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AN IMPROVED MODEL OF SOIL RESPONSE TO LOAD, UNLOAD AND
RE-LOAD CYCLES IN AN OEDOMETER

ROY BUTTERFIELDi)

ABSTRACT

There are a number of advantages to be gained by representing the oedometric compression of a soil skeleton, dur-
ing virgin loading, unloading and subsequent reloading by `log (v) versus log (p?)' relationships rather than the
conventional `e versus log10 (p?)' expression. The paper presents an augmented version of the basic, two parameter (C?c,
C?s), `log (v) versus log (p?)' model in which the addition of two further parameters (C?r, C?o) enables a complete, non-
linear response for any load-unload-reload cycle to be reproduced. All four parameters, deduced from a single such cy-
cle in an oedometer, can then be used to predict the response of the sample in any other unload-reload cycles. Results
are presented from tests of this kind on a range of ˆne-grained soils to demonstrate the key attributes of the model.
These include the generation of `log (mv) versus log (p?)' diagrams that furnish practically useful mv values applicable
throughout any unload-reload cycle. The model also provides a simple means of assessing the overconsolidation ratio
of an undisturbed soil sample.

Key words: compressibility, compression, consolidation test, constitutive equations of soil, OCR, overconsolidation,
stress-strain curve (IGC: D5)

INTRODUCTION

In this paper v＝1＋e is speciˆc volume, and, following
historical practice in relation to oedometer tests, p? is
used to represent the vertical compressive eŠective stress
in such a test. In a previous paper Butterˆeld (1979)
pointed out that not only is the linearity of a log (v) ver-
sus log (p?) diagram better than that of the traditional e
versus log10 (p?) one, for both virgin loading and subse-
quent unloading of compressible soils, but also that it has
other advantages, amongst which are: a gradient that
generates natural strains directly and is therefore applica-
ble to large strain deformation; a clariˆcation of the im-
portant in‰uence of the unloading stress ratio on reload-
ing response and compression parameter values that are
independent of the base of the logarithms used for plot-
ting.

Adopting `log (v) versus log (p?)' in lieu of `e versus
log (p?)' as the basic compression model for ˆne-grained
soils is very much more than a mere change of axis label-
ling. This paper shows how it can;
a. generate loading, unloading, reloading cycles in an

oedometer, including not only a complete reloading
loop such as that sketched in Fig. 1(a), but also inter-
mediate unloading and reloading events, as exempli-
ˆed by path E3 in Fig. 5(a).

b. reproduce the initial reloading curve subsequent to
unloading a structurally intact sample and bringing it
to equilibrium at a low stress level in an oedometer, as

exempliˆed by path E1 in Fig. 4(a).
c. provide simple, practically useful expressions relating

both v and mv to p? throughout all the above proc-
esses.

d. codify the major eŠect of the unloading ratio in the
oedometer (i.e., the ratio of the virgin-curve p?a value
to the unloaded p?b value, in Fig. 1(a)) on the form of
reloading curves.

e. provide a rational prediction of the reloading curve
(and thereby the mv values), of an overconsolidated
soil undergoing in-situ reloading back onto the virgin
curve.

Although a hyperbolic relationship between compres-
sibility and mean eŠective stress, as in Eq. (3), was
proposed for clays, by Jaurez-Badillo (1965) the exten-
sion of the model to encompass all of virgin loading, un-
loading and reloading along a curved path is new. Den
Haan (1992) published a generalised power law for virgin
compression, which reduces to Eq. (2) as a special case,
and demonstrated that it ˆtted experimental data better
than `e－log (p?). Hashiguchi (1995) advocated using a
`ln (v)－ln (p?) isotropic compression relationship in
elastoplastic constitutive equations for soil; a topic that
he appears to have been developing since 1974. For sands,
where strains are relatively small, more general expres-
sions have been suggested (Janbu, 1963; McDermott,
1972). The model presented here is a revised and substan-
tially extended version of that published by Butterˆeld
and Baligh (1996).
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Fig. 1(a). Deˆnition of C? compression symbols in a log (v) versus log
(p?) plot

Fig. 1(b). Mapping of log (v)-log (p?) C? lines in the log (mv) versus
log (p?) plane
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FORMULATION OF THE MODEL

The central hypothesis is that the traditional `e versus
log10 (p?) expression,

(e－e0)＝－C log10 (p?/p?0) or
de＝－C(.435)(dp?/p?) (1)

in which, (p?0, e0) is a reference state and C may be either
the virgin compression index Cc or the swelling/recom-
pression index Cs, provides a less satisfactory basis for
modelling soil compression in an oedometer than the
relationship,

log (v/v0)＝－C? log (p?/p?0) or
dv/v＝－C? dp?/p? (2)

which, incidentally, has the same form as an ideal adia-
batic compression process.

