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ABSTRACT

Proportional Integral Derivative (PID) controllease widely used in industrial processes for thianpsicity

and robustness. The main application problems laetuning of PID parameters to obtain good settling
time, rise time and overshoot. The challenge isnfarove the timing parameters to achieve optimailticn
performances. Remarkable findings are obtainedutitrahe use of Atrtificial Intelligence techniques a
Fuzzy Logic, Genetic Algorithms and Neural Network&e combination of these theories can give good
results in terms of settling time, rise time an@mhoot. In this study, suitable controllers abilenproving
timing performance of second order plants are ppegoThe results show that the PID controller hasig
overshoot values and shows optimal robustnessg&hetic-fuzzy controller gives a good value oflswgjt
time and a very good overshoot value. The neumfucontroller gives the best timing parameters
improving the control performances of the other® tapproaches. Further improvements are achieved
designing a real-time optimization algorithm whigbrks on a genetic-neuro-fuzzy controller.

Keywords: PID Controllers, Fuzzy Logic, Genetic Algorithn&econd Order Plants, Neural Networks

1. INTRODUCTION

The quality of control in a system depends onisgttl
time, rise time and overshoot values. The mainlpmbs
to optimally reduce such timing parameters, avaidin
undesirable overshoot, longer settling times abdations.

Some of these methods make use of the fuzzy logic
which simplifies the control designing for complex
models. As an example Kumar and Garg (2004)
designed a fuzzy controller to control a singleklin
manipulator robot. Moreover, a gain tuning fuzzy
controller has been designed to monitor the track

To solve this problem, many authors have proposedseeking in optical disks (Huang and Su, 2007). In

different approaches. A first approach is the Priiqtal
Integral Derivative (PID) controllers applicatiofhey are
extensively used in industrial process control iappibn.
Vaishnav and Khan (2007) designed a Ziegler-NicRdl»
controller higher order systems. A tuning methodctvh
uses PID controller has been developed (Shamusaizzwh
Skogestad, 2010). Such method requires one closgd-|
step setpoint response experiment similar to thesidal
Ziegler-Nichols experiment. However, in complexteyss
characterized by nonlinearity, large delay and time
variance, the PID’s are of no effect (Gaal., 2008). The
design of a PID controller is generally based oa th
assumption of exact knowledge about the systemalBec
the knowledge is not available for the majoritysgtems,

order to improve the control precision of a ballllmi
circuit, a fuzzy interpolation algorithm is presedt

(Cao et al., 2008). Moreover, PID fuzzy controllers
can be designed as power system stabilizer (Candu

Stoenescu, 2007).

The design of a fuzzy controller depends on the
choice of membership functions. A natural choice
through trial and errors procedures is impossilde t
obtain, overall for complex systems. In these §itug, a
huge computational time is necessary. In order to
overcome such difficulty, Genetic Algorithms (GA)ea
applied to fuzzy controllers with good results (iKtehal.,
2008; Kumar and Garg, 2004; Chegesti al., 2007;
Pelusi, 2011c). Such genetic methods are useful

many advanced control methods have been introducedapproaches for problems that require efficientd@ag.
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Khan et al. (2008) the membership functions and the (Astrom and Hagglund, 2004). The first method is
fuzzy logic rules were optimized through Genetic presented in this work and it is applied to thrétecent
Algorithms methods for a temperature control system plants. Our second approach attempts of improviveg t
Thanks to GA, Lenget al. (2006) eliminated the PID timing results designing a fuzzy controller
limitation on symmetric membership functions and optimized through GA techniques. The optimizatisn i
symmetric fuzzy rules. To achieve better control initially made on membership functions only,
performances of complex systems, neuro-fuzzy Subsequently, with the same genetic procedure aiem
techniques are developed. These two techniqueshmatcOn fuzzy rules. The design of a suitable neuroyfuzz

the capability of modelling a problem using the
knowledge with the capability to learn from data. A
neural-fuzzy network can self-adjust the parametdrs
rule base using neural-network-based learning itgos.

