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PDX-1 and MafA Play a Crucial Role in Pancreatic β-Cell 
Differentiation and Maintenance of Mature β-Cell Function
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Abstract.  Pancreatic and duodenal homeobox factor-1 (PDX-1) plays a crucial role in pancreas development, β-cell

differentiation, and maintenance of mature β-cell function.  PDX-1 expression is maintained in pancreatic precursor cells

during pancreas development but becomes restricted to β-cells in mature pancreas.  In mature β-cells, PDX-1

transactivates the insulin and other genes involved in glucose sensing and metabolism such as GLUT2 and glucokinase.

MafA is a recently isolated β-cell-specific transcription factor which functions as a potent activator of insulin gene

transcription.  Furthermore, these transcription factors play an important role in induction of insulin-producing cells in

various non-β-cells and thus could be therapeutic targets for diabetes.  On the other hand, under diabetic conditions,

expression and/or activities of PDX-1 and MafA in β-cells are reduced, which leads to suppression of insulin biosynthesis

and secretion.  It is likely that alteration of such transcription factors explains, at least in part, the molecular mechanism for

β-cell glucose toxicity found in diabetes.

Key words: PDX-1, MafA, Pancreas development, β-cell differentiation, β-cell glucose toxicity

(Endocrine Journal 55: 235–252, 2008)

PDX-1 plays a crucial role in pancreas 

formation and β-cell differentiation

The pancreas is known to develop initially by fusion

of dorsal and ventral buds that form as evagination of

primitive foregut epithelium.  Differentiation of endo-

crine and exocrine compartments from pancreatic buds

requires the coordinated regulation of specific genes.

This process is envisioned as a hierarchy of transcrip-

tion factors that initiate and maintain various gene

expression program, leading to the determination of

various pancreatic cell types.  The adult pancreas is

composed of exocrine (acini and ducts) and endocrine

compartments (α-, β-, δ-, ε-, and PP-cells).  Each of

the four endocrine cell types synthesizes and secretes

one hormone: glucagon (α-cells), insulin (β-cells),

somatostatin (δ-cells), ghrelin (ε-cells), and pancreatic

polypeptide (PP-cells).  It has been shown that various

pancreatic transcription factors are involved in pancre-

as development and β-cell differentiation.  Pancreatic

and duodenal homeobox factor-1 (PDX-1) (also

known as IDX-1/STF-1/IPF1) [1–3] and Hb9, both of

which are members of the large family of home-

odomain (HD)-containing proteins, play a crucial role

in the early stage of pancreas development.  While

PDX-1 affects the development of the entire pancreas

[4–13], Hb9 plays an important role for the develop-

ment of the dorsal pancreas [14, 15] (Fig. 1).  It is

noted here that PDX-1 is not detected in the dorsal

pancreas in Hb9 (–/–) mice.  Other subclasses of

homeodomain (HD) proteins such as Arx, the LIM

domain protein Isl-1, the paired domain proteins Pax4

and Pax6, and the Nkx class proteins Nkx6.1 and
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Nkx2.2 also play an important role in pancreas

development [16–27].  Pancreas-related phenotype in

knockout mice of each homeodomain protein is as

follows.  Arx (–/–), absence of α-cells and increase of

β- and δ-cells [27]; Isl-1 (–/–), absence of islet cells

[16]; Pax4 (–/–), absence of β-cells, decrease of δ-

cells, and increase of α- and ε-cells [17, 24]; Pax6 (–/–),

absence of α-cells, decrease of β-, δ- and PP-cells, in-

crease of ε-cells [18, 19, 25]; Nkx6.1 (–/–), decrease of

β-cells; Nkx2.2 (–/–), absence of β-cells, decrease of

α- and PP-cells, and increase of ε-cells [20, 21, 24]

(Fig. 1).  In addition, it is noted that Arx and Pax4 are

up-regulated in Pax4 (–/–) and Arx (–/–) mice, respec-

tively, in endocrine precursor cells, and thereby these

two transcription factors are likely to play opposite

roles for proper endocrine specification [27].

It is well known that PDX-1 is expressed in precur-

sors of the endocrine and exocrine compartments of

the pancreas and is essential for pancreas development

[4–12], β-cell differentiation [28–38], and mainte-

nance of mature β-cell function by regulating several

β-cell-related genes [39–47].  At an early stage of

embryonic development, PDX-1 is initially expressed

in the gut region when the foregut endoderm becomes

committed to common pancreatic precursor cells.

PDX-1 expression is maintained in precursor cells

during pancreas development but becomes restricted to

β-cells in mature pancreas (Fig. 2).  Mice homozygous

for a targeted mutation in the PDX-1 gene are apan-

creatic and develop fatal perinatal hyperglycemia [4],

indicating that PDX-1 plays a crucial role for the for-

mation of endocrine and exocrine cells.  It is noted

here that PDX-1 expression is not required for pancre-

atic determination of the endoderm because the initial

Fig. 1. Pancreas-related phenotype in knockout mice of each pancreatic transcription factor

Fig. 2. Pancreatic transcription factor hierarchy during pancreas

development

It is well known that many transcription factors are

involved in pancreas formation and β-cell differentia-

tion.  Among the various transcription factors, PDX-1

plays a crucial role in pancreas formation and β-cell dif-

ferentiation, and maintenance of mature β-cell function.

Ngn3 and NeuroD are also important transcription

factors for pancreatic endocrine cell differentiation.