The reference state is (p?0, v0) on the virgin compression
curve and C? may be any one of (C?c, C?s, C?o, C?r) as de-
ˆned below. The sign convention used throughout is con-
sistent with an increase in compressive stress reducing the
magnitude of either e or v. The C? parameters all
represent slopes of lines resulting from a loading/un-
loading/reloading cycle in a typical oedometer-test plot-
ted on log (v)－log (p?) axes as shown in Fig. 1(a).
Although base-10 logarithms are used in ˆgures through-
out the paper this is done only for convenience in plot-
ting; contrary to (Cc, Cs), the C? values do not depend
upon log (p?) being expressed as log10 (p?).

Speciˆcally, as indicated diagramatically in Fig. 1(a),
a. C?c is the slope of the virgin compression line, located

by (p?0, v0).
b. C?s is the slope of an unloading line from any point

(p?a, va) on C?c.
c. C?r is the initial slope of the reloading curve from any

point (p?b, vb) on a C?s unloading line.
d. C?o is the slope of the reloading curve where it inter-

sects the p?＝p?a abscissa.
e. A reloading curve continues until it merges with the

virgin curve at (p?c, vc).
In an oedometer dv/v is identical to dh/h, where h is

the current height of the test sample. It would therefore
be formally correct to associate dv/v (a volumetric strain)
solely with a spherical eŠective stress component and
dh/h with the co-linear vertical eŠective stress s?v. Conse-
quently, when `log (v) versus log (p?)' is referred to in this
paper (by analogy with `e versus log (p?)), with p?
representing the vertical eŠective stress in an oedometer
in the traditional way, it is strictly representing a `log (h)
versus log (s?v)' relationship in conˆned compresssion.

Since dh/h is a natural strain it becomes convenient to
redeˆne mv, the so-called `coe‹cient of volume compres-
sibility', also in terms of natural strain, as (mv.dp?)＝
－(dh/h). Hence, using Eq. (2),

mv.p?＝C? or log (mv)＝－log (p?)＋log (C?) (3)

The second expression above is a linear equation, with
gradient＝－1, which, when plotted on (log (mv), log
(p?)) axes, intersects the log (p?)＝0 abscissa at the value
of log (C?). Figure 1(b) typiˆes such a diagram on which
the four, parallel C? lines relevant to Fig. 1(a) are shown.

The new deˆnition of mv is clearly equivalent to the
conventional one when h is sensibly constant＝h0, say. It
is easily shown that the `log (v) versus log (p?)' and the `e
versus log (p?)' models then become identical with Cc/
(1＋e0)＝C?c/(.4343). If, in addition, dp? were small
enough for p? also to remain essentially constant＝p?0,
say, then the model becomes locally linear with de＝
(dh/h0)＝(C?c/p?0) dp' (Butterˆeld, 1979).

The loading, unloading and reloading-cycle points (1,
2, 2?, 3, 3?, 4, 5, 6) in Fig. 1(a) map onto Fig. 1(b) as
follows.
a. Path (1, 2) is virgin loading which tracks the lines

labelled C?c in both ˆgures along which, from Eq. (3),
mv＝C?c/p?.

b. Unloading starts at 2 in both ˆgures. In Fig. 1(a),
although points 2,2? are coincident, there is a step
change in the gradient as the relevant C?s line is joined.
In Fig. 1(b) the jump in mv value is re‰ected in the 2 to
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Fig. 1(c). Linear reload paths in the log (mv) versus log (p?) plane
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2? step from the line labelled C?c onto that labelled C?s.
c. The unloading path (2?,3) in both diagrams tracks the

lines labelled C?s, along which, from Eq. (3), mv＝C?s/
p?.

d. Reloading starts at 3 in both ˆgures. In Fig. 1(a)
points 3,3? are coincident, although there is again a
step change in the gradient as the reloading curve (3?,
4, 5) is joined. In Fig. 1(b) the jump in mv value is
re‰ected in the 3 to 3? step from the line labelled C?s
onto that labelled C?r.

e. The reloading curve in Fig. 1(a) then follows the path
(3, 4, 5) where it merges with the virgin line, proceed-
ing along it to point 6. In Fig. 1(b) point 3? is on the
C?r labelled line and (5, 6) are again on the C?c line, the
path having passed through points 4 and X.

f. A further, new and crucial assumption embedded in
the model is that the reloading path (3?, 4, X, 5), fol-
lowing unloading from a point on the virgin compres-
sion line, maps as a straight line, dashed in Fig. 1(b).

g. X is deˆned as the point at which the above line inter-
sects the p?a abscissa. This point locates the chain-dot-
ted line' labelled C?o in Fig. 1(b), which, in this case,
establishes an approximate value for log (C?o)＝－1.1,
C?o¿0.08, whence, from Eq. (3), mv＝C?o/p?a at X.

It is clear from Fig. 1(b) that mv varies signiˆcantly
throughout a loading regime such as the one described
above and that its value is well deˆned in the model.

The slope of a reload line in a log (mv)－log (p?) dia-
gram can be designated by u, with a＝tan (u), as in Fig.
1(c). The ˆgure shows possible reload paths u＝(459, 09,
－309), all of which, for a load cycle starting from p?a, are
predicted to pass through point X. Consequently, during
reloading mv will decrease along paths with negative u
values, increase when u is positive and only remain con-
stant when u is zero.

