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Abstract: The stability of a new adiabatic stepwise charging circuit
with an asymmetric 1D capacitor array is discussed. SPICE simulation
shows that this circuit, like the one with a symmetric array, is stable.
For the analytical discussion, we derive a matrix that connects charge
and voltage in the circuit with the asymmetric 1D-capacitor array and
show that the matrix is the positive-definite symmetric one. Using
matrix theory, it is proved that the eigen value of the matrix connect-
ing the initial voltage deviation from the step value with that after
the charge-recycling process is smaller than 1. Therefore, the voltage
deviation becomes zero after many charge-recycling processes.
Keywords: adiabatic charging, charge recycling, asymmetric 1D ca-
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1 Introduction

Adiabatic logic [1, 2, 3] is the only way to reduce the energy consumption
when the supplied voltage is fixed to a certain value. A regenerator using
a switched capacitor circuit has been proposed and realized for adiabatic
logic [1, 2, 3]. In a previous letter [4], we proposed a new switched capacitor
circuit with a one-dimensional (1D) array of tank capacitors located between
the power supply and ground. In this circuit, all of the capacitors have the
same capacitance value.

In this article, we discuss the stability of a circuit with an asymmetric
1D array of tank capacitors, which have different capacitance values. The
stability of this circuit is confirmed by SPICE simulation and is also proved
by the analytical method.

2 Circuit structure and stability of the regenerator

The switched capacitor regenerator with the asymmetric 1D capacitor array
is shown in Fig. 1 (a). For simplicity, we show a four-step waveform circuit.
The circuit structure is almost the same as in our previous work [4]. The
different point is that the capacitance values are not the same. As in the
previous work, tank capacitors Ci are connected in series between the power
supply and ground. CL is load capacitance, Vout is output voltage, and VCi is
the voltage of the node between tank capacitor Ci and Ci+1. The switching
transistor is a parallel connection of pMOSFET and nMOSFET, as shown in
Fig. 1 (b). We assume that the tank capacitors are not charged at the start
time so that power supply voltage V is divided due to the capacitance value.

Fig. 1. Switched capacitor regenerator with the asym-
metric 1D capacitor array. (a) Circuit. (b)
Switching transistor circuit.

First, we discuss the circuit simulation results. C1, C2, and C3 were 20 pF.
C4 was 200 pF, which is ten times larger than in the previous work. Other
circuit parameters were the same as in [4]. Load capacitance CL was 0.2 pF.
We used the 0.25-µm design rule. For the pMOS and nMOS transistors,
the gate length and the width were 0.25 and 6 µm, respectively. V was 2V.

c© IEICE 2007
DOI: 10.1587/elex.4.165
Received January 18, 2007
Accepted February 01, 2007
Published March 10, 2007

166



IEICE Electronics Express, Vol.4, No.5, 165–171

Threshold voltages were 0.4 and −0.4V in the nMOS and pMOS transistors,
respectively. The period of the four-step waveform cycle was 0.25µs.

When the capacitances were not charged at the start time, VC1, VC2, and
VC3 values were 10 V /31, 20V /31 and 30V /31, respectively. Fig. 2 (a) shows
the simulation results. At the start time, VCi is equal to the expected value.
After 400µs, VCi becomes iV/4 spontaneously. The time it takes to reach
the iV/4 is longer than in the previous work. This is because C4 is ten times
larger than before.

Fig. 2 (b) shows the results when the initial VC1, VC2, and VC3 values
were set to 0.1, 0.6, and 1.1V, respectively. After 400 µs, VCi again becomes
iV/4 spontaneously. In this case, curvatures of VCi are different from each
other, which is different from the previous results [4]. This suggests that the
eigen value is not the same because Ci is not the same. We discuss this point
in more detail later.

From the results, it is clear that the operation of the switched capacitor
regenerator is not dependent on the initial VCi, so that we can say that this
circuit is very stable against external noise.

Fig. 2. Voltage change of VCi with initial states such that
(a) VC1, VC2, and VC3 are 10V/31, 20V/31, and
30V/31 and (b) 0.1, 0.6, and 1.1V, respectively.c© IEICE 2007
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Next, we investigate the reason for the stability analytically. Here, we
assume that Ci is much larger than CL. Let Qti be the transferred charge
quantity from the tank capacitor to CL at the ith step voltage [Fig. 3 (a)],
and Qri be the restored charge from CL to the tank capacitor [Fig. 3 (b)].

Fig. 3. Definitions of charge and voltage in the switched
capacitor regenerator. (a) Qti is transferred from
the tank capacitor to CL at the ith step. (b) Qri

is restored from CL to the tank capacitor at the
ith step.

We define Qi as the amount of charge between Ci and Ci+1. Then, ∆Qi

(the change of Qi) after one cycle of charging and restoring can be written
as [4]

∆Qi = −Qti + Qri = CL(VC(i−1) − 2VCi + VC(i+1)), (1 ≤ i ≤ N − 1). (1)

Here, we define Vi as Vi = VCi − iV/N . Using Vi and (1), we have

∆Q = −AV ,

where ∆Q =

⎡
⎢⎣

∆Q1

...
∆QN−1

⎤
⎥⎦ , V =

⎡
⎢⎣

V1

...
VN−1

⎤
⎥⎦ ,

and A = CL

⎡
⎢⎢⎢⎢⎣

2 −1 0

−1 2
. . .

