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1. Introduction

Flavangenol® is the French maritime pine bark extract 
(PBE) obtained by the hot water extraction method. The 
main constituents of Flavangenol are oligomeric proan-
thocyanidins (OPCs) that represent about 60% of all 
components. OPCs contained in Flavangenol are mainly 
composed by dimer and oligomer chains of catechin and/
or epicatechin (Fig. 1). Although Flavangenol contains a 
number of polyphenols such as monomer catechin and 
taxifolin and other proanthocyanidins, the amounts of 
these components are very few. On the other hand, 
 Pycnogenol®, which is obtained by using the water and 
ethanol extraction method, is also known as another trade 

name of PBE. From long ago, PBE has been used as a 
historical medicinal material for the treatment of scurvy, 
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Abstract. Flavangenol is the French maritime pine bark extract (PBE). It consists of a concen-
trate of pine bark constituents such as catechin, taxifolin, and proanthocyanidins. Recent studies 
have shown that PBE has a strong antioxidant effect and exerts ameliorative effects on cardiovas-
cular, skin, cognitive, and menstrual disorders, as well as in the context of other diseases and dis-
ease processes such as diabetes and inflammation. We have also obtained evidence that Flavangenol 
suppresses nuclear factor-kappa B (NF-κB) activation and the subsequent various NF-κB–induced 
gene expressions such as those of adhesion molecules and endothelin-1 in cultured vascular en-
dothelial cells and that the antihypertensive effect of Flavangenol on deoxycorticosterone acetate–
salt hypertensive rats is attributable to both its antioxidative property–related protective effects 
against endothelial dysfunction and the endothelium-dependent vasorelaxant effect, which is me-
diated by endothelial nitric oxide synthase activation. Furthermore, Flavangenol showed a reno-
protective effect on ischemia/reperfusion-induced acute kidney injury in rats. These findings sug-
gest that Flavangenol supplementation may be a promising candidate for the improvement of 
endothelial dysfunction and the prophylactic treatment of vascular diseases.
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Fig. 1. Chemical structure of oligomeric proanthocyanidin.
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skin wounds, and sores (1). Recent studies have shown 
that the nutritional supplementation of PBE (as Pycnog-
enol in many cases) produces a variety of potentially 
protective effects against chronic age-related diseases 
such as atherosclerosis, hypertension, and diabetes. Al-
though the precise mechanisms underlying the protective 
effects on the above diseases are not fully understood so 
far, dietary PBE supplementation may be useful as a 
prophylactic treatment in the development of cardiovas-
cular diseases (1). This review article introduces our 
current findings regarding vasculoprotective and reno-
protective effects of Flavangenol.

2. Antioxidative effects of Flavangenol in hyperten-
sion

There is accumulating evidence that a number of anti-
oxidative substances and various radical scavengers ex-
hibit blood pressure–lowering effects in hypertensive 
patients (2, 3) and experimental animals (4, 5). Hyperten-
sion and related vascular alterations are closely related to 
an increase in reactive oxygen species (ROS) production, 
especially O2

−, in vascular tissues including endothelial 
cells and smooth muscle cells (6). An increased O2

− gen-
eration in venules and arterioles has been reported in 
experimental animal models such as deoxycorticosterone 
acetate (DOCA)-salt– and angiotensin II–induced hyper-
tensive rats and in genetic hypertensive animals such as 
spontaneously hypertensive rats (7 – 9). The role of ROS 
as a key factor in the development of hypertension has 
been confirmed by evidence indicating that the treatment 
with antioxidative agents to the above animals could 
normalize blood pressure (10 – 12), although there are 
some conflicting findings indicating that antioxidant 
treatment of hypertensive animals had no effect on blood 
pressure (13, 14). On the other hand, it has recently been 
reported that many beneficial effects of PBE are closely 
related to its potent antioxidative and free radical scav-
enging function. PBE has been shown to stimulate intra-
cellular defenses against free radicals by enhancing the 
production of antioxidative enzymes, in addition to ex-
cellent radical-scavenging activities (1). In vascular tis-
sues, PBE exhibited an effective preventing action 
against lipid peroxidation (1). These antioxidative prop-
erties may be at least partly contributive to its protective 
effects against various cardiovascular diseases because 
increased oxidative stress is one of the major causal fac-
tors for the development of hypertension as described 
above (15, 16). In fact, our recent study has shown that 
the development of DOCA-salt–induced hypertension 
was significantly suppressed by feeding a Flavangenol-
containing diet (17). We have reported also that O2