A key element in the justiˆcation of the model is there-
fore to establish that experimental data from sets of
reloading curves do lie on (3?, 4, X, 5) lines as required in

(f) and (g) above, or, conversely, that equations deduced
from this assumption generate relationships that can
reproduce real log (v) versus log (p?) data along loading,
unloading and reloading curves together with compatible
values of mv.

RELATIONSHIPS BETWEEN VARIABLES IN THE
MODEL

The Slope a of Reloading Lines Passing Through X in a
log (mv)－log (p?) Diagram

The gradient a＝tan (u) of the reloading line (bc) in
Fig. 1(c) is easily shown to be,

a＝log (mvc/mvb)/log (p?c/p?b) (4)

Since mv＝C?/p? for any point on any C? line, it follows
that

a＝log [(C?c/p?c)/(C?r/p?b)]/log (p?c/p?b)

whence
(a＋1)＝log (C?c/C?r)/log (p?c/p?b) (5a)

or

(p?c/p?b)＝(C?c/C?r)b where b＝1/(a＋1) (5b)

alternatively,
a＝log (mvx/mvb)/log (p?a/p?b)

whence

(a＋1)＝log (C?0/C?r)/log (p?a/p?b) (6a)

or

(p?a/p?b)＝(C?0/C?r)b (6b)

Equating Eqs. (5a) and (6a) establishes the identity,

(a＋1)＝log (C?0/C?r)/log (p?a/p?b)
＝log (C?c/C?r)/log (p?c/p?b) (7)

which provides p?c, the stress at which the reloading curve
merges with the virgin curve, from the set of C? values
and the `unloading ratio' (p?a/p?b).

A further consequence of Eqs. (6) is that, for a speci-
ˆed value of (C?0/C?r), the unloading ratio (p?a/p?b), unique-
ly determines the value of a on reloading as shown in Fig.
2(a).

For example, the reloading path will be geometrically
similar to the one shown in this ˆgure whenever the un-
loading ratio＝64. A set of reload paths for unloading ra-
tios of (64, 32, 8, 2) is shown in Fig. 2(b) together with
the relevant a values for a typical Venetian clay.

The Values of mv and v during Reloading along a Path
Through X

Along a reloading line in a log (mv)－log (p?) diagram
log (mv/mvb)＝a log (p?/p?b). Since point b is on the C?r
line, mvb＝C?r/p?b and

mv＝(C?r/p?) (p?/p?b)(a＋1) (8a)

or,
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Fig. 2(a). Dependence of the slope u＝tan－1 (a) of a reload path on
unloading ratio

Fig. 2(b). Reloading curves for diŠerent unloading ratios along any C?s
line
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log (mv)＝a log (p?)＋log (C?r)－(a＋1) log (p?b) (8b)

Equation (8a) provides the value of mv along a reloading
curve as a modiˆed version of the ubiquitous mv＝
(C?/p?) relationship that applies along any C? line. Equa-
tion (8b) has been used to plot the predicted `log (mv)－
log (p?)' reloading lines shown in Figs. 4(b), 7(b), 8(b),
and 9(b): (a＋1) having already been ˆxed by the unload-
ing ratio, via Eq. (6a).

Replacing mv in Eq. (8a) by its deˆnition, mv＝
－dv/(dp?.v) leads to,

(dv/v)＝－C?r(p?)a/(p?b)(a＋1).dp?

which can be integrated between limits (p?b, p?) to provide
an equation for v along the reloading curve,

(v/vb)＝Exp [(C?r/(a＋1))s1－(p?/p?b)(a＋1)t] (9)

This equation has been used to plot the predicted `log (v)

－log (p?)' reloading curves in all the ˆgures provided in
the paper.

Optimising the Values of C?o, C?r and p?c
Because, in Fig. 1(c), point c lies on C?c, the slope of a

predicted reloading curve at p?c in the log (v)－log (p?) di-
agram will always be C?c. Nevertheless, the fact that C?c,
C?r and p?c are usually estimated from experimental data
means that Eq. (7) will not be satisˆed precisely by the
various quantities involved. Consequently, the predicted
reloading curve, although sloping correctly, may not
merge with the virgin C?c line at p?c as it should. A simple
iterative procedure that corrects an estimated value of p?c,
so that the set of parameters (C?c, C?r, C?o, p?c) are consis-
tent with p?a, p?b, and Eq. (7), is included in the Mathemat-
ica code provided in the APPENDIX. At this stage C?r,
which is less easy to evaluate from experimental data,
may be adjusted and the code re-run (which simultane-
ously modiˆes C?o and p?c) to optimise the overall ˆt of the
model to the data. Once determined, the self-consistent
set of C? values can be used to predict the complete non-
linear reloading response of the oedometer sample for
any value of the initial unloading ratio.

