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Abstract: We propose a simple method for measuring the mode
power of two-mode fiber based on the bending method. The mode
power ratio is determined with better than 1 dB accuracy by undertak-
ing three power measurements with different numbers of fiber bends.
We also evaluate the estimation error of the proposed method and the
required resolution of the measurement.
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1 Introduction

Recently, there has been increasing interest in few-mode fiber (FMF) as the
next-generation fiber for achieving capacity beyond that of standard single-
mode fiber [1, 2, 3]. FMF has better mode selectivity and can manage mode
impairments more easily than approaches based on conventional multimode
fiber (MMF). FMF transmission requires new research on few-mode devices
that incorporate FMF. As their name indicates, few-mode devices support
more than one mode, as the propagation mode. One of the fundamental
properties of FMF is the power of each mode excited in it. When measuring
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the mode power launched into the two-mode fiber (TMF), the fundamental
mode power can be approximated with the bending method [4]. The bending
method utilizes the bending loss difference between the LP01 and LP11 modes.
In a conventional measurement, the bending radius is chosen so that the
LP11 mode is substantially attenuated while the bending loss of the LP01

mode is negligible, and two consecutive measurements are performed with
and without fiber bending. The key to this method is the selection of the
bending radius because both residual LP11 mode power and the attenuation
of the LP01 mode power lead to estimation errors. When each mode power
is measured, we can derive such characteristics as the mode excitation ratio,
mode crosstalk, and mode dependent loss from the mode powers.

In this letter we propose a simple and precise technique for measuring the
individual mode powers of TMF based on the bending method.

2 Principle of measurement

Fig. 1 is a schematic diagram of the technique for measuring the mode power
of the LP01 mode (P01) and LP11 mode (P11) at a fiber output. As the fiber
length of bending section L is short, we assume that the fiber loss and mode
coupling between the modes at the bending section is negligibe. We also
assume that there is no cladding mode at the fiber output.

Fig. 1. Schematic diagram of technique for measuring
mode power.

The method utilizes the bending loss difference between the LP01 and
LP11 modes to evaluate P01 and P11. Let the bending loss of the LP01 and
LP11 modes be a [dB/turn], and b [dB/turn], respectively. There are four
unknowns, namely P01, P11, a, and b, and these quantities are deduced from
four power measurements under independent conditions. With the bending
method, we can obtain an arbitrary number of equations by changing the
number of times the fiber is bent. When the obtained output powers in
0, 1, 2 . . ., and N turns of the same bending radius R are given as P0, P1, P2 . . .,
and PN , we obtain the following equations

Pk = P0110−ka/10 + P1110−kb/10, (k = 0, 1, 2, . . . N). (1)

By using the mode excitation ratio X = P11/P01

Pk = P01(10−ka/10 + 10−kb/10X), (k = 0, 1, 2, . . . N), (2)
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where k = 0 indicates no bending. It is convenient to use the linear losses
A = 10−a/10 and B = 10−b/10 because we need to calculate the sum and
the difference between the measured powers. The exact solutions of the
P01 and P11 composed of more than 10 terms each. Instead, we deduce an
approximate solution and evaluate its estimation error.

We approximate the bending loss of the LP01 mode to be zero, since it
is much smaller than that of the LP11 mode in conventional optical fibers.
When we employ this approximation, only three unknowns remain and so we
retain three equations for k = 0, 1, and 2:

Pk = P01 + P11 ∗ Bk, (k = 0, 1, 2). (3)

These equations are solved to obtain

B = P1 − P2/P0 − P1, (4)

P01 = P0P2 − P 2
1 /P0 − 2P1 + P2, (5)

P11 = (P0 − P1)2/P0 − 2P1 + P2, (6)

and the mode excitation ratio becomes

X = (P0 − P1)2/(P0P2 − P 2
1 ). (7)

This indicates that each mode power excited in TMF can be estimated by
three power measurements for 0, 1, and 2 turns with a given bending radius
R, if the power measurement is performed at sufficiently high resolution.

2.1 Estimation error
Now we evaluate the estimation error of Eq. (7). Hereafter, we denote the
estimated values obtained by Eqs. (4) through (7) as B̂, P̂01, P̂11, and X̂.
From Eq. (2) X and B̂ − B are given by

X = (P0A − P1)/(P1 − P0B), (8)

B̂ − B =
(A − B)(1 − A)

(1 − A) + (1 − B)X
. (9)

Then B obeys the following equation

B =
P1 − P2

P0 − P1
− (A − B)(1 − A)

(1 − A) + (1 − B)X
. (10)

Substituting Eq. (10) for Eq. (8), we find

X =
P0A − P1

P1 − P0(P1−P2
P0−P1

− (A−B)(1−A)
(1−A)+(1−B)X )

, (11)

then

1
X

=
1
X̂

P0 − P1

P0A − P1
+

P0(A − B)(1 − A)
(P0A − P1)(1 − A + X − BX

=
1
X̂

1 − A + X − BX

(A − B)X
+

(1 + X)(1 − A)
X(1 − A + X − BX)

. (12)
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Finally, we determine the estimation error of the excitation ratio as

X̂/X = (1 − A + X − BX)2/X2(A − B)2. (13)