In the literature, a datadriven adaptive neuroyuzz
controller has been designed for the water-levatrobof
U-tube steam generators in nuclear power
(Munasingheet al., 2005). Moreover, in (Allaouat al.,

plants

controller which improves the performances of genet
fuzzy controller is the third approach of our modgb
further improve the settling time and rise timeues, a
suitable real-time optimization algorithm is degignSuch
algorithm works on a suitable genetic-neuro-fuzzy
controller. The target of these different approadbelso to
improve the simulation results shown in (Ktehal., 2008).

1.1. Tuning Parametersof PID Controller

2009) a neuro-fuzzy controller has been designed to

control the DC motor speed.

Many authors have proposed suitable combination

of fuzzy, genetic and neural techniques for différe
applications (Lenget al., 2006; Saridakist al., 2006;
Cho, 2002). In this way, hybrid intelligent algdits
have been developed. For example, a hybrid algorith

based on a genetic algorithm to design a neuroyfuzz

network is proposed in (Lergg al., 2006). In such work,
the model has been built for a system without arpri
knowledge about the partitions of input space aral t
number of fuzzy rules. Akbarzadehal. (2000) hybrid
paradigms are successfully implemented to solveethr
prominent robot control issues. Handwritten digit
recognition can be solved through combining methafds

S

The PID controllers have a wide range of applicetio
industrial control because of their simple consiblicture.
The PID controllers need of less plant informatilban a
complete mathematical model. In this way, the aler
parameters can be adjusted with a minimum of effort
One survey of Desborough and Miller (2002) indisate
that more than 97% of regulatory controllers uéliz
the PID algorithm.

There are many versions of a PID controller. Irs thi
study, we consider a controller described by Eqodtl):

de(t)

1 ot
ut) =K, e(t)+?joe¢)d+ Ty )

neural networks (Cho, 2002). The proposed hybridWhere* u(t) is the input signal sent to the plantsi, e(t)

method uses some fuzzy concepts to combine theitsutp
of separate networks which relevance is assignedAy
Good solution for real-time crack identificationsggms
is described in (Saridakig al., 2006). In this work, the
analytical model is approximated with a neural rorkv
which is used to solve the inverse problem of tteck
identification. A genetic search method producdsies
for the crack attributes as input arguments tortheral
network and the genetic algorithm objective fungtio
relies on a fuzzy logic representation. Recent istud

= r(t)-y(t) the error, y(t) the output and r(t) the
reference input signal. The parametefs K and T; are
the tuning parameters. There are more ways torobtei
tuning values of i T; and Tg: our PID controller uses
the Ziegler-Nichols tuning formula. The tuning farla
is obtained when the plant model is given by a-firsler
plus dead time which can be expressed by Equation 2

-sb

G(s)= 2

1+sT

(Pelusi, 2011a; 2011b; 2012) have proposed genetic-

neuro-fuzzy techniques able to improve the timing

performances of second order control systems.

The aim of this study is to achieve an optimal omint
performance of industrial actuators designing &lgta
controllers. Four research guidelines are consitiérbe
first one regards the design of a PID controllesdahon
Ziegler-Nichols tuning formula (Xueet al., 2007).

A huge variety of plants can be approximately
modeled by (2). If the system model cannot be iasi
derived, experiments can be performed to extraet th
parameters for the approximate model (2). For mtsta
if the step response of the plant model can be uneds
through an experiment, the output signal can berdec
and the parameters k, L and T (or a, where a = KLean

Ziegler and Nichols presented two methods: the stepbe extracted (Xueet al., 2007). The proposed PID
response method and the frequency response methocbntroller is designed to control some second ardetrol
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systems. In order to verify the robustness of theeh we
consider three plants with different transfer fiows. The
first one is typically used to approximate the viogkof
DC motors (Kharet al., 2008) and has the form Equation 3:

2

()= & +12s+ 24

(3)
The second transfer function (Equation 2) is used f

processes with first order dynamics with time delay
Equation 4 (Amini, 2008):

1

G,(8)=
(1+s)(1+ 5s)

(4)

The third transfer function (Equation 5) is joinid

These inputs have seven membership functions:
Negative Big (NB), Negative Medium (NM), Negative
Small (NS), Zero Error (ZE), Positive Small (PS)skve
Medium (PM), Positive Big (PB). The fuzzy outpushae
same membership functions of fuzzy inputs. Analyzhe
findings of (Chopraet al., 2005), we define the rules of
Table 1. During the rules designing process, we have
discovered that increasing the fuzzy rules bey@ndites is
useless. In fact, this procedure increases the leaitypof
fuzzy logic controller and has no positive effemtsoutput
response of the system.

The Fig. 2 shows the block diagram of fuzzy
controller. The differencee between the step and the
output feedback is passed as an input into fuzgjclo
controller together to the change in erder The output
of the fuzzy logic controller serves as an inputthe

the attempts of many researches of improving theansfer function block. The membership functions

tuning parameters through intelligent techniques
(Mezaet al., 2009):

400

()= @ 508)

()

TheFig. 1 shows the block diagram of PID controller.
The difference between the step and the outpubfeddis
passed as input into PID controller block. Suchcklo
contains MATLAB functions which implement the
Ziegler-Nichols tuning formulas (Xwet al., 2007).

The output of the PID controller block serves ampat
to the transfer function block. We consider the PID
controller behavioral for different plants defined (3), (4)
and (5) whereas the intelligent controllers aregmes! only
for second order plants with transfer function (3).

1.2. Design of Genetic-Fuzzy Controller

In order to improve the timing performances of gesd
PID controller, suitable genetic procedures are.use
Generally, the first step to design a fuzzy system

the choice of the number of input/output membership

functions. Assuming all possible rules are usedclvis

parameters are optimized through a search algorithm
based on GA. This technique assures that at legaba
local optimum can be discovered. Because GA aredbas
on the survival principle of the fittest, it is messary to
establish a fitness function which provides a
performance measure of tuning parameters. Such
function can be expressed through the Equatiord6/an

f(x) =exp(x) (6)
Where:
X = ie(i)2 @

and n is the number of iterations. In this way,déher e is
reduced at minimum. The variables to optimize auz for
the first and seventh membership function (tramkoi
functions) and three for the others five membership
functions (triangular functions). Because there twe
fuzzy inputs and one fuzzy output with seven mestipr
functions, the number of variables to optimizeds 6

The optimization algorithm works as follows:

Step 1: Initialize the variables to optimize.

often the case), if the membership functions numberSteP 2: Compute randomly the slope parameters and

increasing, then the number of rules grows
exponentially. It needs to avoid this situation dese it

is very important trying to minimize the time torapute
the fuzzy controller outputs given some inputs. 8om
studies (Chopraet al., 2005) deal with the design of
fuzzy logic controllers with less number of ruleading

to a smaller amount of computational time. The glesi
fuzzy controller has two inputs: the error e, tigathe
difference between the reference value and theubatp

controller and the change in error de, that is themamdani

difference between the error at time t and thataitrtel.
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establish the termination criteria.

Step 3: If it is achieved the termination criteride
genetic procedure is stopped and go to Step 6.

Step 4: Implement the genetic operations as cressov
mutation and selection (Ivakpour, 2006).

Step 5: Repeat the steps 3-4.