The role of the C?s parameter is to provide, together
with C?c, values of (va, vb, vc) for speciˆed values of (p?0,
v0), p?a, p?b and p?c. Since both (p?a, va) and (p?0, v0) lie on the
C?c line and (p?b, vb), (p?a, va) on a C?s line we have,

(va/v0)＝(p?0/p?a)C?c, (vb/va)＝(p?a/p?b)C?s,
(vc/v0)＝(p?0/p?c)C?c (10)

Reciprocally, if (p?b, vb) is known, typically after unload-
ing a nominally-undisturbed soil sample, then the
`originating' (p?a, va) point on the virgin C?c line, can be
determined. Eliminating va between the ˆrst two expres-
sions in Eqs. (10) establishes the value of p?a,

p?a(C?c－C?s)＝(v0/vb).(p?0C?c/p?bC?s) (12)

Substituting p?a into the ˆrst of Eqs. (10) provides the
value of va.

A further point worth noting is that if the current in-
situ vertical stress is p?i at point i in Fig. 3(a) and the C?s
line through i intersects the C?c line at h then p?h will be the
historic maximum value of p? and (p?h/p?i ) will provide a
rational estimate of the overconsolidation ratio (h) of the
soil sample.

The in-situ reloading path from p?i, that can be con-
structed from the C? parameters as explained previously,
will start from this point and the associated `log (mv)－
log (p?) line can be established from Eq. (8). These two
processes are illustrated in Figs. 3(a) and 3(b) for h＝6. In
Fig. 3(a) the complete (h, b, c1) loading path represents
the idealised response of a soil sampled, unloaded and
reloaded in an oedometer and the path (h, i, c2) the
predicted in-situ response of the soil. In Fig. 3(b), the se-
quences of points (h?, h!, b?, b!, c?1) and (h?, h!, i?, i!,
c?2) illustrate how the value of mv will change throughout
the two reloading processes (decreasing along the ˆrst
path but increasing along the second).

Very frequently the value of h is likely to be only a little



257

Fig. 3(a). An overconsolidated soil at point h, unloaded to point b
during sampling and to point i in-situ; OCR＝6. Reloading from i
will take it to point c2

Fig. 3(b). The log (mv) versus log (p?) diagram corresponding to Fig.
2(a)
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greater than unity and u will approach 909(Fig. 1(c)). In
this case mva＝mvh＝C?c/p?h and mvb＝mvi＝C?r/p?i with p?h
§p?i. The mean value of mv＝mv*, say, over the reload
path is then mv*＝(C?c＋C?r)/(2p?i), which is slightly more
than half of the value it would have for a normally con-
solidated soil with h＝1. Were the reload ratio to be much
less than h it is clear from Fig. 3(b) that mv*ºC?s/p?i is
quite possible.

Such mv* values have been used (Butterˆeld et al., 2003)
to calculate the subsidence of Venice due to drawdown in
the underlying acquifers between 1938 and 1970. The
resulting prediction, 146 mm, was much closer to the one
generally accepted of about 140 mm –based on unusually
good ˆeld data–(Ricceri and Butterˆeld, 1974; Butter-
ˆeld, 2004), than Rowe's (1975) estimate of 205 mm der-
ived from the same database and a conventional interpre-

tation of the compressibility of the soil column.

Change in Thickness of a Laterally Conˆned Soil Layer
If h is the thickness of the layer, then for two states (p?1,

v1), (p?2, v2) on a load path traversing any C? line, from
Eq. (2),

log (h2/h1)＝－C? log (p?2/p?1) (13)

which provides the change in layer thickness (h1-h2) for a
change (p?2-p?1) in eŠective vertical stress. If the two states
lie on a curved reload line, located by (p?b, vb) and deˆned
by a, then Eq. (9) leads to,

(h2/h1)＝Exp [(C?r.b)s(p?1/p?b)1/b－(p?2/p?b)1/bt] (14)

ILLUSTRATIVE EXAMPLES COMPARING MODEL
OUTPUT WITH OEDOMETER-TEST DATA

The following ˆve sets of Figs. (4, 5, 7, 8, 9) illustrate
typical results for natural clays from Boston-Cambridge,
Venice, Modena, Bothkennar and a reconstituted Kaolin
clay. They have been selected speciˆcally to cover the
same range of ˆne-grained soils (clays to the silt/sand
borderline) to which the `e versus log (p?) model is usu-
ally applied.

Figure 4(a) shows an oedometer-test, log (v)－log (p?)
diagram (dashed lines) for a natural, Boston-Cambridge
clay, wL＝40z, PI＝18z (Lambe and Whitman, 1969)
and the set of C? parameters that were used to generate
the full lines which match the data extremely well. The
values of C?c and C?s were scaled directly from the load-
loop E1 data plot together with approximate values for
C?r, C?o and p?c. The latter parameters were then adjusted
iteratively, as explained in the APPENDIX, to obtain a
complete set of self-consistent values enabling model
predictions to be superimposed on the experimental data
for all of the load-unload cycles shown in Fig. 4(a).

The predicted log (mv) versus log (p?) relationship for
the reloading section of loop E1, is shown (dashed) in
Fig. 4(b). It suggests that that mv will remain constant
along it (i.e., a＝zero) which is in good agreement with
the less regular, superimposed (chain-dotted) line derived
directly from the oedometer data. It follows from Eq.
(6a) that the a＝0 condition is speciˆc to an unloading ra-
tio (p?a/p?b)＝(C?o/C?r). From Fig. 4(a) (p?a/p?b)＝10 in the
oedometer test whereas, from the model, the value of
(C?o/C?r)＝9.3 for the Boston clay.

