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1. Introduction

Dopamine plays a central role in the regulation of 
psychomotor functions. The cAMP/PKA signaling cas-
cade is essential for dopamine neurotransmission. Dop-
amine, acting on D1 receptors, stimulates cAMP/PKA 
signaling via Gs/olf-mediated activation of adenylyl cy-
clase (1), whereas dopamine, acting on D2 receptors, in-
hibits cAMP/PKA signaling via Gi-mediated inactivation 
of adenylyl cyclase (2). At presynaptic dopaminergic 
terminals, the synthesis of dopamine by tyrosine hy-
droxylase (TH) (3, 4) and the release of dopamine (5, 6) 

are also regulated by the cAMP/PKA signaling cascade. 
Activity of cAMP/PKA signaling is determined by the 
balance of synthesis and degradation of cAMP. Regula-
tion of cAMP synthesis by dopamine and other neuro-
transmitter receptors has been extensively studied. In 
spite of the importance of cAMP degradation by phos-
phodiesterases (PDEs), the precise roles of each PDE 
isoform in dopaminergic signaling are not fully under-
stood, due to the diversity of PDE families and isoforms 
expressed in the striatum and the complexity of their 
regulation.

PDEs are encoded by 21 genes and subdivided into 11 
families (PDE1 – PDE11) according to structural and 
functional properties (7). Furthermore, many PDE iso-
form variants are produced by alternative splicing. The 
brain expression and subcellular localization of PDE 
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Abstract. Dopamine plays a central role in the regulation of psychomotor functions. The effect 
of dopamine is largely mediated through the cAMP/PKA signaling cascade and therefore con-
trolled by phosphodiesterases (PDEs). Multiple PDEs with different substrate specificities and 
subcellular localization are expressed in the striatum, and the functional roles of PDE10A, PDE4, 
and PDE1B are extensively studied. Biochemical and behavioral profiles of PDE inhibition by 
selective inhibitors and/or genetic deletion related to dopaminergic neurotransmission are com-
pared among those PDEs. The inhibition of PDE up-regulates cAMP/PKA signaling in three neu-
ronal subtypes, resulting in the stimulation of dopamine synthesis at dopaminergic terminals, the 
inhibition of dopamine D2–receptor signaling in striatopallidal neurons, and the stimulation of 
dopamine D1–receptor signaling in striatonigral neurons. Predominant roles of PDE families or 
isoforms are implicated in each neuronal subtype: PDE4 at dopaminergic terminals, PDE10A and 
PDE4 in striatopallidal neurons, and PDE1B in striatonigral neurons. PDE10A and PDE4 inhibi-
tion may exhibit D2 antagonist–like, antipsychotic effects, whereas PDE1B inhibition may exhibit 
D1 agonist–like effects in the striatum. Development of PDE isoform–specific inhibitors is essen-
tial for better understanding of the function of each PDE isoform and treatment of neuropsychiatric 
disorders.
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isoforms are tightly regulated. Multiple PDEs are ex-
pressed in neurons, and each PDE plays specific roles in 
cAMP and cGMP signaling, which are determined by 
substrate specificities (cAMP and/or cGMP), regulatory 
factors (e.g., activation or inhibition by cAMP or cGMP, 
activation by calcium/calmodulin, and regulation by 
phosphorylation), and subcellular localization (cytosolic 
or membrane-bound). Several PDE families are expressed 
in the striatum. PDE10A, PDE1B, and PDE7B are en-
riched in the striatum, and PDE4 (A, B, and D isoforms), 
PDE2A, and PDE9A, which are widely distributed in the 
brain, are also expressed in the striatum (8, 9). These 
PDEs interact with dopamine systems and modulate do-
pamine-mediated behaviors.

2. DARPP-32: a mediator of cAMP/PKA-dependent 
signals

Dopamine, acting on D1 and D2 receptors, modulates 
cAMP/PKA signaling. In postsynaptic striatal neurons, 
DARPP-32, a dopamine- and cAMP-regulated phospho-
protein of Mr = 32 kDa, is a major target for the cAMP/
PKA signaling cascade (10, 11). DARPP-32 is expressed 
in both D1 receptor–enriched striatonigral and D2 recep-
tor–enriched striatopallidal neurons (12). Phosphoryla-
tion at Thr34 by PKA converts DARPP-32 into a potent 
inhibitor of the wide-spectrum protein phosphatase-1 
(PP-1). The inhibition of PP-1 thereby controls the phos-
phorylation state and activity of many downstream 
physiological effectors, including various neurotransmit-
ter receptors and voltage-gated ion channels. Mice lack-
ing DARPP-32 are deficient in their molecular, electro-
physiological, and behavioral responses to dopamine, 
drugs of abuse, and antipsychotic medication, indicating 
an essential role for DARPP-32 in dopaminergic signal-
ing (13). In addition, by analyzing DARPP-32 phospho-
rylation at Thr34 (PKA-site) in slices and in vivo, we can 
evaluate the activity of PKA with high specificity and 
sensitivity. For determination of activity of cAMP/PKA 
signaling, analysis of DARPP-32 phosphorylation at 
Thr34 is more sensitive than measurement of cAMP be-
cause DARPP-32 is present in medium spiny neurons 
where activity of cAMP/PKA signaling is modulated by 
dopamine. The changes in PKA activity induced by PDE 
inhibitors are reflected on the phosphorylation state of 
DARPP-32 at Thr34.

