression, ARIMA, exponential smoothing, SARIMAdan first bracket indicates the non-seasonal parameters
Bayesian model were used.

This article proposes time series forecasting meodel 2-3. Bayesian Methods
using Bayesian methods to detect trend, seasonality A hierarchical Bayesian model (Congdon, 2010) is
autoregression and outliers. We extend our previousformylated as Equation 1:
models (Tongkhow and Kantanantha, 2012) by inclyidin
covariates related to the time series data ancdsality. b(©[D)= p(D|6)p@®) (1)
The Gibbs sampling, one of the most popular Markov p(D)
Chain Monte Carlo (MCMC) algorithms, is used for
parameter estimation. The proposed models are themwhere, p(D§) is a likelihood, P§D) is a posterior
applied to vegetable price time series data in [&heli distribution which stands for the marginal probipil
which were used in our two previous studies (Tomgkh  density of the parameter vectdmgiven the data D, pf
and Kantanantha, 2011; 2012). The results are catpa is a prior distribution 0B, which summarizes any priori
with the best models in the two previous studieichvh OF alternative knowledge on the distribution @fand
were exponential smoothing, SARIMA and the BayesianP(D) is the marginal distribution of data D.
model with trend, autoregressioon and outliers. rodel The MCMC algorithms are used for parameter
comparisons, some assessment criteria such asviR@ot estlm?tlofn. The MCM% methods erI)VIdlf a way to
Squared Error (RMSE), Mean Absolute Percent Error>2MPe irom FYID) without necessarily knowing its

analytic form. The final result of MCMC is a set of
(MAPE) and Mean Absolute Error (MAE) are employed. | actors 8 with density p@D) in which the model

parameters can be estimated. The Gibbs samplirg is

2. MATERIALSAND METHODS common MCMC that can be used for parameter
) ) estimation. The most common hierarchical Bayesian
2.1. Exponential Smoothing Models model has three stages. A distribution for the g@atan

parameters is specified at the first stage, prior
distributions for parameters given hyper-parameters
are specified at the second stage and the disimitbut
for hyper-parameters are specified at the thirgjeta
Complicated models can be built through the
specification of several simple stages under
hierarchical Bayesian models.

A simple exponential smoothing model is used to
reduce irrigularities in times series data. It gssi
exponentially decreasing weights as the observatie
older. In other words, recent observations are rgive
relative more weight in forecasting than the older
observations (Wang, 2010). A double exponential
smoothing model applies the process of a simple

exponential smoothing model to account for lingand 2.4. Trend: A Cumulative Wiebull Distribution
in time series data and a triple exponential smiogth

model or Holt-Winters model can adjust for botmtte A cumulative Weibull distribution for the trend tife
and seasonality (Szmit and Szmit, 2012). new product demand was used by Yelland (2010) it ¢
be applied for product prices since the price \aarie
2.2. SARIMA or Seasonal ARIMA M odd directly with the demand. The cumulative Weibull
ARIMA (p, d, g) models (Boxet al., 1994) take into distribution is defined as Equation 2:
account historical data and decomposes them into an —1- N ¥ 0
autoregressive process (AR), an integrated (I) gssc F(X:k,?\){_o ’X;0 (2)

and moving average (MA) process of the forecastrerr

Therefore, the ARIMA models have three model P ; ;

parameters, one for AR(p) process, another ond(dyr 2.5. Outliers. A Binary Selection

process and the other one for MA(Q) process. Yelland (2010) adopted a latent binary selection to
The seasonal ARIMA model (Machiwal and Jha, detect outliers in which the observatiop ¢ associated

2012) denoted as SARIMA is a generalization andwith a latent binary variablg; 0{0, 1} that identifies Y

extension of the ordinary ARIMA model to allow as an outlier if; = 1. The prior distribution for the

seasonality in the data. This seasonal componettieof indicator {; is a Bernoulli distribution such that the

ARIMA model is denoted by capital letters, SARIMA, ( probability that{; =1 is about 5% since the occurrence

d, q)(P, D, Q)s, where the last bracket indicates t of outliers is a rare event.
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2.6. Latent Autoregression: A(n)
The A(n) (Yelland, 2010) is defined as Equation 3:

+€

n
A= Z aA g +g

i=1

®3)

where, ais the latent autoregression coefficientjs#ithe
residual variation and n is the order (length)hef atent
autoregression. The error tergy,is assumed to follow a
normal distribution.

2.7. Seasonality: Dummy Variables

Dummy variables

represent seasonality. The regression model
seasonality has the form of Equation 4:

s-1
YeT 2 A% R (4)

where, Y is the time series observation andisSthe
dummy seasonal variable, s = 4 for quarterly ardl®
for monthly data. Sis 1 in their corresponding quarter or
month and 0 otherwisey is the regression coefficiers.
is the random error.