Loop E2 also has an unloading ratio＝10, therefore mv

will again remain constant along the reloading section of
this path. Although such unloading and reloading ratios
are common in oedometer tests they are only likely to oc-
cur in practice at, for example, shallow depths under
foundations.

The second example, Fig. 5, relates to a, nominally-un-
disturbed, silty-clay sample from the Venetian lagoon (wL

＝34z, PI＝14z)–Cola and Simonini (2002). As in the
previous example, the C? parameters shown were derived
from the E1 load cycle and used to interpret the remain-
ing load/unload events (E2, E3). The measured data and
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Fig. 4(a). Measured and predicted load, unload and reload paths for a
natural Boston-Cambridge clay

Fig. 4(b). The corresponding log (mv) verus log (p?) diagram for the
reloading path in E1

Fig. 5. Measured and predicted load, unload and reload paths for a
natural Venetian silty-clay

Fig. 6(a). Deˆnition of an intermediate unload-reload path, slope C?d

Fig. 6(b). The corresponding log (mv) versus log (p?) diagram
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the model predictions of it are virtually identical, includ-
ing an intermediate unload-reload cycle at E3. How the
latter can be modelled is explained below.

INTERMEDIATE UNLOAD - RELOAD CYCLES

In Fig. 5 the zone marked E3 illustrates an intermedi-
ate load-unload cycle in which unloading starts from a
point, p?＝p?d, on a reloading curve rather than the virgin
loading line, and continues to p?＝p?e, providing evidence
that, in a log (v)－log (p?) diagram,
a. such an intermediate unloading path is approximately

a straight line.
b. the slope of the line, C?d say, is such that C?rÃC?dÃC?s,

since, were the unloading to start on the C?c line C?d＝
C?s, whereas, if it started on the C?r line near the point
(p?b, vb) then C?d＝C?r.

c. the intermediate reloading path retraces the unloading
line very closely.

In order to model this process one further assumption
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Fig. 7(a). Measured and predicted load, unload and reload paths for a
natural Modena clay

Fig. 7(b). The corresponding log (mv) versus log (p?) diagram
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is made: that the value of C?d varies linearly with log (p?),
from C?s to C?r, as log (p?d), the starting point of the un-
loading process, moves from p?c to p?b in Fig. 6(a). This as-
sumption leads to the following equation from which the
value of C?d can be deduced.

log (C?d/C?r)/log (C?s/C?r)＝log (p?d/p?b)/log (p?c/p?b) (15)

The process is easy to follow graphically, as illustrated
in Fig. 6(a), and the related log (mv)－log (p?) diagram
Fig. 6(b), in which the (1, 1?, 2, 2?, 3) section is a stan-
dard unload/reload path. Intermediate unloading starts
from 3 and, in Fig. 6(b), goes to 3?, a point on the line
joining 2? to Y. (Y is the point on C?s at which p?＝p?c) Un-
loading proceeds from 3? to 4, along the C?d line, as de-
ˆned in Eq. (15). Reloading retraces points (4, 3?, 3)
where it rejoins the (2?, X) path again and follows it to
join the virgin compression line at p?c. Along any C?d line,
for both unloading and reloading, mv＝C?d/p?. The line
superimposed on the intermediate-cycle data in Fig. 6(a),
which it interprets satisfactorily, was derived this way.

The third example, Figs. 7(a, b), relates to a,
nominally-undisturbed, high-plasticity, clay sample from
Modena, Lancellotta (2008), depth 14.5 m, wL＝90z, PI
＝55z. The oedometer test reported had, intentionally,
numerous unloading-reloading excursions each with sub-
stantially more loading stages on them than usual. The
values of the C? parameters were ˆtted to a single loading
loop (the penultimate one) and found to be (C?c＝0.105,
C?s＝0.028, C?o＝0.060, C?r＝0.011). The correspondence
between the full lines with data points and the predicted
curves in Fig. 7(a) is good. It is, however, evident in the
ˆgure that the C?s lines become steeper as the speciˆc
volume from which unloading starts on C?c decreases (i.e.,
C?s＝constant is a less good approximation for this plastic
clay at higher consolidation pressures). Such behaviour
can be accommodated in the model by deducing a
relationship between the measured values of C?s and the
initiating value of va for each of the ˆve unloading paths
explored in the test. The results shown in Fig. 7(a), in-
cluding the ˆnal (dashed) unloading line, were achieved
by ˆtting a polynomial to the unloading data. In this
case,

C!s＝a0＋a1.va＋a2(va)2 (16)

with a0＝－.0084, a1＝,0831 and a2＝－.0359, whereas all
the previous ˆgures simply use a0＝C?s and a1＝a2＝0.

The beneˆt derived from more detailed reloading data
is evident in Fig. 7(b) in which the coincidence between
the predicted and measured values of log (mv) along the
penultimate reloading stage is very good.