3. Role of PDEs in direct and indirect pathway 
neurons

The inhibitory outputs from the basal ganglia (GPi/
SNpr) are regulated by striatonigral/direct pathway and 
striatopallidal/indirect pathway neurons in the striatum 

(14, 15) (see Fig. 1). Direct pathway neurons inhibit GPi/
SNpr neurons (dis-inhibition of output) and therefore 
activate thalamocortical motor circuits, whereas indirect 
pathway neurons activate GPi/SNpr neurons (pro-inhibi-
tion of output) and therefore inhibit thalamocortical 
motor circuits. Corticostriatal glutamatergic projections 
activate both direct and indirect pathway neurons. Ni-
grostriatal dopaminergic projections induce opposite ef-
fects on direct and indirect pathway neurons. D1 receptors 
preferentially expressed in direct pathway neurons acti-
vate cAMP/PKA signaling and potentiate glutamate-in-
duced excitation of direct pathway neurons. In contrast, 
D2 receptors preferentially expressed in indirect pathway 
neurons inhibit cAMP/PKA signaling and counteract 
glutamate-induced excitation of indirect pathway neu-
rons. Segregation of D1 and D2 receptors in direct and 
indirect pathway neurons, respectively, is strongly sup-
ported by recent studies using bacterial artificial chromo-
some (BAC) transgenic mice, in which the expression of 
EGFP, Flag- or Myc-tagged DARPP-32, or EGFP-tagged 
ribosome is driven by D1- or D2-receptor promoters (12, 
16, 17). Thus, activation of D1 and D2 receptors by dopa-
mine cooperatively leads to activation of thalamocortical 
motor circuits by potentiating dis-inhibition and attenuat-
ing pro-inhibition, respectively.

Several types of PDEs such as PDE10A, PDE4, and 
PDE1B are expressed in direct and indirect pathway 
neurons. The inhibition of PDEs can result in activation 
of cAMP/PKA signaling both in direct and indirect 
pathway neurons. If the function of the PDE (e.g., 
PDE10A and PDE4) is predominant in indirect pathway 
neurons, the inhibition of the PDE and activation of 
cAMP/PKA signaling results in activation of indirect 
pathway neurons, leading to the inhibition of thalamo-
cortical motor circuits. Conversely, if the function of the 
PDE (e.g., PDE1B) is predominant in direct pathway 
neurons, the inhibition of the PDE and activation of 
cAMP/PKA signaling results in activation of direct 
pathway neurons, leading to the activation of thalamo-
cortical motor circuits. Thus, PDE inhibitors that pre-
dominantly act in indirect pathway neurons work like 
dopamine D2–receptor antagonists and inhibit motor 
function, whereas PDE inhibitors that predominantly act 
in direct pathway neurons work like dopamine D1–recep-
tor agonists and activate motor function. The balance of 
action of each PDE inhibitor in indirect and direct path-
way neurons determines the behavioral effects.

4. Role of PDE10A in dopaminergic neurotrans-
mission

PDE10A is a dual substrate PDE that hydrolyzes both 
cAMP and cGMP, and it has a higher affinity for cAMP 
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than for cGMP by approximately 20-fold (7, 18). 
PDE10A mRNA and protein are expressed at high levels 
in the striatum, nucleus accumbens, and olfactory tubercle 
and expressed at lower levels in the hippocampal pyra-
midal cell layer, dentate gyrus granule cell layer, and 
cerebellar granule cell layer (19). In the striatum, 
PDE10A is expressed in two types of medium spiny 
neurons (direct and indirect pathway neurons), but not in 
interneurons (20 – 22). Among three splice variants, 
PDE10A2 associates with the membrane, and PDE10A1 
and PDE10A3 are present in the cytosol (23). PDE10A2, 
the primary splice variant of PDE10A expressed in the 
striatum (23), is localized to membranes in dendrites and 
spines of medium spiny neurons (20). PDE10A2 is 
phosphorylated by PKA at a threonine residue (Thr16) 
within the N-terminal region (23). The phosphorylation 
seems to induce the translocation of PDE10A2 from 
membrane to cytosol, thereby controlling cAMP/PKA 
signaling within the spines.