− pro-
duction in aortic segments tended to increase in the nor-

mal diet–fed DOCA-salt rats, but Flavangenol supple-
mentation completely suppressed this augmentation. 
Thus, it seems likely that the antioxidative property of 
Flavangenol is at least partly contributive to its antihy-
pertensive action.

3. Enhancement of NOS system by Flavangenol

Several antioxidative substances have been reported to 
exert a preventive effect against endothelial dysfunction 
observed in hypertensive patients and experimental ani-
mals (16, 18, 19). Daily feeding of PBE improves the 
microcirculation and platelet function in patients with 
coronary artery diseases. In hypertensive patients, dietary 
PBE supplementation decreased plasma endothelin-1 
(ET-1) concentrations, while nitric oxide (NO) metabo-
lite levels in plasma tended to be increased, suggesting 
the beneficial effect of PBE on endothelial function of 
hypertensive patients (20). A much more interesting 
finding is that PBE itself produced a potent vasorelaxant 
activity that is endothelium-dependent, as reported by 
Fitzpatrick et al. (21). In the in vitro experiment using 
isolated rat aortic rings, PBE exhibited an endothelium-
dependent vasorelaxant effect, and this vasorelaxation 
was suppressed by the pretreatment with a non-selective 
NO synthase (NOS) inhibitor (21). In addition, they 
found also that the oligomeric (from dimers up to hep-
tamers) proanthocyanidin fraction obtained by fraction-
ation of PBE by Sephadex LH-20 liquid chromatography 
is mainly responsible for the PBE-induced vasorelax-
ation, although its mechanisms were not elucidated. On 
the other hand, our study demonstrated that Flavangenol-
induced endothelium-dependent vasorelaxation was 
mediated by the eNOS – NO – soluble guanylate cyclase 
(sGC) signaling system (17). Flavangenol-induced vas-
orelaxation was accompanied by the increased expression 
of phosphorylated-eNOS (Ser1177) protein without affect-
ing total eNOS protein level. Furthermore, we have ob-
tained evidence that the above increase in phosphorylat-
ed-eNOS (Ser1177) is mediated by the PI3K/Akt pathway 
in cultured vascular endothelial cells. Phosphorylation 
mechanisms of eNOS have been extensively studied, and 
the most widely recognized eNOS phosphorylation site 
is Ser1177 (22). Phosphorylation of eNOS at Ser1177 in-
creases eNOS activation mediated by Ca2+/calmodulin 
binding (23) and can also lead to activation of eNOS at 
resting levels of intracellular Ca2+ (24). Some flavonoids 
derived from natural compounds, such as genistein, 
daidzein, and apigenin, have been shown to compete 
with 17β-estradiol for binding to the estrogen receptor, 
acting as phytoestrogens (25). Thus, the vasorelaxant 
activities of Flavangenol may result from the activation 
of the estrogen receptor, which is known to induce the 
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enhancement of the eNOS activity (26, 27) and NO-me-
diated vasorelaxation (28). However, preincubation with 
the estrogen-receptor antagonist ICI 182,780 did not 
modify the vasorelaxant responses to Flavangenol. Thus, 
it is unlikely that Flavangenol acts as a phytoestrogen, at 
least in its vasorelaxant effects. Further evaluations are 
needed to determine the precise upstream mechanism by 
which Flavangenol stimulates eNOS–NO–sGC signaling 
and exhibits potent vasorelaxant activities.