In this case aÀ0, the unloading ratio §16, and mv

decreased slightly during reloading (see Fig. 2(a)).
The uppermost reloading curve in Fig. 7(a), and also

those in Figs. 4(a), 5(a), 8(a) and 9, are for nominally-un-
disturbed samples on ˆrst reloading after installation in
the oedometer. In principle, such curves should be mem-
bers of the complete family of log (v)－log (p?) reloading
curves for the soil. As explained previously, this assump-
tion enables the in-situ overconsolidation ratio to be esti-

mated. In Fig. 7(a) the two large points on this curve lo-
cate log (p?h) and log (p?i), logarithms of the estimated
maximum past vertical eŠective stress and the current in-
situ value respectively, as (2.6, 2.1), with p? in kPa.
Hence log h＝.5 and h§3.2.

Figures 8(a, b) show conventional oedometer-test
results for a reconstituted Kaolin (wL＝52z, PI＝22z),
(Baligh, 1984), whereas all other tests reported were on
natural soils. This example, again presents unload-reload
events with closely similar, but not identical, unload ra-
tios (§4). In this case the dashed reload lines, shown for
both load cycles in Fig. 8(b), are inclined at approximate-
ly 459(i.e., a§1) and the value of mv increases by a fac-
tor of about 4 along them.

The data points, at which mv was assessed, are labelled
correspondingly in both ˆgures from which it is evident
that the deviation between the data and the model predic-
tions in Fig. 8(b) is substantial. The principal reason for
this is because relatively few load points are recorded in
conventional oedometer tests, therefore the values of mv

are derived from rather poorly deˆned gradients (it would
therefore be preferable to calculate mv from digitised
smooth curves through the data points). The agreement
between model and data is very much closer in the basic
log (p?) versus log (v) diagram, Fig. 8(a) and, overall, the
model does provide a consistent interpretation of the
manner in which v and mv vary throughout the loading
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Fig. 8(a). Measured and predicted load, unload and reload paths for
reconstituted Kaolin clay

Fig. 8(b). The corresponding log (mv) versus log (p?) diagram

Fig. 9(a). Measured and predicted load, unload and reload paths for
natural Bothkennar silty-clay in a cycle of Ko tests (BN7)

Fig. 9(b). Range of mv values along four reload paths unloaded to
identical values of p?, Bothkennar silty-clay tests (BN7)
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cycles.
Figure 9(a) shows reasonably good agreement between

model prediction and experimental data for laterally-con-
ˆned compression tests on Bothkennar normally consoli-
dated silty-clay, Nash et al. (2006), demonstrating again
the value of tests with numerous load increments. These
results are of interest, (a) because they were obtained
from cycled triaxial K0 tests simulating conˆned compres-
sion and (b) they are unusual in that they cover a range of
unloading ratios (from 3 to 18). The C? values (C?c＝
0.160, C?s＝0.021, C?o＝0.086, C?r＝0.007), derived from
the penultimate loading cycle, were used to predict the ex-
perimental results shown for the other three cycles.

Because the sample was always unloaded to the same p?
value mv will vary quite diŠerently during each reloading
phase. Figure 9(b) shows both the predicted values of mv

along the 4 reloading paths (dashed lines), each with its

own `X' point, and the mean (log p?, log mv) points, cal-
culated from the BN7 test data (bold crosses), which lie
quite close to their predicted positions.

SUMMARY OF PARAMETER VALUES

Table 1 contains descriptions, classiˆcation informa-
tion and C? values covering a range of soils, from which,
for the natural silty-clays, C?o§0.6 C?c and C?r§0.3 C?s.

CONCLUDING REMARKS

It has been demonstrated that, by plotting oedometer
test data in the form `log (v) versus log (p?)' and describ-
ing the slopes of the resulting set of load, unload and
reload curves by four readily determined parameters (C?c,
C?s, C?o, C?r), the response of a range of clay and silty-clay
soils (i.e., those conventionally interpreted by an `e ver-
sus log10 (p?)' relationship) to any other oedometric load-
path can be predicted very satisfactorily. The addition of
two parameters (C?o, C?r) to the author's previous (C?c, C?s)
model, that interpreted loading along, and unloading
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Table 1. C? values for various soils