4.1. Biochemical evaluation of PDE10A functions in 
the striatum

Papaverine, an opium alkaloid primarily used for the 
treatment of visceral spasm and vasospasm, was found to 
selectively inhibit PDE10A with an IC50 of 36 nM (24). 
Papaverine was used to explore the physiological role of 

PDE10A in the regulation of striatal function. Recently, 
potent PDE10A inhibitors, TP-10 (IC50 = 0.3 nM) and 
MP-10 (IC50 = 0.18 nM), with 3000-fold selectivity over 
other PDE families were developed (25). Using these 
PDE10A inhibitors, PDE10A was shown to hydrolyze 
both cAMP and cGMP in the striatum in vivo (24 – 26). 
Inhibition of PDE10A by papaverine increases the phos-
phorylation of cAMP-response element–binding protein 
(CREB) and extracellular receptor kinase (ERK) by acti-
vating cAMP/PKA signaling (24, 27, 28). We examined 
the effect of papaverine on the phosphorylation of PKA 
substrates using neostriatal slices. Papaverine robustly 
increased the phosphorylation of DARPP-32 at Thr34 
and GluR1 at Ser845 in striatal medium spiny neurons 
(21) (Fig. 2A). The effect of papaverine was mediated 
through the potentiation of cAMP/PKA signaling, but 
not cGMP/PKG signaling. Under in vivo conditions, 
papaverine stimulated cAMP/PKA signaling, leading to 
the phosphorylation of GluR1 at Ser845 in striatal neu-
rons, as observed in slice preparations. Similarly to pa-
paverine, inhibition of PDE10A by TP-10 and/or MP-10 
in the striatum in vivo was demonstrated to induce the 
phosphorylation of CREB, GluR1, and DARPP-32 at 
PKA-sites (25, 26). Inhibition of PDE10A by papaverine 
also increased tyrosine hydroxylase (TH) phosphoryla-
tion at Ser40 (PKA-site), but only at a high concentration 
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Fig. 1. Basal ganglia-thalamocortical 
circuitry. Output neurons in the striatum 
are medium spiny neurons (MSNs), which 
consist of striatonigral/direct pathway and 
striatopallidal/indirect pathway neurons. 
Direct pathway neurons project to the 
output nuclei of the basal ganglia: the in-
ternal segment of the globus pallidus 
(GPi) and the substantia nigra pars reticu-
lata (SNpr). Indirect pathway neurons 
project to the output nuclei by way of the 
external segment of the globus pallidus 
(GPe) and the subthalamic nucleus (STN). 
Direct pathway neurons are GABAergic 
and inhibit tonically active neurons in 
GPi/SNpr. Indirect pathway neurons are 
also GABAergic and activate neurons in 
GPi/SNpr via inhibition of GPe GABAer-
gic neurons and activation of STN gluta-
matergic neurons. Direct and indirect 
pathway neurons induce opposing effects 
on the output neurons in GPi/SNpr, result-
ing in dis-inhibition and pro-inhibition of 
output, respectively, to motor areas of the 
thalamus and cortex. SNpc, substantia ni-
gra pars compacta.
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(Fig. 2B). In addition, papaverine did not affect dopamine 
metabolism in the striatum in vivo (21), suggesting that 
PDE10A does not play a major role at dopaminergic 
terminals.

PDE10A is abundantly expressed in direct and indirect 
pathway neurons, and the expression levels are similar in 
the two types of neurons (20 – 22). In agreement, 
PDE10A regulates cAMP/PKA signaling (21) as well as 
gene expression (29) in both direct and indirect pathway 
neurons. In direct pathway neurons, PDE10A inhibition 
by papaverine activates cAMP/PKA signaling, leading to 
the potentiation of dopamine D1–receptor signaling. In 
indirect pathway neurons, PDE10A inhibition by papav-
erine also activates cAMP/PKA signaling by simultane-
ously potentiating adenosine A2A–receptor signaling and 
inhibiting dopamine D2–receptor signaling. Since the 
balance of cAMP/PKA signaling between the direct and 
indirect pathways determines the output from the basal 
ganglia, neuronal type–specific regulation of DARPP-32 
phosphorylation was studied using neostriatal slices from 