MafA expression is induced at the final stage of β-cell

differentiation and functions as a potent activator of

insulin gene transcription.
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bud formation was observed in PDX-1 (–/–) mice.  In

addition, malformation was observed in the duodenum

and Brunner’s glands were not detected in PDX-1 (–/–)

mice.  Loss of PDX-1 function resulted in pancreatic

agenesis in humans as well as in mice [9].  Differenti-

ation and maintenance of the β-cell phenotype also

requires PDX-1.  In mature β-cells, PDX-1 transacti-

vates the insulin gene and other genes involved in

glucose sensing and metabolism such as GLUT2 and

glucokinase [42, 43].  It was also reported that PDX-1

(+/–) mice were glucose intolerant, with increased islet

apoptosis, a decreased islet mass, and abnormal islet

architecture, indicating that gene dosage for PDX-1 is

crucial for normal glucose homeostasis [10, 43, 45].

These findings are concordant with the report that

humans heterozygous for an inactivating mutation of

PDX-1 cause to maturity-onset diabetes of the young

(MODY 4) [48].  It is noted here, however, that domi-

nant monogenic MODY4 mutations in the PDX-1

gene in humans are not necessarily equivalent to PDX-1

heterozygosity in mice or humans, because it has been

reported that recessive mutations in the PDX-1 gene

also lead to susceptibility to Type 2 diabetes in hu-

mans [49–52].  Furthermore, to explore a role of PDX-

1 in the formation and maintenance of the pancreas,

genetically engineered mice were developed using the

Tet-off system so that the only source of PDX-1 is a

transgene that can be controlled by tetracycline or

doxycycline [12].  Since in these mice the coding region

of the endogenous PDX-1 gene is replaced by that for

the tetracycline-regulated transactivator (tTA), in the

absence of doxycycline tTA activates the transcription

of a transgene encoding PDX-1.  Expression of the

transgene-encoded PDX-1 rescued the PDX-1-null

phenotype, and doxycycline-mediated repression of the

transgenic PDX-1 throughout gestation recapitulated

the PDX-1 null phenotype.  Doxycycline treatment at

mid-pancreogenesis blocked further development [12].

Also, when PDX-1 expression was shut off with

doxycycline in adult mice, insulin biosynthesis was

decreased and glucose homeostasis was disturbed

[12].  These data further strengthen the importance of

PDX-1 in pancreas development, β-cell differentiation,

and maintenance of mature β-cell function.

The other well-represented class of transcription

factors is that of the basic helix loop helix (bHLH) pro-

teins, which include NeuroD and neurogenin3 (Ngn3).

NeuroD, a member of the bHLH transcription factor

family, also known as BETA2, is expressed in pancre-

atic and intestinal endocrine cells and neural tissues.

NeuroD plays an important role in pancreas develop-

ment and in regulating insulin gene transcription [53–

56].  Mice homozygous for the null mutation in Neu-

roD have a striking reduction in the number of β-cells,

develop severe diabetes and die perinatally [57] (Fig.

1).  Furthermore, it has been reported that the insulin

enhancer elements, E-box (NeuroD binding site) and

A-box (PDX-1 binding site), are very important for

insulin gene transcription [57, 58].  Neurogenin3

(Ngn3), a member of the basic helix-loop-helix

(bHLH) transcription factor family, is involved in en-

docrine differentiation [59–65].  After bud formation,

Ngn3 is transiently expressed in endocrine precursor

cells, and functions as a potential initiator of endocrine

differentiation.  Transgenic mice overexpressing Ngn3

show a marked increase in endocrine cell formation,

indicating that Ngn3 induces islet cell precursors to

differentiate [60, 61].  In contrast, mice with targeted

disruption of Ngn3 have no endocrine cells [62] (Fig. 1).

PDX-1 induces insulin-producing 

cells in various non-β-cells

Decrease of functioning pancreatic β-cell number

and insufficient insulin biosynthesis and/or secretion

are the hallmark of diabetes.  Pancreas and islet trans-

plantation have exerted beneficial effects for diabetic

patients, but the limitation of available insulin-produc-

ing cells and requirement of life-long immunosuppres-

sive therapy are major problems.  The scarcity of

cadaveric donors to treat millions of diabetic patients

leads to a serious limitation to the widespread clinical

application of this procedure.  Therefore, it is very

important to search for alternative sources to induce

insulin-producing cells.  For the induction of insulin-

producing cells from various cells and tissues, it would

be useful to mimic and reproduce the alteration in

expression of various pancreatic transcription factors

observed during normal pancreas development.  In

addition, it would be useful to induce pancreatic key

transcription factors in some source cells or tissues

which have the potency to induce various β-cell-related

genes including insulin (Fig. 4).  It has been reported

that various cells and tissues such as embryonic stem

cells, liver, pancreas, intestine, and bone marrow can

be transdifferentiated into insulin-producing cells.  It

was shown that embryonic stem cells have the poten-
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tial to differentiate into insulin-producing cells [66–

70], but the use of these cells for the treatment of

diabetes may not be appropriate from an ethical point

of view.  Therefore, adult tissue-derived progenitor

cells have been used to induce insulin-producing cells.

Pancreatic ducts, acini, and non-β-cells in islets have

also been shown to have the potential to differentiate

into insulin-producing cells [29, 32, 34, 71–75].  Also,

since the pancreas and liver arise from adjacent re-

gions of the endoderm in embryonic development, the

liver has been thought to be a potential source for the

induction of insulin-producing cells [28, 35–38, 55,

76, 77].  Intestinal epithelium-derived cells and some

populations of bone marrow cells were also shown to

have the potential to differentiate into insulin-produc-

ing cells [30, 31, 34, 78, 79].  In such studies, several

pancreatic transcription factors have been used to

induce insulin-producing cells from various cells or

tissues.  Indeed, it was reported that adenoviral PDX-1

expression in the liver of mice induced expression of

the endogenous insulin mRNA.  Also, hepatic immu-

noreactive insulin induced by PDX-1 was processed

to mature insulin which was biologically active

[28].  These data indicate the capacity of PDX-1 to

reprogram extrapancreatic tissue towards a β-cell

phenotype, which may provide a valuable approach for

generating surrogate β-cells, suitable for replacing im-

paired β-cell function found in diabetes.  These results

also suggest that it is useful to induce pancreatic key

transcription factors in various cells and tissues which

have the potential to induce various β-cell-related

genes including insulin.