2.8. The Proposed Bayesian M odel

Let Y; be time series data at time t, t = 1,...,R.isY

(Wooldridge, 2009) are used to
with

where,y is the expectation of Z which is the sum of time
series datawithin the study period. W (i), is a
cumulative Weibull distribution. A is a latent
autoregression at time ; are outliers at timé. 3y is an
intercept and B,,.., B, are regression coefficients
corresponding to the covariates;,X. Xy at time t,
respectively.wy, y,..., Wy, are regression coefficients
corresponding to the seasonal dummy variables
S1:Sn-.-, S At timet, respectively.o; is the common

variance of Y. The prior distributions for Bayesian
methods are assigned to each parameter as follows:
Bo.B,.---B, 0 N(0,1.0E05)
W, Q,,....00, , 0 N(0,1.0E05)
p(o7) DInvGamma(0.1,0.00:

Trend:
AW(t |o,8)= W(t]a ,8)- W(t—1la )
Where:

o ONyg ..,y (M4.05), P, ) ON(O,1.0E05).
p(c?) OInvGamma(0.1,0.001)

3 0Ny (M5,02), P(H5) ~ N(0,1.0E0%
p(o?) OInvGamma(0.1,0.001)

assumed normally distributed whose mean can detect

trend, autoregression, seasonality and accounsdore
covariates and whose variance can detect outligre.
proposed model is defined as Equation 5:

P
Y(AW(t|a,d)+ At) + BO + ZlBiXit
| =

Yt~N

554 ? (5)
e vt

The mean of Yis Equation 6:
y(AW(t|a,d)+ At)+[30+

E(Y,) = p
(6)

The variance of Y¥is Equation 7:
2
Var(v) = v4+2,)o, |

(7)
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Latent autoregression: AR(1):

A, ON(AA,_,02), p(c%) OInvGamma(0.1,0.00!
A ON(0,1.0E05), A= 0

Outliers:
¢, OBern(0.05)

Expectation of total observed data:
Y ON .y (1,,07), P(,) O N(0,1.0E05

p(o;) OInvGamma(0.1,0.001)

Total observed data:
Z ON(y,0%), p(©2) O InvGamma(0.1,0.00:

2.9. Parameter Estimation: A Gibbs Sampling
Algorithm

For parameter estimation, the MCMC algorithm
called Gibbs sampling (Bijak, 2011) is used. Sangli
from the posterior ®|D), 6 = (B, 64,..., 6,) the Gibbs
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sampler requires a random starting point of pararaetf P(Y, W(t),a.8,A ... A By...B, 0,0, ; ,
interest,8©. For the sampler, there is an initial starting Gy 0, 1Y )=
point(6{”,6%,...6¢). "

The steps of Gibbs sampling are: I_J P, 00 Ay e A Bo By

w0, & 0, ){pdH, 02)

+ Samplingd? from p(@,|6” ...6" D) P, 1063 Jp(w(tla )P, 07 ) (10)
- Sampling 6 from p,[6f6...87 D). Use P, )PGZ )PBJu; 52)P(HL;)P(E?)

updated value 06% PAIP(A ... AN 65 )PBs ).-oor iR, )
» Sampling 6 from p(,[6f65...67 D). Use PE.). - PEn PG, )oonr B0, I ),

updated value 06 and 65 Us the Gibb i worith el
I " sing the Gibbs sampling algorithm, the fu
* Similar to the 3 steps above, sampfg.... 8’ conditional distributions need to be explicit. The
- Sampling 8? using 6% as a starting point and conditional distribution of each parameter is thedpict
continually using the most updated values of the likelihood and the all the priors that contits
* Repeat until we get M samples, with each sampleparameter. An example is Equation 11:
being a vector 0B, 8@,.... 6™ where M is the
number of samples PY|W(D).0.3,A,,... A BBy 0,00,
e« The Monte Carlo Integration can be done on those &k 0, Y Y F
samples to the quantity of interest. For exampie, t

mean o is Equation 8: N yw (o), a8, Ay Ay Bo By (11)
(A)l "'(‘05*1 E| C)-y )W‘Uy o-yz )v
M
E(@):ﬁZe“) (8) P, )p6,” )
i=1
For the proposed model, the likelihood is derived a 2.10. Application
Equation 9: In Thailand, vegetables are high-value economic
plants useful for improving income of farmers. The
POV Yo [V W (0,060, A A BB vegetable prices play a major role in coordinatthg
W0, & &0, F supply and demand of these products. Hence, thetalelg
n 9 prices forecast will be advantageous to producers,
I_Jf(Yi‘va(t)’a'a'Al ----- A ©) consumers, processors, rural development plannags a
other people involved in the vegetable market.