Step 6: Print the optimal values of slope pararseter

After 20 generations, the optimal fuzzy set&if. 3-5
are obtained. The optimized fuzzy controller uses t
inference  method and the centroid
defuzzification technique.
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Fig. 5. Optimized membership functions of output
Table 1. Fuzzy rules sometime depends mainly on previous experience in
e\de NB NM NS ZE PS PM PB similar applications. Moreover, the performances an
NB NB NB NB NM NS NS ZE the cost of a neural network are joined to neurons
NM  NB NM NM NM NS ZE PS number, net architecture and learning algorithnesn&
NS NB NM NS NS ZE PS PM works (Fiszelewet al., 2007; Chad, 2005) are focused
ZE NB NM NS ZE PSS PM PB in the development of methods for the evolutionary
PS NM NS ZE PS PS PM PB design of architectures to search optimal confitians
PM NS  ZE PS PM  PM  PM  PB  of neural networks.
PB ZE PS PS PM  PB PB PB

Many authors (Kharet al., 2008; Kumar and Garg,
2004; Chegenit al., 2007; Pelusi, 2011b) have proposed
GA techniques to achieve optimal fuzzy rules. Tfee
the above optimization algorithm is also used tal fihe
fuzzy rules with the higher weight. In fact, to irope
the control, it is very important discovering theles
which give the smallest timing control parametdter
this task, we consider the (7) as fitness funciom
apply the described optimization algorithm.

1.3. Neural Networks Application

In order to improve the control performances of
genetic-fuzzy controller, a suitable optimizationfurzy
rule is proposed. For this task, we consider a-deten
intelligent controller based on adaptive featurés.
neural-fuzzy network can self-adjust the parameitthe
fuzzy rules using neural-based learning algorith@ar
idea is to tune the rules weights considering thesrthat
give good timing performances. The fuzzy rules Weigire
tuned with the constraint of achieving small valusfs
settling and rise time. Our control system has-tsefhg
capabilities and requires an initial rule batable 1) to be
specified prior to training.

Generally, the design of neural networks for specif
applications is a test and error process. This gg®c
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Among the main training techniques there is thekbac
propagation algorithm. This training procedure sediin
many applications (Amini, 2008; Chang and Shih,200
Back-propagation involves minimization of an error
function which is accomplished by performing gradie
descent search on the error surface.

In order to define the layers number and the neuron
number for each layer, trial and error procedures a
used. The designed neural network has three latles:
first one has 2 neurons (equal to inputs numbég, t
hidden layer has 7 neurons and the output layerdBas
neurons Fig. 6). The training technique used is back-
propagation. The network has been designed through
Neural Network Toolbox of MATLAB.

Difficult task is the definition of a suitable trang
set. The training sample of our neural network is
characterized by the inpuésandde and 49 rules weights
values. The training set is obtained as followse €hror
e, the change in errate and the weights are randomly
generated and sent to the genetic-fuzzy controliae
weights values with settling and rise time lessthize
best timing values of genetic-fuzzy controller are
extracted. Formally Equation 8 and 9:

t <t

(8)

sbest

and:

JCS
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t <t 9)
where, ¢ is the settling time of neural-fuzzy controller
and tpest iS the best settling time of genetic-fuzzy
controller, whereas, tis the rise time of neural-fuzzy
controller and g is the best rise time of genetic-fuzzy
controller. The obtained training sample of 105@qras

is applied to the neural network.

A single presentation of all input vectors to the
network is defined as training epoch. The netwsrthen
updated according to the results of all the predemts.
Training occurs until a maximum number of epochs
occurs or the performance goal is met. After 156cap
and with a goal of 0.05, the performance of neural
network is 0.0820087g. 8).

The block diagram of neuro-fuzzy controller is
showed inFig. 7. The inputs e and de are sent to the
trained neural network which gives the optimal viatsg
for the 49 fuzzy rules. Such tuning parametergassed
to the fuzzy controller together with the errorrgf e
and the change in error de. The output of fuzzytrodier
tunes the second order plant(§. The difference
between the signal reference and the output feédisac

rbest

passed as an input to the neural network and fuzzy

controller. The process restarts with the calcotatf
new values of the error and change in error.

1.4. Real-Time Optimization Algorithm

The genetic fuzzy controller works on a run time
optimization algorithm described before. The neeasids
to design a real-time optimization algorithm takiimgp
account time computer problems. To accomplish such
task, genetic techniques are again used.