C?c C?s C?s/C?c C?o C?o/C?c C?r C?r/C?s wLz PIz

Boston-Camb. clay＠23 m 0.130 0.021 0.162 0.072 0.554 0.008 0.38 40 18

Bothkennar silty-clay BN7 0.160 0.021 0.175 0.086 0.538 0.007 0.33 ¿77 ¿44

Reconstituted Kaolin 0.100 0.018 0.180 0.061 0.61 0.004 0.22 52 22

S Stefano silty clay＠6.3 m 0.124 0.018 0.145 0.070 0.564 0.004 0.22 45 16

Venetian silty clay＠2 m 0.069 0.010 0.145 0.039 0.558 0.003 0.30 34 14

Venetian silty clay＠18 m 0.063 0.011 0.175 0.036 0.571 0.004 0.36 34 14

Venetian clay＠¿50 m 0.133 0.020 0.154 0.080 0.602 0.004 0.20 62 28

Pisa clay＠13.4 m 0.169 0.029 0.172 0.098 0.580 0.010 0.34 83 30

Pisa clay＠17.0 m 0.138 0.027 0.196 0.083 0.601 0.011 0.41 62 34

Pisa clay＠17.5 m 0.121 0.027 0.223 0.074 0.612 0.010 0.37 66 29

Modena clay＠14.5 m 0.105 ¿0.028 0.267 0.071 0.677 0.011 ¿0.39 89 55

Modena clay＠17.2 m 0.088 ¿0.028 0.318 0.060 0.682 0.013 ¿0.46 85 52
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from, the virgin compression line, enables not only the
complete, curved, reloading branch of a load-cycle in an
oedometer to be captured but also the soil response to in-
termediate load-unload excursions emanating from a
point on a reloading line.

The formulation also provides linear `log (mv)－log
(p?)' relationships for each of the three sections of any
load, unload and reload cycle, that provide realistic and
practically useful guidance on mv values; typically in the
form mv＝C?/p?.

For a particular soil, the shape of each of the family of
possible reload curves, and the slope (u) of their image
line in a `log (mv)－log (p?)' diagram, is shown to depend
solely on the `unloading ratio' used in the oedometer test
(i.e., the ratio of the p? value on the virgin C?c line from
which unloading along a C?s line starts, to the p? value at
which reloading begins).

Since an overconsolidation ratio h is a speciˆc form of
unloading ratio the laboratory reload curve of a structur-
ally undisturbed soil-sample should belong to this family.
This assumption enables a rational estimate to be made
of the mv versus p? relationship when the soil is loaded in-
situ. For soils at h values close to unity, subjected to a
small, in-situ, unloading reloading excursion at pi on the
virgin compression line, a reasonable approximation to
mv is shown to be, mv*＝(C?c＋C?r)/(2p?i)§C?c/(2p?i).

The main conclusion to be drawn from the modelling is
that the set of C? parameters provide a very much more
powerful and satisfactory means of interpreting conˆned
compression in an oedometer than either (Cs, Cc) or mv.
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APPENDIX

Mathematica Code for Processing Oedometer Data
This Mathematica notebook uses the `log v-log p'

model to optimise the ˆt of C? compressibility parameters
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to an unload-reload loop in an oedometer test and plots
the model output together with the associated `log mv-log
p' diagram.

In the notebook the C? parameters are, for con-
venience, designated by C and vertical eŠective stresses by
p. The symbols used are deˆned in Figs. 1(a, b). The
minimum input required by the code is,
1. Experimentally determined C?c and C?s values and an

initial estimate of C?r.
2. End coordinates of an unloading C?s line that extends

from point `a' (pa1, va1) on the C?c line to (pb1) in an
oedometer test.

3. An approximate value of p (pc1) at which the reloading
curve, from point `b', rejoins the virgin curve at point
`c'.
Consistent values of C?o and pc are calculated iteratively

within the code to ensure that the reload curve (bc)
merges with the virgin line at `c'. The iteration process
simply uses the speciˆed C?c and estimated pc1 values to
calculate a1 (using Eq. (7)), hence vc1 (using Eq. (9)) and
an improved pc2 value (using the ˆrst of Eq. (10 with
(pa, va) replacing (po, vo)) repeating the cycle to arrive at
an (a, pc) pair of values in which pc changes by º1z per
cycle. C?o is then provided by Eq. (7).

It is recommended that the reloading curve output
from the model (Eq. (9)) be superimposed on a plot of
the oedometer test results. Following inspection of such a
plot the estimate of C?r, and thereby C?o also, can usually
be improved, the code run again and the process repeated
until ˆtted and actual loading loops coincide satisfactori-
ly.

The following SEVEN quantities are the mandatory in-
put (those used below are for the Cambridge clay, loop
E1 in Fig. 4(a))
pa1＝.9208; va1＝1.852; pb1＝.1094; pc1＝2; Cc＝
.13; Cs＝ .021; Cr＝.008;
(p1, p2) deˆne arbitrary endpoints for plotting the C?c
line-these may be altered
p1＝pa1/4; p2＝5*pa1;
An iteration procedure, to ˆnd pc, alpha, and C?o values
which ensure that the reload curve merges correctly with
the C?c line at p＝pc in a logv-logp diagram, is:
vb1＝va1* (pa1/pb1)^Cs; (* (pa1, va1) and (pb1, vb1)
are on a C?s line *)
pc2＝0; pc3＝pc1;
iterfunc :＝(pc1＝pc3; alpha1＝Log[Cc/Cr]/Log[pc1/
pb1]－1;
gamma1＝1/(1＋alpha1) ;
vc1＝vb1 * Exp[gamma1 * Cr * (1－(pc1/pb1)^(1＋
alpha1))] ;
pc2＝pa1 * (va1/vc1)^(1/Cc) ; pc3＝pc2 ; )
While[Abs[pc2－pc1]＞pc1/100, iterfunc] ; (* itera-
tion loop for alpha and pc*)
Deˆnitions of various parameters
pc＝pc2 ; mult＝Cr/pb1^(1 ＋ alpha1) ; gamma1＝1/(1
＋alpha1) ; papbratio＝pa1/pb1 ;
Co＝mult* (pa1^(1＋alpha1)) ; (* this is the best-fit
Co for a defined Cr value *)