Next, to carry out efficient screening of somatic

tissues and cells that can transdifferentiate into β-cell-

like cells in response to PDX-1, we previously gener-

ated CAG-CAT-PDX-1 mice, a transgenic line which

constitutively express the PDX-1 gene under the

control of the chicken β-actin gene (CAG) promoter

after the removal of floxed stuffer sequence (CAT) by

Cre-mediated recombination [35] (Fig. 3).  When the

mice were crossed with Alb-Cre mice, which express

the Cre recombinase driven by the rat albumin gene

promoter, PDX-1 was expressed in hepatocytes and

cholangiocytes.  The PDX-1-producing liver expressed

a variety of endocrine hormone genes such as insulin,

glucagon, somatostatin, and pancreatic polypeptide

and exocrine genes such as elastase-1 and chymot-

rypsinogen 1B [35].  The mice, however, exhibited

marked jaundice due to conjugated hyperbilirubine-

mia, and the liver tissue displayed abnormal lobe

Fig. 3. Tissue-specific overexpression of PDX-1 using the Cre/

loxP-mediated system

We previously generated CAG-CAT-PDX-1 mice, a

transgenic line which constitutively express the PDX-1

gene under the control of the chicken β-actin gene

(CAG) promoter after the removal of floxed stuffer

sequence (CAT) by Cre-mediated recombination.  When

the mice were crossed with Ptf1a-Cre mice, which

express the Cre recombinase driven by the Ptf1a (PTF1-

p48) gene promoter, PDX-1 was expressed in precursors

of all three pancreatic cell types: islets, acini, and ducts.

Also, when the mice were crossed with Alb-Cre mice,

which express the Cre recombinase driven by the rat

albumin gene promoter, PDX-1 was expressed in

hepatocytes and cholangiocytes.

Fig. 4. Induction of insulin-producing cells in various non-β-

cells by key pancreatic transcription factors

PDX-1 plays a crucial role in pancreas development and

β-cell differentiation, and functions as an activator of

insulin gene transcription.  MafA is a recently isolated

β-cell-specific transcription factor and functions as a

potent activator of insulin gene transcription.  Overex-

pression of such key pancreatic transcription factors in

non-β-cells or tissues (e.g. pancreatic non-β-cells, liver,

intestine, bone marrow cells) induces the expression of

various β-cell-related genes including insulin.
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structures and multiple cystic lesions.  Thus, the in

vivo ectopic expression of PDX-1 in albumin-produc-

ing cells was able to initiate, although not complete,

the differentiation of liver cells into insulin-producing

cells.  We think that this conditional PDX-1 transgenic

mouse system would be useful for efficient screening

of PDX-1 responsive somatic tissues and cells (Fig. 3).

Considering the fact that the expression of PDX-1

continues throughout pancreas development, i.e., from

the embryonic pancreatic buds to adult islets, this

Cre/loxP-mediated approach would provide a suitable

system for evaluation of the transdifferentiation poten-

tial of PDX-1 in vivo.

PDX-1-VP16 efficiently induces 

insulin-producing cells in the liver

Since the pancreas and liver arise from adjacent

regions of the endoderm in embryonic development,

the liver has been thought to be a potential target

for diabetes gene therapy [28, 35–38, 51, 76, 77].  In

addition, it has been shown recently that a modified

form of XlHbox8, the Xenopus homolog of PDX-1,

carrying the VP16 transcriptional activation domain

from Herpes simplex virus, efficiently induces insulin

gene expression in the liver of the tadpole [80].  In

this study, transgenic Xenopus tadpoles carrying

the Xlhbox8-VP16 gene under the control of the

transthyretin promoter were prepared.  Xlhbox8-VP16

was expressed only in the liver of the tadpoles.  In the

transgenic tadpoles, the liver was converted into a

pancreas, containing both exocrine and endocrine

cells, while characteristics as a liver were lost from the

regions converted to the pancreas [80].  In contrast,

conversion of the liver to a pancreas was not observed

by expression of Xlhbox8 alone (without VP16).