The intelligent procedure performs a stochastic
search via iteratively processing populations dfitians
in according to fitness. In control applicatioris fitness

is usually depending on performance measures as

settling time and rise time. To design our realetim
algorithm, we define the fitness function f as egsed
in equation 10:

f(x)zi

1+x (10)

with x =Zf:1e(t)2, where n is the number of iterations.

The goal is to reduce the quantity x at minimumerehx
is the sum of square errors. ThRay. 9 shows the block

Step 7:

computed by change in error block. Such inputsesasy
inputs to the trained neural network which gives th
optimal weights of fuzzy rules. At the same tinfe GA
block gives the optimal MF scaling parameters foeg
inputs. The output of fuzzy logic controller drivéise
second order plant defined by (3).

The novelty of this approach is the real-time
optimization of MF and weights using respectivelh G
and NN. The steps of our real-time optimization
algorithm are the following:

Step 1: Initialize the MF scaling parameters. The
number of parameters is 69. The population
number is 100 and the number of generation is
20. A population of problem solutions is
expressed in the form of chromosomes, i.e.,
strings encoding problem solutions.

Step 2: Define the range of each MF scaling paramet

This is a delicate phase because there could be

undesirable overlapping. Subsequently, compute

randomly the scaling parameters and establish
the termination criteria.

When it is achieved the termination catethe

intelligent procedure is stopped and go to Step 9.

4: Compute the fitness function to select good

strings. The fitness function also defines the

optimal weights via the trained neural network.

The task is to achieve the maximum ffX)

(equation 10).

Implement the selection. The selection ggec
copies parent chromosomes into a tentative new
population. The number of copies reproduced for
the next generation by an individual is expected to
be directly proportional to its fitness value.

Compute the crossover. Such genetic progedu
recombines genetic material of parent
chromosomes to produce offspring on the basis
of crossover probability. Let y, z be two
chromosomes of length 5. As an example,
considering y = 01001 and z 11010 and
onepoint crossover at the fourth point, two new
chromosomes y0 = 01010 and z0 = 11001 are
produced.

Implement the mutation. The mutation select
random position of a random string and
complements the bit value. For example, if
mutation is applied to the third bit of string,
the transformed string becomes 01110.

Step 3:

Step

Step 5:

Step 6:

diagram of control system. In order to evaluate theStep 8: Repeat the steps 3-7.

timing performance of structure, we consider thepst
response of system. The difference between theastep
the output feedback is sent to the input of germtiaro-
fuzzy controller together with the change in error
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Step 9: Print the optimal

values of MF scaling
parameters and the weights of fuzzy rules.

The real-time algorithm gives
membership functions shown kig. 10-12.

the optimized
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1.5. Smulation Results

The designed controllers are simulated through the(3)

MATLAB. The simulation results for different plant$
PID controller are shown ifable 3. Our PID controller
improves the rise time and the overshoot of (K&aa.,
2008). In fact, the rise time of conventional PID
controller in (Khanet al., 2008) is 0.371s, whereas the

PID controller here designed has rise time equal to

0.118s. Moreover, the overshoot of (Khetral., 2008) is
0.6748, whereas our PID controller gives a value of
0.223. The step response of PID controller withnpla
defined by (3) is shown irFig. 13. Moreover, the
controller has shown good robustness performance
changing the plant parameters.Tiable 3 are shown the
settling time, rise time and the overshoot valués o
control system for the three different plantg<p Gx(S)

and G(s). The step response is respectively shown in

Fig. 13-15.