D1-DARPP-32-Flag/D2-DARPP-32-Myc mice (21), in 
which Flag-tagged DARPP-32 and Myc-tagged 
 DARPP-32 are expressed selectively in direct and indi-
rect pathway neurons under the control of D1- and D2-
receptor promoters, respectively (12). PDE10A inhibition 
by papaverine increases Myc-tagged DARPP-32 phos-
phorylation 6-fold in indirect pathways, whereas Flag-
tagged DARPP-32 phosphorylation is increased only 
2-fold in direct pathway neurons (Fig. 3). Thus, PDE10A 
inhibitors activate cAMP/PKA signaling in indirect and 
direct pathway neurons, but the action of PDE10A in-
hibitors predominates in indirect pathway neurons. A 
recent electrophysiological study showing that PDE10A 
inhibition has greater facilitatory effect on corticostriatal 
synaptic activity in indirect pathway neurons supports 
the interpretation (30). The biochemical features of 
PDE10A inhibitors resemble those of antipsychotic 
drugs, which act primarily as D2-receptor antagonists and 
increase DARPP-32 phosphorylation in indirect pathway 
neurons (12).

Fig. 2. Effect of a PDE10A inhibitor, pa-
paverine, and a PDE4 inhibitor, rolipram, 
on DARPP-32 and tyrosine hydroxylase 
(TH) phosphorylation in neostriatal slices. 
Mouse neostriatal slices were treated with 
various concentrations of papaverine 
(closed circles) or rolipram (open circles) 
for 60 min. Papaverine robustly increased 
DARPP-32 Thr34 phosphorylation in stri-
atal neurons (A), and rolipram increased 
TH Ser40 phosphorylation at dopaminergic 
terminals (B). **P < 0.01 compared with 
control slices for papaverine; §§P < 0.01 
compared with control slices for rolipram; 
one-way ANOVA followed by Newman-
Keuls test. Adapted with permission from 
Ref. 21.
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4.2. Effects of PDE10A inhibitors on dopamine-related 
behavior

PDE10A inhibition by papaverine, TP-10, and MP-10 
displayed behavioral phenotypes of antipsychotics such 
as inhibition of spontaneous locomotor activity, amphet-
amine- and phencyclidine (PCP)-stimulated locomotor 
activity, and conditioned avoidance responding (24 – 26) 
(Table 1). PDE10A inhibitors also induced catalepsy, 
which is a model predictive of antipsychotic activity and 
extrapyramical side effects (24 – 26). However, the in-
tensity of catalepsy induced by TP-10 is less than that 
induced by typical and atypical antipsychotics such as 
haloperidol and ziprasidone, respectively (25). Further-
more, PDE10A inhibitors increase social interaction of 
mice in the social approach / social avoidance test 
(SASA) and enhance performance in the social odor 
recognition task (SOR), suggesting the potential useful-
ness of PDE10A inhibitors for the treatment of negative 
symptoms and cognitive deficits as well as positive 
symptoms in schizophrenics (26).

4.3. Behavioral phenotypes of PDE10A knockout 
mice

Behavioral phenotypes of PDE10A knockout mice are 
similar to the behavioral effects of PDE10A inhibitors 
(22, 31, 32) (Table 1). PDE10A knockout mice with ge-
netic background of DBA1LacJ (PDE10ADBA) and 
C57BL/6N (PDE10AC57) show a decrease in spontaneous 
locomotor activity and PCP/MK-801–stimulated loco-
motor activity and a delayed acquisition or decrease in 
conditioned avoidance responding. These behavioral 
phenotypes can be explained by the increase in cAMP/
PKA signaling in indirect pathway neurons rather than in 
direct pathway neurons. However, the genetic back-
ground of mice can affect psychostimulant-stimulated 
locomotor activity. In PDE10ADBA-knockout mice, for 
example, amphetamine-stimulated locomotor activity is 
similar to that seen in wild-type mice (31), although 
PDE10A inhibitors inhibit locomotor activity in CD rats. 
By comparison, PDE10AC57-knockout mice show an in-
crease in amphetamine-stimulated locomotor activity 
(32). In PDE10AC57-knockout mice with genetic back-
ground of C57BL/6N, the tone of dopaminergic neuro-
transmission is high, and therefore actions of psycho-
stimulants to increase the release of dopamine and 
activate dopamine D1 receptor/cAMP/PKA signaling in 
direct pathway neurons are likely enhanced. Interestingly, 
PDE10A2C57-knockout mice show an increase in social 
interaction (22), supporting the utility of PDE10A inhibi-
tors for the treatment of negative symptoms of 
schizophrenics.

5. Role of PDE4 in dopaminergic neurotransmission

PDE4 is a cAMP-specific PDE with high affinity for 
cAMP (Km = 1 – 10 μM) (7). The PDE4 family is en-
coded by four genes (PDE4A – PDE4D), and each iso-
form has multiple variants. More than 20 variants are 
derived from the four PDE4 genes by alternative mRNA 
splicing (7, 8, 33). In the CNS, PDE4A, PDE4B, and 
PDE4D are widely distributed, but the expression of 
PDE4C is restricted to the olfactory bulb in rodent brain 
(34, 35). Notably, the strongest PDE4B immunoreactiv-
ity is detected in the nucleus accumbens, whereas it is 
moderate in the caudate putamen (34).