BD "'Bp W, "'ws—lzri qy
2.11. Data

The data have been extracted from the databade of t
Office of Agricultural Economics, Ministry of
Agriculture and Cooperatives, Thailand (OAE, 2012).
The monthly average consumer prices for coriargtegn
shallot and celery, from 2000 to 2011 (144 montrs)
used for this study since those vegetables are conand

2 2 their prices usually fluctuate. For some missingdsimple
P(Ap - An‘)"oA)po‘ PO By ). PR ) three-month moving averages of the preceding oasens
().~ Po__ )PE )p(fzy) are computed to fill in the missing observations.

2.12. Data Analysis

The prior distributions are:

2 2 2
P, 2Pt JPE2)pw (Dl B)pth, 52

P, P2 )PBH 0F )Pl JPEZ)

A posteriqr distr_ibu_tion_ is a product of the likediod _ The proposed Bayesian models were applied to
and all prior distributions; hence the posterior the prices of coriander, green shallot and cel&he
distribution of the proposed model is Equation 10: Gibbs sampling algorithm was used for parameter
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estimation via Open BUGS program. The Gibbs 2.13. Model Evaluation

sampling was run for 10,000 iterations, discardimg

first 1,000 iterations (the burn-in iterations) atite Given that the parameters were obtained from the
rest was used to compute the posterior means andnalysis of each vegetable price data, 500 samyfles

standard errors. For the model evaluation, simoiteti  time series data (Y were generated to evaluate the
werg ‘:0”9 'tr_‘ Rtprotghram. The ?PSS, fotrthdows W?S roposed model. The Mean Squared Errors (MSE),
used to estimate the parameters in the exponentia o :
smoothing and SARIMA. The RMSE, MAPE and Ita”dalrdLE”O;S OfC:Ee '\:,'S.E (SE) and %5(" Confidence
MAE are criteria for the model comparison. nterval Lengths (CIL) of important mode p:'.;\.rgmeter
are very low, but the 95% Coverage ProbabilitieR)(C

Table1. Model evaluation for coriander are very high. These results exhibit that the psepo
Parameter  MSE SE CIL CP  perform very well. The model evaluation for each
Y 0.006 0.007 0.09 0.93 vegetable is illustrated ihable 1-3.

a 0.007 0.005 0.07 0.95

o] 0.006 0.007 0.09 0.95

Zy 0.004 0.003 0.06 0.96 3.RESULTS

Table 2. Model evaluation for green shallot The proposed models perform better than the
Parameter ~ MSE SE CIL CP exponential smoothing models, SARIMA models and
Yy 0.005 0.008 0.09 0.95 the Bayesian models with trend, autoregression and
a 0.007 0.005 0.05 0.96  outliers in all vegetables since all error measieets

oy 0.005 0.006 0.08 0.92

of the proposed model are smallest. The graphhef t

0.006 0.009 0.09 0.96 .
actual values and the predicted values from thpqsed

Table 3. Model evaluation for celery model of each vegetable are showrrig. 1-3. The error
Parameter ~ MSE SE CIL CP measurements, RMSE, MAPE and MAE, are shown in
y 0.009 0.006 0.08 092 Tabled4.
o 8-883 8-881 8-% 8-32 It is evident that the predicted values from the
oy . . . .
. 0.008 0.006 007 0.94 proposed model are very close to the actual ones.

60
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s04 T Proposed
40 1
8
2 30 4

20 o
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1 17 33 49 65 81 97 113 129
9 25 41 57 73 89 105 121 137
Month

Fig. 1. Actual and predicted prices of coriander
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Fig. 2. Actual and predicted prices of green shallot
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Fig. 3. Actual and predicted prices of celery
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Table4. Model performance comparison

Error measurement

Vetgetable Model RMSE MAPE MAE
Coriander 1. Proposed model 0.32 1.53 0.31
2. Bayesian model 0.89 2.88 0.88
(trend, autoregression and outliers)
3. Exponential smoothing 10.16 20.87 7.44
(simple seasonal)
4. ARIMA (1,1,3) (1,1,3)s 10.44 25.52 8.27
Green shallot 1. Proposed model 0.42 1.38 0.42
2. Bayesian model 1.39 6.54 1.36
(trend, autoregression and outliers)
3. Exponential smoothing 5.94 19.16 4.30
(Holt-Winters' Additive)
4. ARIMA (1,1,3) (1,1,3)s 5.95 18.60 4.23
Celery 1. Proposed model 0.35 1.29 0.34
2. Bayesian model 1.25 4.66 1.24
(trend, autoregression and outliers)
3. Exponential smoothing 10.16 22.18 6.93
(simple seasonal)
4. ARIMA (1,1,3) (1,1,3)s 10.30 24.92 7.24
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