The genetic-fuzzy controller with optimized MF has
better { and t than fuzzy logic PD controller in (Khan
et al., 2008). In our work, the settling time is 0.699s
versus a value of 0.8735s of fuzzy logic PD colarol
designed in (Khaset al., 2008). Comparing the results, we
can note that the rise time has an improvemenbofea
45% percent respect to (Khahal., 2008). The genetic-
fuzzy controller also gives a settling time betthan
our PID controller (consideringGl(s) as transfer
function) and zero overshoot. The improvementshmn
deduced observing PID and genetic-fuzzy controllers
step responseF{g.13-16). We remind that the genetic

///// Science Publications 101

fuzzy, neuro-fuzzy and genetic-neuro-fuzzy conexl
are applied on plants with transfer function dedirey

Better timing results are achieved optimizing the
fuzzy rules through the run-time optimization alton..
The optimization of rules weights shows that theeefive
more relevant rulesT@ble 4). These rules have weight
greater than 0.9. We can note that with eg@qual to
NB and NM and for allde values, the fuzzy rules are
characterized by weights less equal than 0.9. Maneo
with e = ZE there are not relevant rules. The genet
fuzzy controller with optimal rules improves thening
values of fuzzy controller with optimal membership

Yunctions. In fact, the settling time is 0.436ststes the

value of 0.699s of genetic fuzzy controller withlyon
optimal membership functions. Moreover, also the
value of tis improved from 0.385s to 0.241s.

Thanks to the constraints (8) and (9) defined & th
neuro-fuzzy controller withyd.s,= 0.699s andits= 0.385s,
the genetic-fuzzy controller results are improviedfact,
the adaptive neuro fuzzy approach gives a setiling of
0.423s and a rise time of 0.234s. The step respohse
neuro-fuzzy controller is shown kig. 17.

Further improvements are achieved defining a real-
time optimization procedure. The designed genedigr-ar
fuzzy controller works in according with the reiahe
optimization algorithm described before. Becausehsu
algorithm adopts Fuzzy Logic, Genetic Algorithmsdan
Neural Networks techniques which run at the same,ti
computational cost must be considered.
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Fig. 17. Step response of neuro-fuzzy controller

We simulate our controller through the MATLAB This is due to the fact that the variables to ogarare
software and run the optimization algorithm on a 69 and that GA and NN work together. Moreover, the
2.5GHz CPU speed computer. The algorithm yields the convergence of the algorithm depends on the andgditu
optimal parameters after about 10 h time computer.of optimization parameters ranges.
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Some time computer problems come from fuzzy rulesoptimization algorithm assures an improvement %35
number of the controller. Such number depends en th of control performances.
membership functions number of each fuzzy input. In The good values of settling and rise times given by
order to increase the precision of system, a MFrerm  the optimized controller in (Kharet al., 2008), are
greater than 7 has been considered. However, th@btained at the expense of overshoot value. Theized
results show that increasing the MF number do notfuzzy logic PD controller shows a settling time ato
improve the controller performances. The optimal 0.2526 and a rise time equal to165% with a not equal
membership functions of inputs and output are shownzero overshoot. Therefore, the other significastliteof
in Fig. 10-12. We can note that there are different our research is that with zero overshoot, alsdirsgtime
slopes for each membership function. We underlia¢ t ~and rise time of optimized controller in (Kheirel., 2008)
the first membership function and the seventh ome a are improvedTables5).
characterized by trapezoidal shape. The first Finally, by comparing the results of control
membership function of change in error fuzzy input systems performances, we conclude that the genetic-
tends to assume a triangular shape rather th(,j"peuro-fuz_zy and neuro-fuzzy controllers prodL_Jces a
trapezoidal oneFig. 11). From the observation d¢fig. more de5|_rable performance when compared with PID
12, we deduce that the middle membership functions of2nd genetic-fuzzy controllers.
output (NS, ZE, PS) are narrow. This means that nea o )
the zero, the output value must be evaluated morelablez' Optimized fuzzy rules weights

exactly than others output values \de NB_NM NS __ZE PS PM PB
y P ) . NB 0.572 0.473 0.446 0.553 0.588 0.693 0.505
Let <e: de; o> be the fuzzy rule withand de as NM 0.693 0744 0661 0650 0550 0.714 0.670

inputs ando as output. The optimization results of the NS 0.706 0.777 0.591 0.577 0.634 0.678 0.668
fuzzy rules via Neural Networks show that the more ZE 0.686 0.640 0.652 0.608 0.535 0.561  0.407

relevant rule, i.e., the rule with the greatestghigi is PS 0728 0572 0653 0627 0666 0563 0.653