Each PDE4 variant has a modular structure consisting 
of a variant-specific N-terminal domain, regulatory do-
mains termed upstream conserved region 1 (UCR1) and 
UCR2, a conserved catalytic domain, and an isoform-
specific C-terminal domain (7, 33). PDE4 long forms 
contain both a UCR1 and a UCR2, whereas short forms 
contain only UCR2 or a portion of UCR2. UCR1/2 inter-
acts with the catalytic domain and constitutively inhibits 
the catalytic activity. The phosphorylation of UCR1 by 

Fig. 3. Neuronal type-specific regulation of DARPP-32 Thr34 
phosphorylation by papaverine and rolipram in neostriatal slices from 
D1-DARPP-32-Flag/D2-DARPP-32-Myc mice. Neostriatal slices 
from D1-DARPP-32-Flag/D2-DARPP-32-Myc mice were incubated 
with papaverine (10 μM) or rolipram (100 μM) for 60 min. Flag-
tagged DARPP-32, expressed in D1 receptor-enriched striatonigral/
direct pathway neurons, and Myc-tagged DARPP-32, expressed in D2 
receptor-enriched striatopallidal/indirect pathway neurons, were im-
munoprecipitated, and the phosphorylation of endogenous DARPP-32 
(Homog), Flag-tagged DARPP-32 (D1-Flag) and Myc-tagged 
 DARPP-32 (D2-Myc) was analyzed. *P < 0.05, **P < 0.01 compared 
with control; one-way ANOVA followed by Newman-Keuls test. 
Reproduced with permission from Ref. 21.
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PKA disrupts the inhibitory interaction of UCR2 with the 
catalytic domain (36, 37). The activation of PDE4 by 
PKA functions as a short-term feedback mechanism for 
the increase in cAMP. The PDE4B, 4C, and 4D catalytic 
domains contain a consensus motif for ERK phosphory-
lation (38, 39). PDE4 long forms are inhibited by ERK 
phosphorylation, whereas short forms are activated. Ac-
tivation of the MAP kinase (ERK) pathway and the 
phosphorylation of PDE4 long forms by ERK lead to the 
inhibition of PDE4 activity and the stimulation of cAMP/
PKA signaling. The phosphorylation of UCR1 by PKA 
overcomes the inhibition of PDE4, and activation of 
PDE4 results in the inhibition of cAMP/PKA signaling. 
Thus, activation of the MAP kinase pathway induces 
transient activation of cAMP/PKA signaling via inhibi-
tion of PDE4. Recently, Cdk5 was also shown to phos-
phorylate UCR1 and increase PDE4 activity via indirect 
mechanisms (40). Furthermore, transcription of a number 
of PDE4 genes is activated by the cAMP/PKA/CREB/
CRE cascade (41, 42), and the induction of PDE4 genes 
by PKA works as a long-term feedback mechanism.

The N-terminal domain and UCR1/2 interact with 
variant-specific binding proteins, to direct the subcellular 
targeting of PDE4 variants (7, 33). Various targeting 
proteins have been identified, including arrestin, A-kinase 
anchoring protein (AKAPS), receptor for activated C-
kinase 1 (RACK1), disrupted in schizophrenia 1 (DISC1), 
Src, and ERK. Among these targeting proteins, the inter-
action of PDE4B with DISC1 has received attention be-
cause DISC1 is a promising genetic susceptibility factor 
for schizophrenia (43, 44). In addition, disruption of the 
PDE4B gene by a balanced translocation segregates with 
schizophrenia (43), and PDE4B polymorphisms are as-
sociated with schizophrenia (45). Dysregulation of 
cAMP/PKA signaling by a DISC1/PDE4B complex may 
contribute to the molecular basis underlying schizo-
phrenia.

5.1. Biochemical evaluation of PDE4 functions in the 
striatum and cortex
5.1.1. Role of PDE4 at dopaminergic terminals

PDE4 plays an important role in the regulation of 

PDE10A PDE10A PDE10A PDE4 PDE4B PDE4D PDE1B
inhibitor inhibitor KO mouse inhibitor KO mouse KO mouse KO mouse

(papaverine) (TP-10, MP-10) (rolipram)
Catalepsy increased increased ND increased ND ND ND

(CD rat) (Fisher 344 rat) only at high dose
(CF-1 mouse) (CF-1 mouse) (CD rat)

Spontaneous decreased decreased decreased decreased decreased ND increased
locomotor activity (CD rat) (CD rat) (DBA1LacJ mouse) only at high dose (C57BL/6N mouse) (C57BL/6 x 129svj)