Based on these findings in tadpoles, the effects of

the PDX-1-VP16 fusion protein (PDX-1-VP16) on dif-

ferentiation of cells into insulin-producing cells have

been examined in mice.  Indeed, it was reported re-

cently that PDX-1-VP16 rather than wild type PDX-1

efficiently induced insulin-producing cells in the liver

[36–38, 77].  In addition, it was shown that PDX-1-

VP16 efficiently induced insulin gene expression in

the liver especially in the presence of pancreatic tran-

scription factors NeuroD or Ngn3 [36].  Although

PDX-1-VP16 exerted only a slightly greater effect on

the insulin promoter compared to wild type PDX-1,

PDX-1-VP16, together with NeuroD or Ngn3, dramat-

ically increased insulin promoter activity in HepG2

cells.  Furthermore, when adenovirus expressing the

PDX-1-VP16 fusion protein (Ad-PDX-1-VP16) was

injected from the vein, both insulin 1 and 2 mRNA

was detected in the liver, although insulin 1 was not

detected by the expression of wild type PDX-1 (with-

out VP-16) [36].  Ad-PDX-1-VP16 treatment, together

with Ad-NeuroD or Ad-Ngn3, induced larger amounts

of insulin gene expression.  After treatment with Ad-

PDX-1-VP16 plus Ad-NeuroD (or Ad-Ngn3), insulin-

positive cells and insulin secretory granules were ob-

served in the liver upon immunostaining and electron

microscopy, respectively [36].  Furthermore, various

endocrine pancreas-related factors such as islet-type

glucokinase, glucagon and somatostatin were induced

after treatment with Ad-PDX-1-VP16 plus Ad-NeuroD

(or Ad-Ngn3).  Consequently, in STZ-induced diabetic

mice, blood glucose levels were decreased by PDX-1-

VP16 plus NeuroD (or Ngn3) [36].  The marked

effects of PDX-1-VP16 expression, together with

NeuroD or Ngn3, on insulin production and glucose

tolerance indicate that the combination is useful and

efficient for replacing the reduced insulin biosynthesis

found in diabetes, and that PDX-1 requires the recruit-

ment of coordinately functioning transcription factors

or cofactors in order to fully exert its function (Fig. 4).

In addition, these results suggest that the synergistic

activation of insulin promoter by PDX-1 and bHLH

transcription factors such as NeuroD or Ngn3 is impor-

tant for the induction of insulin-producing cells from

non-β-cells for the achievement of β-cell regeneration

therapy in the future.

It was also shown recently that PDX-1-VP16 ex-

pressing hepatic cells converted into functional insu-

lin-producing cells in the presence of high glucose

[37].  In this study, the authors generated a stably

transfected rat hepatic cell line named WB-1 that

expresses PDX-1-VP16.  Expression of several genes

related to endocrine pancreas development and islet

function was induced by PDX-1-VP16 in the liver,

although some pancreatic transcription factors were

missing.  In addition, these cells failed to secrete in-

sulin upon glucose challenge.  However, when WB-1

cells were transplanted into diabetic NOD-scid mice,

they possessed similar properties as seen in β-cells.

Almost all β-cell-related transcription factors were in-

duced and glucose intolerance was ameliorated [37].

In addition, in vitro culturing in high glucose medium
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was sufficient to induce the complete maturation of

WB-1 cells into functional insulin-producing cells

[37].  These results suggest that PDX-1-VP16 is very

efficient and useful for replacing reduced insulin bio-

synthesis and for amelioration of glucose intolerance

but that PDX-1-VP16 alone is not enough to induce

complete transdifferentiation of various cells to

functional insulin-producing cells.  Furthermore, the

effects of PDX-1 -VP16 was evaluated in a cell

culture system as well using hepatocytes isolated from

adult rats.  Adenoviral overexpression of PDX-1-VP16

efficiently converted hepatocytes to insulin-producing

cells.  Furthermore, immunoreactivity of albumin was

downregulated in transdifferentiated cells and some of

them almost completely lost albumin expression [77].

These results further strengthened the hypothesis that

hepatocytes possess a potential to transdifferentiate

into insulin-producing cells.

PDX-1 has its own protein transduction 

domain and thereby can permeate various cells

Many studies have been performed to overexpress

pancreatic transcription factors using various virus-

mediated approach, but it would be difficult to apply

the virus-mediated approach to clinical medicine.

Therefore, new strategies are necessary to safely

deliver such transcription factors.  Protein transduction

domains (PTDs) such as the small PTD from the TAT

protein of human immunodeficiency virus (HIV-1),

the VP22 protein of Herpes simplex virus, and the

third α-helix of the homeodomain of Antennapedia, a

Drosophila transcription factor, are known to allow

various proteins or peptides to be efficiently delivered

into cells through the plasma membrane, and thus

there has been increasing interest in their potential

usefulness for the delivery of bioactive proteins or

peptides into cells [32, 56, 65].  Therefore, regarding

the validity of pancreatic transcription factors as

therapeutic targets, the protein delivery system is very

promising at this point, because it is practically diffi-

cult to apply the virus-mediated approach to clinical

medicine without side effects.  In order to induce sur-

rogate β-cells and apply to clinical medicine, it would

be promising to deliver pancreatic key transcription

factors into pancreatic source cells and tissues using

this protein delivery system.

 Furthermore, it was shown recently that PDX-1

protein can permeate various cells due to an Antenna-

pedia-like protein transduction domain sequence in its

structure and that transduced PDX-1 functions similar-

ly to endogenous PDX-1; it binds to the insulin pro-

moter and activates its expression [32].  In addition, it

was shown that mechanism PDX-1 protein trans-

duction is by endocytosis and subsequent release from

endosome homogenously located in cytoplasm and

nuclei [81].  More recently, it was shown that NeuroD

protein can also permeate various cells due an argin-

ine- and lysine-rich protein transduction domain in its

structure and that transduced NeuroD functions simi-

larly to endogenous NeuroD [56].  These data clearly

suggest that PDX-1 and NeuroD protein transduction

could be a safe and valuable strategy for inducing sur-

rogate β-cells from non-β-cells without requiring gene

transfer technology.

PDX-1 expression is regulated by 

various pancreatic transcription factors

Since PDX-1 plays a crucial role in pancreas devel-

opment, β-cell differentiation, and maintenance of ma-

ture β-cell function, it is very important to understand

how PDX-1 expression is regulated in the pancreas.  It

has been reported that PDX-1 activity is regulated by

various nutrients such as glucose and insulin.  It was

shown that a high concentration of glucose and/or in-

sulin increased PDX-1 DNA binding activity to insulin

gene promoter region through activation of phosphati-

dylinositol 3-kinase (PI3-kinase) and p38 mitogen-

activated protein kinase (MAPK) [82–86].