a＝( Log[Co/Cs]/Log[Cc/Cs] ) ;
eqcc＝N[(-Cc*z＋Log[10,va1]＋Cc*Log[10,pa1] ) ] ;
eqcs＝N[(－Cs*z＋Log[10,va1]＋Cs*Log[10,pa1])] ;
eqbc＝N[gamma1*Cr*0.4343*(1－10^(z* (1＋alpha1))/
(pb1^(1 ＋ alpha1)))＋Log[10,vb1]] ;

The following section constructs the various parts of the
basic logv-logp diagram.
gcc1 ＝Plot[eqcc,sz,Log[10,p1],Log[10,p2]t,Dis-
playFunction –＞ Identity, PlotStyle –＞Thick-
ness[.007]]; (* plots the Cc line *)
gcs1 ＝Plot[eqcs,sz,Log[10,pa1],Log[10,pb1]t,Dis-
playFunction –＞ Identity, PlotStyle –＞Thick-
ness[.007]]; (* plots the Cs line *)
gbc1 ＝Plot[eqbc,sz,Log[10,pb1],Log[10,pc]t,Dis-
playFunction –＞ Identity,PlotStyle –＞Thick-
ness[.007]];(* plots the reloading curve bc *)
lnvlnpgraph＝ Show[ sgcc1,gcs1,gbc1 t,GridLines–＞
Automatic,Frame–＞ True, PlotLabel –＞ ``Log(v) ver-
sus Log(p?) plot with unload reload curve'',
FrameLabel–＞s''Log (p?)'',''Log (v)'','' ``,'' ``
t, DisplayFunction –＞$DisplayFunction] ;

Cr can be changed at this stage, if necessary, and the code
re-run to improve the ˆt between the model output and
the experimental data.

The following section simply constructs the various parts
of the logmv-logp diagram using base 10 logarithms, x＝
Log[10,p].
g4＝Plot[－x＋Log[10,Cc],
sx,Log[10,pb1],Log[10,p2]t,DisplayFunction –＞
Identity, PlotStyle –＞Thickness[.005]];
g5＝Plot[-x＋Log[10,Cs],sx,Log[10,pb1],Log[10,p2]
t,DisplayFunction –＞ Identity, PlotStyle –＞Thick-
ness[.005]];
g6＝Plot[-x＋Log[10,Co],sx,Log[10,pb1],Log[10,p2]
t,DisplayFunction –＞ Identity, PlotStyle –＞Thick-
ness[.005]];
g7＝Plot[-x＋Log[10,Cr],sx,Log[10,pb1],Log[10,p2]
t,DisplayFunction –＞ Identity, PlotStyle –＞Thick-
ness[.005]];
g8＝Plot[Log[10,mult]＋alpha1*x,
sx,Log[10,pb1],Log[10,pc]t, PlotStyle –＞
sThickness[.008],Hue[.3],Dashing[s.025,.025t]t,
DisplayFunction –＞ Identity];
g9＝ListPlot[ssLog[10,pa1],Log[10,Cs/pa1]t,
sLog[10,pa1],Log[10,Cc/pa1]tt, PlotJoined –＞
True,DisplayFunction –＞ Identity, PlotStyle –＞
Thickness[.005]]; g10＝ListPlot
[ssLog[10,pb1],Log[10,Cs/pb1]t,
sLog[10,pb1],Log[10,Cr/pb1]tt, PlotJoined –＞
True,DisplayFunction –＞ Identity,
PlotStyle –＞Thickness[.005]];
lnmvlnpgraph＝Show[sg4,g5,g6,g7,g8,g9,g10t,Grid-
Lines –＞ Automatic, Frame –＞ True ,PlotLabel –＞
``Log (mv) versus Log(p?) plot ＋ the C' and alpha
lines'', FrameLabel–＞s''Log (p?)'',''Log (mv)'',''
``,'' ``t, DisplayFunction –＞ $DisplayFunction];
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The following outputs various parameters and other
quantitites needed for calculating mv values and external
plotting
nalpha＝ NumberForm[alpha1,4];
nCo＝NumberForm[Co,4];nvb ＝NumberForm[vb1,4];
nvc＝NumberForm[vc1,4];npc＝NumberForm[pc,4];
npapbratio＝NumberForm[papbratio,4] ;
pr1＝ Print[StringForm[''Parameters input are: C?c

＝``, C?s＝``, C?r＝``, pa＝``, va＝``, pb＝``, pap-
bratio＝``'', Cc, Cs, Cr, pa1, va1, pb1,
npapbratio ] ] ;
pr2＝Print[StringForm[''Parameters output are: C?o
＝``,alpha＝``,
vb＝``, pc＝``, vc＝`` ``, nCo, nalpha, nvb, npc,
nvc]] ;