. PM 0.612 0.726 0.588 0.634 0.635 0.518 0.653
<PB: NS; PS>. Such rule shows a weight value etual pg (0504 0617 1.000 0000 0676 0573 0.694

1. Viceversa, the rule <PB: ZE; PM> assumes zero
value. Three rules have weight less than 0.504 reetse

Table3. Settling time and rise time of PID controller for

the other ones have weights that lie between Oz5@# different plants

0.777 Table 2). Gy(sec) G(sec) G (sec)
The Fig. 18 shows the step response of the genetic-t; (sec) 0.846 8.520 0.194

neuro-fuzzy controller. We can note that the oveostis 1 (S€c) 0.118 1.110 0.022

equal to zero, therefore some results of (Klearal.,  Overshoot 0.223 0251 0.369

2008) are improved. In fact, in (Kha al., 2008) the ) .
optimized fuzzy logic PD controller yields a notrae -2Rle4. Fuzzy rules with weight greater thai90

overshoot value. However, the main designing prable E/ge I\'l\l: I\IJ\IBM I\TBS Nzl\li NPSS NZM ZEB
of the_ control systems |s_to reduce _the rise time.yuv  NB NM NM NM NS 7E PS

Sometime, the huge reduction of the rise time cause Ng NB NM NS NS ZE PS PM
high overshoot values (Khagt al., 2008). The timing ZE NB NM NS ZE PS PM PB
results obtained using the real-time optimization Ef/l NNéVl 2‘.? ég Iif/l EI\S/I ||33|\|>|/| IIDDLE
algorithm are shown ifable 5, where GFC is Genetic 7E bS PSS  PM PB PB PB

Fuzzy Controller, NFC is Neuro Fuzzy Controller and
GNFC is Genetic Neuro Fuzzy Controller. Comparing
our results with the previous ones, we can notettiae
are improvements. In fact, our controller yieldsedtling

Table5. Timing performance of PID controller, genetic-fuzzy
controller and neuro-fuzzy controller

i ) GFC GFC NFC GNFC
time equal to 0.276s versus a value of 0.423s ddai MF-opt MF,W-opt Run-time Real-time
with a run-time algorithm. Moreover, the rise time  t(sec) 0.699 0.436 0.423 0.276
reduced from 0.234s to 0.153s. Finally, the reakti 1 (sec) 0.385 0.241 0.234 0.153
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Fig. 18. Step response of Genetic-Neuro-Fuzzy controller

2. CONCLUSION other words, the simulation results show that the
proposed approaches improve the control performance

control of second order plants. The first approach  The nexttask will be the application of genetieZy,
employs a PID controller based on Ziegler-Nichols neuro-fuzzy and genetic-neuro-fuzzy controllers to
tuning technique to control second order systene T plants defined by (4) and (5). To reduce the
designed PID controller gives good results in teohs computational time for the real-time optimizatidnzzy
rise time. In fact, the simulations shown a valtig, & rules with low weight will be identified and remal¢o
0.118s. Moreover the controller has shown a good make fuzzy controller more compact and transparent.
robustness considering the plant parameters ch@ngin Another task will be design a suitable training péato

In order to improve the overshoot and the setttin@,  improve the training phase of the neural network. A
a fuzzy controller with optimized membership further improvement will consist of optimizing the
functions is designed. This optimization is weights of the neural networks through Genetic
accomplished through the application of genetic agorithms. Our attempt will be improving the traig
procedures. The genetic-fuzzy controller gives adgo phase to achieve optimal neural networks.

value of settling time and a very good overshoduea A future challenge will be the application of the
Better results are obtained applying the optimomati  proposed skills on simulators for drum boiler
algorithm also to optimize the fuzzy rules. Another (Prego and Seisdedos, 2011).

approach is based on the construction of data-drive
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