PDX-1 gene transcription is regulated by various

pancreatic transcription factors.  Normal endocrine

pancreas development and function depends on a high-

ly integrated transcription factor network, and subtle

abnormalities in islets caused by heterozygosity or re-

duced gene dosage of MODY susceptibility genes lead

to diabetes in human [87].  Promoter analyses of genes

involved in β-cell differentiation and function suggest

complex genetic interactions among these factors.  In-

deed, alignment of the mouse and human PDX-1 gene

sequences revealed three conserved regions referred to

collectively as Area I-II-III.  The Area I-II-III region

harbors binding sites for MODY transcription factors

such as HNF-1α (Foxa1) and PDX-1 itself as well as

other transcriptional regulators such as HNF-3β

(Foxa2), Pax6, MafA, and HNF-6 (OC-1) [88–97], and



PDX-1 AND MafA IN PANCREATIC β-CELLS 241

it has been shown that PDX-1 gene transcription is ac-

tually regulated by such various pancreatic transcrip-

tion factors.

Furthermore, it has been reported recently that an-

other pancreatic transcription factor Ptf1a (also known

as PTF1-p48) regulates PDX-1 gene expression [98].

Ptf1a, a member of the basic helix-loop-helix (bHLH)

family, is known to be expressed in pancreatic progen-

itor cells and to bind to the mammalian Suppressor of

Hairless (RBP-J) within the PTF1 complex [99, 100],

and all three factors (PDX-1, Ptf1a and RBP-J) have

been shown to be essential for early pancreas develop-

ment [101–104].  In reporter gene analyses Ptf1a trans-

activated PDX-1 gene promoter in pancreatic Panc-1

cells which was enhanced by RBP-J.  Also, the Ptf1a

binding site was identified in the well-conserved regu-

latory sequence domain termed Area III.  In addition,

adenoviral overexpression of Ptf1a, together with

RBP-J, markedly increased PDX-1 expression levels

in pancreatic AR42J-B13 cells which have been

reported to differentiate into insulin-producing cells

[104, 105].  Furthermore, it was recently reported that

Area III mediated pancreas-wide PDX-1 expression

during early pancreas development with Cre-mediated

lineage tracing in mice and that Ptf1a occupied

sequences within Area III in pancreatic buds [106].

These results strongly suggest a novel transcriptional

network in which Ptf1a regulate PDX-1 gene expres-

sion through binding to Area III in pancreatic progeni-

tor cells.

It has been reported that islet-specific and β-cell-

specific cis-regulatory regions overlap with Area I-II-

III, suggesting that Area I-II-III functions specifically

in differentiation and maintenance of pancreatic islets

[88–97].  It has also been reported recently that dele-

tion of Area I-II-III from the endogenous PDX-1 locus

results in a decreased level and abnormal spatiotempo-

ral expression of PDX-1 protein.  Also, lineage label-

ing in homozygous Area I-II-III deletion mutant mice

revealed lack of ventral pancreatic bud specification

and early-onset hypoplasia in the dorsal bud [107].  In

the mice, acinar tissue formed in the hypoplastic dorsal

bud, but endocrine maturation was greatly impaired.

In addition, while pylorus was distorted and Brunner’s

glands were not observed in PDX-1 (–/–), these struc-

tures formed normally in the homozygous Area I-II-III

deletion mutant mice.  These results suggest that Area

I-II-III is not essential for extra-pancreatic expression

of PDX-1.  Furthermore, heterozygous Area I-II-III

deletion mutant mice had abnormal islets and showed

more severe glucose intolerance compared to PDX-1

(+/–) mice [107].  These results further strengthen the

importance of Area I-II-III in pancreas formation and

maintenance of β-cell function.

Programmed downregulation of PDX-1 is 

required for exocrine formation and 

persistent expression of PDX-1 causes 

acinar-to-ductal metaplasia

While PDX-1 is expressed in pancreatic progenitor

cells and plays a crucial role in pancreas development

and β-cell differentiation, PDX-1 expression is down-

regulated in exocrine and ductal cells after late embry-

onic development.  On the other hand, re-upregulation

of PDX-1 has been reported in human patients and

several mouse models with pancreatic cancer and

pancreatitis [108–110].  We have recently reported that

programmed downregulation of PDX-1 is required for

exocrine formation during pancreas differentiation and

that persistent expression of PDX-1 causes acinar-

toductal metaplasia [111].  To determine whether

sustained expression of PDX-1 affects pancreas

development, PDX-1 was constitutively expressed in

all pancreatic lineages by transgenic approaches.  Previ-

ously we generated CAG-CAT-PDX-1 mice, a trans-

genic line which constitutively express the PDX-1

gene under the control of the chicken β-actin gene

(CAG) promoter after the removal of floxed stuffer

sequence (CAT) by Cre-mediated recombination [35]

(Fig. 3).  When the mice were crossed with Ptf1a-Cre

mice, which express the Cre recombinase driven by

the Ptf1a (PTF1-p48) gene promoter [102], PDX-1

was expressed in precursors of all three pancreatic cell

types: islets, acini, and ducts.  Two weeks after birth,

the whole pancreas of the Ptf1a-Cre; CAG-CAT-PDX-1

mouse was much smaller compared to the non-trans-

genic pancreas, and marked abnormality of the exo-

crine tissue was observed in the transgenic pancreas.

While acinar areas with normal morphology substan-

tially disappeared in the transgenic pancreas, a large

number of cells with duct-like morphology were

observed [111].  Severe atrophic cells and abnormal

duct-like morphology were observed exclusively in the

cells expressing exogenous PDX-1, suggesting that the

phenotypes in the transgenic pancreas are caused by

the cell-autonomous effect of PDX-1.  To induce
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exogenous expression of PDX-1 selectively in the

exocrine lineage, the CAG-CAT-PDX-1 mouse was

crossed with a transgenic Elastase-Cre mouse, in

which recombination is observed primarily in the exo-

crine lineage [112].  Similar to the pancreas of Ptf1a-

Cre; CAG-CAT-PDX-1, a large number of duct-like

cells, were observed in the pancreas of Elastase-Cre;

CAG-CAT-PDX-1 mice [111].  In addition, in immuno-

staining for BrdU and Ki67, cell proliferation was not

observed in such duct-like cells.  These results suggest

that exogenous expression of PDX-1 directly induces

acinar-to-ductal transdifferentiation.