. . . . . . −1
0 −1 2

⎤
⎥⎥⎥⎥⎦

. (2)

Next, we define vi as the voltage difference between the capacitor plates
[Fig. 3 (a)]. Then, we have

⎡
⎢⎢⎢⎢⎣

VC1

VC2

...
VCN

⎤
⎥⎥⎥⎥⎦

= B

⎡
⎢⎢⎢⎢⎣

v1

v2

...
vN

⎤
⎥⎥⎥⎥⎦

, where B =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0

1 1
. . .

...
...

...
. . . 0

1 1 · · · 1

⎤
⎥⎥⎥⎥⎦

. (3)
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Qi can be written as
⎡
⎢⎢⎢⎢⎣

Q1

Q2

...
QN

⎤
⎥⎥⎥⎥⎦

= D

⎡
⎢⎢⎢⎢⎣

v1

v2

...
vN

⎤
⎥⎥⎥⎥⎦

,

where D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 −C2 0
C2 −C3

C3 −C4

. . . . . .
CN−1 −CN

0 CN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

...

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

Then, using (3) and (4), we have
⎡
⎢⎢⎢⎢⎣

∆Q1

...
∆QN−1

∆QN

⎤
⎥⎥⎥⎥⎦

= DB−1

⎡
⎢⎢⎢⎢⎣

∆VC1

...
∆VCN−1

∆VCN

⎤
⎥⎥⎥⎥⎦

= DB−1

⎡
⎢⎢⎢⎢⎣

∆VC1

...
∆VCN−1

0

⎤
⎥⎥⎥⎥⎦

, (5)

where ∆VCi is the change of VCi after one cycle of charging and restoring.
Using a simple calculation, we can know easily that

B−1 =

⎡
⎢⎢⎢⎢⎣

1 0
−1 1

. . . . . .
0 −1 1

⎤
⎥⎥⎥⎥⎦

. (6)

Therefore, we have

DB−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 + C2 −C2 0
−C2 C2 + C3 −C3

−C3 C3 + C4 −C4

−C4
. . . . . .
. . . CN−1 + CN −CN

0 −CN CN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)
Using (5), (7) and ∆VCi = ∆Vi, we have two relations. One is

∆Q = F · ∆V , where ∆V =

⎡
⎢⎣

∆V1

...
∆VN−1

⎤
⎥⎦ and

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1 + C2 −C2

−C2 C2 + C3 −C3

−C3
. . .

CN−2 + CN−1 −CN−1

−CN−1 CN−1 + CN

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)
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The other is ∆QN = −CN∆VCN−1, which is consistent with (4). Using (2)
and (8), we have

∆Q = F · ∆V = −A · V . (9)

Next, we investigate the characteristic of matrix F and A. These are
positive-definite symmetric matrices as follows [5, 6]:

xtFx = C1x
2
1 + C2(x1 − x2)2 + · · · + CN−1(xN−2 − xN−1)2 + CNxN−1

2

xtAx = CL[x2
1 + (x1 − x2)2 + · · · + (xN−2 − xN−1)2 + xN−1

2], (10)

where x is one of any vectors. Then, F is a positive-definite symmetric
matrix so that there exists a regular matrix P such that P tFP = I. Next,
we consider a matrix P tAP . This matrix is symmetric because (P tAP )t =
P tAtP = P tAP . Therefore, there exists orthogonal matrix T such that A

can be transformed to a diagonal matrix

(

A. Therefore, we have

T tP tAPT =

(

A and T tP tFPT = I. (11)

This means that PT can transform A and F into a diagonal matrix and
identify matrix at the same time. Next, for the following discussion, we
consider the generalized eigen value λ of the eigen equation such that Ap =
λFp, where p is the eigenvector. Defining q = (PT )−1p, we have

(PT )t(λF − A)PTq = (λI −
(

A)q = 0. (12)

Using
∣∣∣∣λI −

(

A

∣∣∣∣ = 0, we have λi =

(

Aii. Regarding λi, we can derive the

following other relation:

pt
i(λiF − A)pi = 0, where pi is the eigenvector of λi. (13)

Using (10) and (13), we have

λi = (pt
iApi)/(pt

iFpi) > 0. (14)

Using (14) and CL � Ci, we have 0 < λi � 1.
Here, we define vector W as W = (PT )−1V . Using (9), we have

(PT )t(FPT∆W + APTW ) = 0. (15)

Using (11) and (15), we have

∆W +

(

AW = 0. (16)

Here, we define W ′
i as W ′

i = Wi + ∆Wi. Then, we have
⎡
⎢⎣

W ′
1

...
W ′

N−1

⎤
⎥⎦ = G

⎡
⎢⎣

W1

...
WN−1

⎤
⎥⎦ ,

where G = I −

(

A =

⎡
⎢⎣

1 − λ1 0
. . .

0 1 − λN−1

⎤
⎥⎦ . (17)c© IEICE 2007
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The eigen value of G is 1-λi, which is in the range of 0 to 1 because 0 <

λi � 1. This means Wi (or Vi) approaches zero as the charging and recycling
process is repeated.

If Ci is the same as C, F is equal to 1/k · A, where k is CL/C. Using

(11), we have

(

A = kI, which is consistent with [4]. On the other hand, if Ci

is not the same, λi has different values. Therefore, 1-λi is not the same and
the curvatures of Vi are therefore not the same, which was already discussed
before in this article.

3 Conclusion

In summary, we analyzed an adiabatic circuit with an asymmetric 1D array of
tank capacitors between the power supply and ground. We showed that this
circuit is stable by SPICE simulation and proved its stability by an analytical
method.
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