(C57BL/6N mouse) (CD rat) (C57BL/6N)

Psychostimulant-
stimulated

decreased decreased decreased increased
ND

increased

locomotor activity
(CD rat) (CD rat)

(DBA1LacJ mouse)
(CD rat) (C57BL/6N mouse) (C57BL/6 x 129svj)

(AMPH, METH) increased
(C57BL/6N mouse)

(C57BL/6N mouse)

PCP/MK801-stimulated decreased decreased decreased decreased ND ND increased
locomotor activity (CD rat) (CD rat) (DBA1LacJ mouse) (CD rat) (C57BL/6N mouse)

(C57BL/6N mouse)

Conditioned avoidance decreased decreased delayed
acquisition

decreased similar to wild-
type NDresponding (CD rat) (Fisher 344 rat)

(DBA1LacJ mouse)
(CF rat)

decreased (C57BL/6N mouse)(DBA1LacJ mouse) (CD rat)

decreased
(C57BL/6N mouse)

rolipram effect(CD-1, CF-1 mice)
(C57BL/6N mouse) (C57BL/6N mouse)

Prepulse inhibition no change no change ND increased decreased ND ND
(or increased (C57BL/6J mouse) (C57BL/6N mouse) (C57BL/6N mouse)
at high dose) (CD-1, CF-1 mice)

(C57BL/6J mouse) rescued rescued
MK-801 PPI deficit AMPH PPI deficit

(Long Evans rat) (C57BL/6J mouse)

Others increased SOR increased SOR increased antidepressant- anxiogenic-like antidepressant-
(CF-1 mouse) (CF-1 mouse) social interaction like effect behavior like effect
increased (C57BL/6 mouse) (C57BL/6 x 129/Ola) (C57BL/6  x 129/Ola)

social interaction rescued similar cognition decreased cognitive deficit
(SASA) MK-801 cognitive to wild-type emesis-related (Morris water maze)

(BALB/cJ mouse) deficit (Morris water maze) response (C57BL/6 x 129svj)

(radial arm maze) (passive avoidance) (C57BL/6 x 129/Ola)

(passive avoidance) (C57BL/6N mouse)
(SD rat) (C57BL/6 x 129/Ola)

References (24, 26) (25, 26) (22, 31, 32) (53, 56, 59, 62, 63) (53, 65, 66) (67, 68) (71, 73)

similar to wild-
type

similar to wild-
type

Table 1. Role of PDE in the regulation of dopamine-related behaviors

(  ): species, strain and genetic background. SOR, social odor recognition test; SASA, social approach/social avoidance test; ND, not determined. 
Light gray indicates the increase, whereas dark gray indicates the decrease in behavioral scores commonly examined. The table is in part derived 
with permission from Ref. 64.
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cAMP/PKA signaling at dopaminergic terminals in the 
striatum. Function of PDE4 has been analyzed using a 
selective PDE4 inhibitor, rolipram (IC50 1 μM), with 
100-fold selectivity over other PDE families (7). Dopa-
minergic neurons in the substantia nigra are known to 
express PDE4B and PDE4D (34). Inhibition of PDE4 by 
rolipram increases TH phosphorylation at Ser40 (PKA-
site) in neostriatal slices (Fig. 2B) and in vivo (21). The 
PKA-dependent phosphorylation of TH at Ser40 in-
creases the catalytic activity of TH (3, 4), the rate-limiting 
step in dopamine biosynthesis (46). It has been reported 
that rolipram increases dopamine synthesis without alter-
ing dopamine release (47, 48). In our study, the inhibition 
of PDE4 by rolipram in the presence of haloperidol re-
sulted in the increase in DOPAC/dopamine ratio, but not 
HVA/dopamine ratio, in the striatum in vivo, suggesting 
the increase in metabolism of dopamine by monoamine 
oxidase (MAO) at dopaminergic terminals (21). Released 
dopamine can also be converted to HVA at extraneuronal 
sites, through the sequential metabolism by catechol-O-
methyltransferase (COMT) and MAO, but the metabo-
lism of released dopamine was not affected by rolipram. 
Our results demonstrate that rolipram primarily enhances 
dopamine synthesis and metabolism at dopaminergic 
terminals, rather than dopamine release.

Rolipram has been investigated in clinical trials for the 
treatment of Parkinson’s disease. The therapeutic benefit 
of rolipram over L-DOPA or other dopaminergic drugs in 
Parkinsonism was not observed (49, 50).