Furthermore, in metaplastic duct-like cells, signal

transducer and activator of transcription 3 (Stat3) pro-

teins were activated, which has been reported to be in-

duced in other mouse models [113, 114].  To address

the pathophysiological significance of Stat3 activation

in inducing metaplastic duct-like cells, Ptf1a-Cre;

CAG-CAT-PDX-1 mice were crossed with floxed-

Stat3 mice.  Surprisingly, in the pancreata of Ptf1a-

Cre; CAG-CAT-PDX-1; Stat3flox/flox mice, metaplastic

duct-like cells were rarely observed all over the acinar

area [111].  Pancreatic hypoplasia seen in PDX-1 over-

expressing pancreata was also substantially restored in

the pancreata of Ptf1a-Cre; CAG-CAT-PDX-1;

Stat3flox/flox mice.  Taken together, it is likely that pro-

grammed downregulation of PDX-1 is required for

exocrine formation and that persistent upregulation of

PDX-1 is sufficient to induce acinar-to-ductal metapla-

sia in the exocrine lineage through Stat3 activation.

MafA functions as a potent activator of 

the insulin gene and thus could be a novel 

therapeutic target for diabetes

It was known that an unidentified β-cell-specific

nuclear factor bound to a conserved cis-regulatory

element called RIPE3b1 in the insulin gene enhancer

region and functioned as an important transactivator

for the insulin gene [115, 116].  Recently, this impor-

tant transactivator was identified as MafA, a basic-

leucine zipper (bLZ) transcription factor [117–119].

MafA controls β-cell-specific expression of the insulin

gene through a cis-regulatory element called RIPE3b1

and functions as a potent transactivator for the insulin

gene [117–125].  During pancreas development, MafA

expression is first detected at the beginning of the prin-

cipal phase of insulin-producing cell production while

other important transcription factors such as PDX-1

and NeuroD are expressed from the early stage of

pancreas development (Fig. 2).  In addition, while both

PDX-1 and NeuroD are expressed in various cell types

in islets, MafA is expressed only in β-cells and func-

tions as a potent activator of insulin gene transcription.

Thus, the potency of MafA as an insulin gene

activator, together with its unique expression in β-cells,

raises the likelihood that MafA is the principal factor

required for β-cell formation and function.  Therefore,

it is likely that MafA is a useful factor for generating

insulin-producing cells from non-β-cells.  Further-

more, it was recently reported that MafA knockout

mice displayed glucose intolerance and developed dia-

betes mellitus [121].  In MafA (–/–) mice, expression

of insulin 1, insulin 2, PDX-1, NeuroD, and GLUT2

was decreased, and glucose-, arginine-, and KCl-stim-

ulated insulin secretion was severely impaired (Fig. 1).

The MafA (–/–) mice also displayed age-dependent

pancreatic islet abnormalities [121].  These results

strengthen the importance of MafA in maintenance

mature β-cell function.

It was shown recently that MafA, together with

some other pancreatic transcription factors, efficiently

induced insulin gene expression in the liver [122].

Basal insulin promoter activity was increased by MafA

alone in HepG2 cells, which was much more signifi-

cant compared to the effect of PDX-1 or NeuroD.  Fur-

thermore, MafA, together with PDX-1 plus NeuroD,

drastically increased insulin promoter activity [122].

These results clearly show that MafA, PDX-1, and

NeuroD exert strong synergistic effect on insulin pro-

moter activity.  Neither insulin 1 nor insulin 2 mRNA

was induced in the liver by Ad-MafA alone, but both

insulin 1 and 2 were induced by Ad-MafA plus Ad-

PDX-1 (or Ad-NeuroD).  Larger amounts of insulin 1

and 2 mRNA were clearly observed in the liver after

the triple infection (Ad-MafA, Ad-PDX-1, plus Ad-

NeuroD).  Also, upon immunostaining for insulin,

many insulin-producing cells were clearly observed in

the liver after the triple infection [122].  Consequently,

in STZ-induced diabetic mice, blood glucose levels

were significantly decreased by the triple infection

(Ad-MafA, Ad-PDX-1, and Ad-NeuroD).  These results

suggest a crucial role for MafA as a novel therapeutic

target for diabetes and imply that expression of such a

combination of transcription factors is very efficient

and useful for replacing the reduced insulin bio-

synthesis found in diabetes (Fig. 4).
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Furthermore, it has been reported recently that

ectopic expression of MafA is sufficient to induce a

small amount of endogenous insulin expression in a

variety of non-β-cells such as AR42J pancreatic acinar

cells [123].  Also, when MafA was provided with two

other key insulin activators PDX-1 and NeuroD, much

larger amounts of insulin mRNA and protein were

increased.  Potentiation by PDX-1 and NeuroD was

entirely dependent upon MafA, and MafA binding to

the insulin enhancer region was increased by PDX-1

and NeuroD.  Furthermore, treatment with activin A

and HGF induced even larger amounts of insulin in

AR42J cells compared with other non-β endodermal

cells [123].  The combination of PDX-1, NeuroD, and

MafA also induced the expression of other important

regulators for β-cell activity.  These results further

strengthen the importance of the combination (PDX-1,

NeuroD, and MafA) in induction of insulin-producing

cells in various non-β-cells.