This indicates that the estimation error deteriorates when A is close to B.
Additionally, we introduce α = (1 − A)P01 and β = (1 − B)P11, which is
the power reduction of each mode caused by one turn, we obtain the simple
relation

X̂/X = (α + β)2/(β − αX)2. (14)

Fig. 2 (a) shows the relationship between the LP01 and LP11 mode bend-
ing losses plotted as a function of X̂/X when X = −10 dB. Fig. 2 (b) shows
the relationship plotted as a function of X when X̂/X = 0.1 dB. The ab-
scissa and ordinate show the bending losses of the LP11 mode and LP01

mode, respectively. The left hand side shows X̂/X = 1, 0.1, and 0.01 dB
plot for X = −10 dB, and the right hand side shows X̂/X = 0.1 dB plots
for X = 0 dB, −10 dB and −20 dB. When the bending radius is 10 mm, the
estimated bending losses of the LP01 and LP11 modes of step index TMF
with V = 3.2 and Δ = 0.4% are 10−4 dB/turn and 1 dB/turn, respectively.
Fig. 2 indicate that we can estimate the excitation ratio with better than
0.1 dB accuracy when it exceeds −20 dB.

Fig. 2. Effect of bending loss of LP01 and LP11 modes on
estimation error.

3 Alternative method for small excitation ratio

With a small excitation ratio of say −30 dB or less the power reduction of
the LP11 mode induced by fiber bending is very small because the initial
power of the LP11 mode is small. If the LP11 mode power can be reduced to
a sufficiently low level, it does not affect power measurement by the bend-
ing method. When X is small and k is large, the second term in Eq. (2)
can be neglected because the condition A > B generally holds. With this
assumption, we obtain the following relation

Pk ≈ P01A
k, (15)

hence,
Pk/Pk−1 ≈ A. (16)
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When Eqs. (15) and (16) are substituted into Eq. (2) of k = 0, we find

X̂ =
P0P

k−1
k

P k
k−1

− 1. (17)

Here again we evaluate the estimation error of Eq. (17). First we plot
the required winding number k as a function of the bending loss of the LP01

and LP11 modes at a fixed estimation error as shown in Fig. 3. We find from
the figure that the required winding number is almost independent of the
bending loss of the LP01 mode when it is 10 dB smaller than the bending loss
of the LP11 modes multiplied by the excitation ratio. So we try to derive the
relationship between the required winding number k and the bending loss of
the LP11 mode. The estimation error of Eq. (17) is written as

X̂

X
=

P̂11/P̂01

P11/P01
=

P̂11

P11

P01

P̂01

. (18)

Fig. 3. Relationship between required winding number k

and bending loss of LP01 and LP11 modes when
estimation error is 0.1 dB.

Recall the relations P01 = Pk/(Ak + BkX) and P̂01 = Pk/A
k, and after some

manipulations, we find

X̂

X
≈ 1 − Bk − k(1 − B)Bk−1

1 + BkX
. (19)

By comparing Figs. 3 and 4, we can say that Eq. (19) is a good ap-
proximation when X ≤ −10 dB. According to Eq. (19), X̂/X approaches
1 asymptotically as k increases, that is, an arbitrary high precision can be
achieved by increasing the number of fiber turns.

Fig. 4. Required winding number k vs LP11 mode loss.
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4 Required resolution of power meter

The proposed method measures a small power difference caused by fiber
bending. The resolution of the power measurement must be better than
this power difference. The measured powers P0, P1, and P2 are nearly the
same, and so it is natural to assume that all measured powers have the
same relative uncertainty. We need three consecutive arithmetic operations,
namely subtraction, multiplication, and division, to obtain the estimated
excitation ratio X̂ by using Eq. (7). According to the law of propagation
of uncertainty, consecutive multiplication and division operations double the
relative uncertainty, in other words, the relative uncertainty deteriorates by
3 dB. Subtraction enhances the absolute uncertainty by

√
2 times, or 1.5 dB,

while the power difference is very small. When the excitation ratio is X dB
and the bending loss of the LP11 mode is 1 dB, the power difference (P0 −
P1)/P0 is about X−6.9 dB. In total, the relative uncertainty of X̂ deteriorates
by as much as −X + 10.4 dB compared with the relative uncertainty of the
measured power. If we need to determine X̂/X at better than 1 dB, or a
relative uncertainty of −6 dB, the power measurement should be performed
with an uncertainty of better than about X − 16.4 dB. Roughly speaking,
we must provide an additional two digits of resolution if we are to estimate
an excitation ratio of better than 1 dB. Note that the subtraction operation
cancels out the systematic uncertainty of the power meter when it is stable
during the measurement time. Also note that increasing the bending loss by
using a small bending radius or multiple turns will alleviate the resolution
requirement.

With the alternate method given by Eq. (17), the relative uncertainty of
the k-th power deteriorates approximately by k. That is, k = 100 causes a
20 dB penalty as regards accuracy.

5 Conclusion

We have proposed a simple technique for measuring the mode power of two-
mode fiber based on the bending method. The mode powers, and hence the
mode excitation ratio, cab be derived with only three power measurements
with different numbers of fiber bends. We also proposed a method for evalu-
ating a small excitation ratio. The measurement requires a large number of
fiber bends but it is simple and high precision can be obtained.
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