5.1.2. Role of PDE4 in striatal neurons
In addition to the enhancement of dopamine synthesis 

by rolipram, the inhibition of PDE4 by rolipram weakly 
enhances cAMP/PKA signaling in striatal neurons in 
neostriatal slices and in vivo (21). Rolipram slightly in-
creased the phosphorylation of DARPP-32 at Thr34 only 
at a high concentration, and the effect was much smaller 
than that of the PDE10A inhibitor papaverine (Fig. 2A). 
Rolipram treatment augmented adenosine A2A receptor–
mediated phosphorylation of DARPP-32 at Thr34, but 
had no effect on dopamine D1 receptor–mediated phos-
phorylation. However, in neostriatal slices from D1-
DARPP-32-Flag/D2-DARPP-32-Myc mice, rolipram 
induced the phosphorylation of both Flag- and Myc-
tagged DARPP-32 in direct and indirect pathway neu-
rons, respectively (Fig. 3). The expression of PDE4B at 
mRNA and protein levels has previously been reported 
in the caudate-putamen (34, 35). Immunohistochemical 
analysis in D1-DARPP-32-Flag/D2-DARPP-32-Myc 
mice revealed that PDE4B expression was higher in in-
direct pathway neurons than direct pathway neurons. 
These data suggest that PDE4 preferentially regulates 
cAMP/PKA signaling coupled to adenosine A2A recep-

tors in indirect pathway neurons compared to that coupled 
to dopamine D1 receptors in direct pathway neurons. 
Activation of cAMP/PKA signaling in indirect pathway 
neurons elicited by the PDE4 inhibitor rolipram is ex-
pected to oppose dopa mine D2–receptor signaling in 
these cells, similar to the effects of the PDE10A 
inhibitor.

5.1.3. Role of PDE4 in cortical neurons
The prefrontal cortex (PFC) receives dopaminergic 

inputs from the ventral tegmental area (VTA), and acti-
vation of dopamine D1 receptors in the PFC is involved 
in cognitive function (51, 52). PDE4 isoforms, including 
PDE4A, PDE4B, and PDE4D, are expressed in cortical 
neurons (34, 35). In the mouse frontal cortex, PDE4B is 
localized to cortical neurons that express DARPP-32, 
and the inhibition of PDE4 by rolipram enhances 
 dopamine D1 receptor–mediated phosphorylation of 
 DARPP-32 at Thr34, indicating that PDE4 exerts strong 
biochemical control over dopamine D1 receptor/cAMP/
PKA signaling in the frontal cortex (A. Nishi, M. 
Kuroiwa, and G. Snyder, unpublished observations).

5.2. Effects of PDE4 inhibitors on dopamine-related 
behavior

The PDE4 inhibitor rolipram, like the PDE10A inhibi-
tor, inhibits dopamine D2–receptor signaling. At the same 
time, rolipram stimulates dopamine synthesis, indicating 
that PDE4 inhibition raises dopaminergic tone in the 
striatum. Therefore, rolipram mimics the biochemical 
effects of dopamine D2 antagonists and to some extent D1 
agonists. With regard to dopamine-mediated behaviors, 
rolipram inhibited spontaneous locomotor activity (only 
at high doses), amphetamine- and PCP-stimulated loco-
motor activity, and conditioned avoidance responding 
(53) (Table 1). In animal models of schizophrenia, rolip-
ram rescued amphetamine-induced reductions in audi-
tory-evoked potentials (54), MK801-induced deficits in 
latent inhibition (55), and amphetamine-induced deficits 
in prepulse inhibition (56). These behavioral effects of 
rolipram likely occur due to antagonism of dopamine 
D2–receptor signaling.

PDE4 was first identified as a homologue of the dunce 
gene in the fruit fly, Drosophila melanogaster, mutations 
of which resulted in learning and memory deficits (57, 
58). Subsequent work supported a role for PDE4 in 
learning and memory processes (59), including activation 
of cAMP/PKA/CREB signaling and facilitation of long-
term potentiation (LTP) in the hippocampus (60, 61). 
Furthermore, rolipram reverses MK801-induced cogni-
tive deficits in radial arm maze (62) and passive avoid-
ance tests (63). The PDE4 inhibitor also exerts antide-
pressant-like effects presumably via induction of BDNF 
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and neurogenesis in the hippocampus (59). The pharma-
cological profile of the PDE4 inhibitor, including positive 
effects on mood and cognition, further supports its pos-
sible efficacy for the treatment of negative symptoms 
and cognitive deficits in addition to positive symptoms 
in schizophrenics (64).