Chronic hyperglycemia deteriorates β-cell 

function by provoking oxidative stress, 

accompanied by reduction of PDX-1 and 

MafA DNA binding activities

Under diabetic conditions, chronic hyperglycemia

gradually deteriorates pancreatic β-cell function.  This

process is often observed in diabetic subjects and is

clinically well known as β-cell glucose toxicity [126–

130].  It has been shown that in the diabetic state,

hyperglycemia per se and subsequent production of

oxidative stress decrease insulin gene expression and

secretion [126–142].  It has also been shown that the

loss of insulin gene expression is accompanied by de-

creased expression and/or DNA binding activities of

PDX-1 [126, 127, 134–136] and RIPE3b1 (which was

recently identified as MafA) [126–128].  After chronic

exposure to a high glucose concentration, expression

and/or DNA binding activities of such transcription

factors are reduced (Fig. 5, 6).  In addition, abnormality

in lipid metabolism have been proposed as contribut-

ing factors to deterioration of pancreatic β-cell func-

tion.  Prolonged exposure to excessive concentrations

of fatty acids inhibits insulin gene expression and

secretion [143–145].  Furthermore, it has been shown

recently that prolonged exposure of islets to palmitate

inhibits insulin gene transcription by impairing nuclear

localization of PDX-1 and cellular expression of MafA

[146].

Under diabetic conditions, hyperglycemia induces

oxidative stress through various pathways such as the

non-enzymatic glycosylation reaction and the electron

transport chain in mitochondria, which is involved in

the β-cell glucose toxicity found in diabetes [133–142,

147–150].  β-Cells express GLUT2, a high-Km glu-

cose transporter, and thereby display highly efficient

Fig. 5. Role of PDX-1 and MafA in pancreatic β-cell glucose

toxicity

Chronic hyperglycemia deteriorates β-cell function by

provoking oxidative stress, accompanied by reduction

of PDX-1 and MafA DNA binding activities.  This

process is often observed under diabetic conditions and

is called β-cell glucose toxicity.

Fig. 6. Nucleo-cytoplasmic translocation of PDX-1 by oxidative

stress and subsequent activation of the JNK pathway

Oxidative stress and subsequent activation of the JNK

pathway induce nucleo-cytoplasmic translocation of

PDX-1, which leads to reduction of its DNA binding

activity and suppression of insulin biosynthesis.  Thus,

oxidative stress and the JNK pathway are likely in-

volved in β-cell dysfunction found in type 2 diabetes.
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glucose uptake when exposed to a high glucose con-

centration.  In addition, β-cells are rather vulnerable to

oxidative stress due to the relatively low expression of

antioxidant enzymes such as catalase, and glutathione

peroxidase [151, 152].  Indeed, it was shown that ex-

pression of oxidative stress markers 8-hydroxy-2'-

deoxyguanosine (8-OHdG) and 4-hydroxy-2,3-none-

nal (4-HNE) were increased in islets under diabetic

conditions [133, 140].

It was shown that when β-cell-derived cell lines or

rat isolated islets were exposed to oxidative stress, in-

sulin gene promoter activity and mRNA expression

were suppressed [134–136, 138–141].  In addition,

when β-cell-derived cell lines or rat isolated islets

were exposed to oxidative stress, binding of PDX-1 to

the insulin gene promoter was markedly reduced.  Fur-

thermore, it was shown that the decrease of insulin

gene expression after chronic exposure to a high glu-

cose concentration was prevented by treatment with

antioxidants [135, 136, 139–141].  Reduction of ex-

pression and/or DNA binding activities of PDX-1 and

MafA by chronic exposure to a high glucose concen-

tration was also prevented by an antioxidant treatment.

These results suggest that chronic hyperglycemia sup-

presses insulin biosynthesis and secretion by provok-

ing oxidative stress, accompanied by reduction of

expression and/or DNA binding activities of two

important pancreatic transcription factors PDX-1

and MafA.  Therefore, it is likely that the alteration of

such transcription factors explains, at least in part, the

suppression of insulin biosynthesis and secretion, and

thus are involved in β-cell glucose toxicity (Fig. 5).

Next, to evaluate a role of oxidative stress in vivo,

obese diabetic C57BL/KsJ-db/db mice were treated

with antioxidants (N-acetyl-L-cysteine plus vitamin C

and E) [135].  The antioxidant treatment retained

glucose-stimulated insulin secretion and moderately

ameliorated glucose tolerance.  β-Cell mass was sig-

nificantly larger in the mice treated with the antioxi-

dants.  Insulin content and insulin mRNA levels were

also preserved by the antioxidant treatment.  Further-

more, PDX-1 expression was more clearly visible in

the nuclei of islet cells after the antioxidant treatment

[135].  Similar effects were observed with Zucker dia-

betic fatty rats, another model animal for type 2 diabe-

tes [136].  Taken together, these data indicate that

antioxidant treatment can protect β-cells against glu-

cose toxicity.  In addition, we examined the possible

anti-diabetic effects of probucol, an antioxidant widely

used as an anti-hyperlipidemic agent, on preservation

of β-cell function in diabetic C57BL/KsJ-db/db mice

[140].  Immunostaining for oxidative stress markers

such as 4-hydroxy-2-nonenal (HNE)-modified pro-

teins and heme oxygenase-1 revealed that probucol

treatment decreased ROS in β-cells of diabetic mice.

Probucol treatment also preserved β-cell mass, insulin

content, and glucose-stimulated insulin secretion, lead-

ing to improvement of glucose tolerance [140].  These

data suggest potential usefulness of antioxidants for di-

abetes and provide further support for the implication

of oxidative stress in β-cell glucose toxicity found in

diabetes.