4. Renoprotective effects of Flavangenol in ischemic 
acute kidney injury in rats

The post-ischemic renal injury occurs frequently in 
patients after major surgery, trauma, and transplantation. 
In general, ischemic acute kidney injury (AKI) is induced 
not only by the ischemia itself but also by the following 
reperfusion. Reperfusion of previously ischemic renal 
tissue initiates complex cellular events that result in in-
jury and the eventual death of renal cells due to a combi-
nation of apoptosis and necrosis (29). The molecular 
mechanisms underlying the ischemia/reperfusion-induced 
renal injury remain unclear, but it has been reported that 
several causal factors (ATP depletion, phospholipase 
activation, neutrophil infiltration, vasoactive peptides, 
etc.) are contributive to the pathogenesis of this renal 
damage (30). Oxidative stress has also been considered 
as one of the factors that are definitely involved in the 
development of the ischemic AKI. We and others have 
reported that several agents possessing antioxidative ac-
tivity ameliorate the ischemia/reperfusion-induced renal 
damage (31 – 34). Our previous study has also shown 
that prior administration of Flavangenol dose- dependently 
overcame the ischemia/reperfusion-induced renal dys-
function in rats (35). Histological examination of the 
post-ischemic kidney in untreated AKI rats revealed tis-
sue injuries, such as proteinaceous casts in tubuli, and 
tubular necrosis; and these lesions were significantly 
suppressed by pre-ischemic treatment with Flavangenol. 
These results indicate that Flavangenol has preventative 
effects on the ischemia/reperfusion-induced renal dys-
function and degeneration. Moreover, there is accumulat-
ing evidence indicating that procyanidins, which are one 
of the components of PBE, have a potent antioxidative 
activity and improve ischemia/reperfusion-induced car-
diac damage (36, 37). Taken together with these findings, 
it is reasonable to consider that the beneficial effect of 
Flavangenol on the ischemia/reperfusion-induced renal 
damage is closely related to the antioxidative effects, 
although further studies are required to clarify how much 
antioxidative effects of Flavangenol are involved in the 
improvement of renal damage and whether procyanidins 
mainly play an important role in Flavangenol’s action.

In many tissues, the ischemia/reperfusion induces a 
variety of gene expressions including those of adhesion 
molecules, cytokines, and vasoactive peptides (38, 39). 
It has been well known that the transcriptional factor 
nuclear factor-kappa B (NF-κB) is mainly responsible 
for the regulation of these gene expressions (40). We and 
others have demonstrated that the suppression of NF-κB 
could become a novel therapeutic strategy for ischemia/
reperfusion-induced tissue damage (41, 42). There is 
accumulating evidence that PBE has an inhibitory effect 
on NF-κB activation in macrophages and vascular en-
dothelial cells (43, 44). We have also obtained evidence 
that Flavangenol suppresses NF-κB activation and vari-
ous subsequent NF-κB–induced gene expressions such 
as those for adhesion molecules and ET-1 in cultured 
vascular endothelial cells, possibly through the inhibition 
of IκB phosphorylation. Thus, it is likely that inhibition 
of NF-κB activation by Flavangenol treatment is related, 
at least, to the amelioration of ischemia/reperfusion- 
induced renal damage. Further studies are needed to 
clarify the detailed mechanisms underlying the beneficial 
effects of flavangenol against the ischemia/reperfusion-
induced renal injury.

5. Conclusion

In this review, we summarized evidence of the benefi-
cial effects of PBE. From both in vivo and in vitro evi-
dence, it seems likely that Flavangenol supplementation 
may be a promising candidate for the improvement of 
endothelial dysfunction and the prophylactic treatment of 
vascular diseases. However, to determine the precise 
vasculoprotective and renoprotective mechanisms of 
Flavangenol, the most important constituent in Fla-
vangenol with respect to exerting these actions should be 
identified.
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