5.3. Behavioral phenotypes of PDE4B- and PDE4D-
knockout mice

To determine the functional roles of each PDE4 iso-
form, behavioral phenotypes for PDE4B- and PDE4D-
knockout mice have been investigated (53, 65, 66) (Table 
1). PDE4B-knockout mice exhibit reduced spontaneous 
locomotor activity, consistent with the antipsychotic 
profile seen with the PDE4 inhibitor rolipram. Unexpect-
edly, these mice also exhibit enhanced amphetamine-
stimulated locomotor activity and impaired prepulse in-
hibition, behaviors consistent with a pro-psychotic 
behavioral profile (65). The studies in PDE4B-knockout 
mice generally fail to recapitulate the antipsychotic ef-
fects of rolipram, and the discrepancy might be explained 
by the lack of PDE4B selectivity of rolipram and chronic 
compensatory mechanisms for PDE4B-gene deletion 
(64). In addition, PDE4B knockout mice display anxio-
genic-like behavior (66), but no alteration in cognitive 
function (65, 66).

PDE4D-knockout mice display phenotypes in tail-
suspension and forced-swim tests that mimic the effects 
of antidepressant medications and were insensitive to the 
antidepressant-like effects of rolipram, suggesting that 
PDE4D is a target for pharmacotherapy of depression 
(67). However, the fact that the inhibition of PDE4D is 
responsible for emesis induced by PDE4 inhibitors (68) 
presents significant challenges for the use of PDE4D 
inhibitors in the treatment of depression. Unexpectedly, 
PDE4D-knockout mice exhibit behavioral deficits in 
long-term memory formation, despite the observed en-
hancement of LTP in hippocampus (69) by rolipram. 
Although these data suggest an involvement of PDE4D 
in memory and learning, it is unclear how to reconcile 
the opposing effects on memory of PDE4 inhibitors like 
rolipram and the behavior of PDE4D-knockout mice.

6. Role of PDE1B in dopaminergic neurotrans-
mission

PDE1B is a dual substrate PDE with a higher affinity 
for cGMP (Km = 2.4 μM) than for cAMP (Km = 24 μM) 
(7). PDE1B is activated by Ca2+ and calmodulin, provid-
ing a mechanism for crosstalk between Ca2+ and cyclic 
nucleotide signaling. PDE1B is abundantly expressed in 
the striatum (70), and striatal PDE1B is localized to all 
DARPP-32–positive medium spiny neurons, indicating 

the PDE1B expression in both direct and indirect path-
way neurons (A. Nishi and M. Kuroiwa, unpublished 
observations). Biochemical studies in PDE1B-knockout 
mice revealed that the function of dopamine D1 receptors 
to stimulate the phosphorylation of DARPP-32 and 
GluR1 at PKA-sites is potentiated in striatal slices from 
PDE1B-knockout mice (71). In behavioral analysis, 
PDE1B-knockout mice exhibited an increase in psycho-
stimulant- and NMDA receptor antagonist–stimulated 
locomotor activity (71 – 73) (Table 1). The gene knock-
out has provided conflicting data regarding the influence 
of PDE1B on memory performance. Two reports have 
tested the performance of PDE1B-null mice compared 
with wild-type littermates in the Morris water maze, with 
different results. In one study, PDE1B-deficient mice 
displayed impaired spatial memory performance and use 
a less efficient search strategy in the spatial memory task 
(71). These deficits in spatial memory performance could 
not replicated in a subsequent study (72). The basis for 
the differences in spatial memory performance in the two 
studies is unclear, although the differing genetic back-
ground of mice used in these studies could contribute. 
The PDE1B-knockout mice did not display deficits in 
mouse models of cognition that do not rely upon spatial 
information, including the conditioned avoidance re-
sponse paradigm and the passive avoidance task (73). 
The role of PDE1B in other behavioral tests for anti-
psychotic and antidepressant activity has not yet been 
investigated. We hypothesize that PDE1B predominantly 
regulates cyclic nucleotide signaling in direct pathway 
neurons, whereas PDE10A exerts predominant effects in 
indirect pathway neurons.

7. Conclusion

Multiple PDE isoforms are differentially expressed in 
three neuronal subtypes in the striatum: dopaminergic 
terminals, indirect pathway neurons, and direct pathway 
neurons. The inhibition of PDE induces the up-regulation 
of cAMP signaling in the three neuronal types, resulting 
in i) stimulation of dopamine synthesis, ii) inhibition of 
dopamine D2–receptor signaling (D2 antagonist–like, 
antipsychotic effect), and iii) stimulation of dopamine 
D1–receptor signaling (D1 agonist–like effect). Biochemi-
cal and behavioral studies demonstrate that PDE10A in-
hibition preferentially down-regulates dopamine D2– 
receptor signaling, PDE4 inhibition preferentially 
stimulates dopamine synthesis and less efficiently down-
regulates dopamine D2–receptor signaling, and PDE1B 
inhibition preferentially up-regulates dopamine D1–re-
ceptor signaling. Development of isoform-selective PDE 
inhibitors is extremely important for the treatment of 
neuropsychiatric disorders.
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