Oxidative stress induces nucleo-cytoplasmic 

translocation of PDX-1 through activation of 

the JNK pathway

It has been suggested that activation of the c-Jun N-

terminal kinase (JNK) pathway is involved in pancre-

atic β-cell dysfunction found in diabetes.  It was re-

ported that activation of the JNK pathway is involved

in reduction of insulin gene expression by oxidative

stress and that suppression of the JNK pathway can

protect β-cells from oxidative stress [153].  When

isolated rat islets were exposed to oxidative stress,

the JNK pathway was activated, preceding the decrease

of insulin gene expression.  Adenoviral overexpression

of dominant-negative type JNK1 (DN-JNK) protected

insulin gene expression and secretion from oxidative

stress.  Moreover, wild type JNK1 (WT-JNK) overex-

pression suppressed both insulin gene expression and

secretion [153].  These results were correlated with

change in the binding of the important transcription

factor PDX-1 to the insulin promoter.  Adenoviral

overexpression of DN-JNK preserved PDX-1 DNA

binding activity in the face of oxidative stress, while

WT-JNK overexpression decreased PDX-1 DNA

binding activity [153].  Thus, it is likely that JNK-

mediated suppression of PDX-1 DNA binding activity

accounts for some of the suppression of insulin gene

transcription.  Taken together, it is likely that acti-

vation of the JNK pathway leads to decreased PDX-1

activity and consequent suppression of insulin gene

transcription found in the diabetic state (Fig. 6).

Also, as a potential mechanism for JNK-mediated

PDX-1 inactivation, it was recently reported that PDX-

1 was translocated from the nuclei to the cytoplasm in
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response to oxidative stress.  When oxidative stress

was charged upon β-cell-derived HIT cells, PDX-1

moved from the nuclei to the cytoplasm [154].  Addi-

tion of DN-JNK inhibited the oxidative stress-induced

PDX-1 translocation, suggesting an essential role of

the JNK pathway in mediating the phenomenon.  Also,

leptomycin B, a specific inhibitor of the classical,

leucine-rich nuclear export signal (NES), inhibited

nucleo-cytoplasmic translocation of PDX-1 induced

by oxidative stress.  Indeed, we identified an NES at

position 82–94 of the mouse PDX-1 protein [154].

Taken together, it is likely that oxidative stress induces

nucleo-cytoplasmic translocation of PDX-1 through

activation of the JNK pathway, which leads to reduc-

tion of its DNA binding activity and suppression of

insulin biosynthesis.

Furthermore, while the role of forkhead transcrip-

tion factor Foxo1 in β-cell function has attracted

considerable attention [155–157], we have recently

reported that the forkhead transcription factor Foxo1

plays a role as a mediator between the JNK pathway

and PDX-1 [158].  In β-cell-derived HIT-T15 cells,

Foxo1 changed its intracellular localization from the

cytoplasm to the nucleus under oxidative stress condi-

tions.  In contrast to Foxo1, the nuclear expression of

PDX-1 was decreased and its cytoplasmic distribution

was increased by oxidative stress.  JNK overexpres-

sion also induced the nuclear localization of Foxo1,

but in contrast, suppression of the JNK pathway re-

duced the oxidative stress-induced nuclear localization

of Foxo1, suggesting an involvement of the JNK path-

way in Foxo1 translocation [158].  In addition, oxida-

tive stress or activation of the JNK pathway decreased

the activity of Akt in HIT cells, leading to the de-

creased phosphorylation of Foxo1 following nuclear

localization.  Furthermore, adenoviral Foxo1 overex-

pression reduced the nuclear expression of PDX-1,

whereas repression of Foxo1 by Foxo1-specific small

interfering RNA retained the nuclear expression of

PDX-1 under oxidative stress conditions [158].  Taken

together, oxidative stress and subsequent activation of

the JNK pathway induce nuclear translocation of

Foxo1 through the modification of the insulin signal-

ing in β-cells, which leads to the nucleo-cytoplasmic

translocation of PDX-1 and reduction of its DNA bind-

ing activity.

Concluding Remarks

The number of diabetic patients is dramatically in-

creasing all over the world, and recently diabetes has

been recognized as the most prevalent and serious

metabolic diseases.  Although pancreas and islet

transplantation have exerted beneficial effects for type

1 diabetic patients, available insulin-producing cells

are limited and life-time immunosuppressive therapy

is required.  Therefore, it is very important to search

for alternative sources to induce insulin-producing

cells.  PDX-1 is a pancreatic transcription factor which

plays a crucial role in pancreas formation, β-cell dif-

ferentiation, and maintenance of mature β-cell func-

tion.  MafA is a recently isolated β-cell-specific

transcription factor which functions as a potent activa-

tor of insulin gene transcription.  Furthermore, it is

likely that these transcription factors play a crucial role

in inducing insulin-producing cells in various non-

β-cells and thus could be therapeutic targets for type 1

diabetes.  It is noted, however, that there are some

problems with current strategies to differentiate differ-

ent cells into insulin-producing cells.  For example,

although insulin biosynthesis and secretion are

induced in several non-β-cells, it is very difficult to

obtain substantial glucose-responsive insulin secretion

which is very important to maintain normal glucose

tolerance.  Also, under diabetic conditions, chronic

hyperglycemia gradually deteriorate β-cell function

which is often observed in type 2 diabetic subjects and

clinically well known as “β-cell glucose toxicity”.

The phenomena are accompanied by reduction of

expression and activity of such transcription factors.

Therefore, it is likely that PDX-1 and MafA play an

important role in mediating mature β-cell function and

that inactivation of such transcription factors is in-

volved in the pathogenesis of type 2 diabetes.
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