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ABSTRACT 
 
MatML plays an important role in materials data applications while structure-aware query techniques (e.g., 
XPath and XQuery) are used to search the content of MatML. However, both XPath and XQuery cannot 
efficiently retrieve sets of MatML on a conceptual level. In this paper, we propose an approach to transform 
MatML-based materials data into an OWL ontology. As such, materials data can then be explored in a more 
semantic way. The proposed method formally defines a set of rules to extract the corresponding OWL ontology 
(named MatOWL) from a given MatML schema. The instance transformation from MatML to MatOWL is 
implemented with the help of an intermediate object model. The algorithm for instance transformation is also 
given. Further, MatOWL can be mapped to other ontologies with logic rules to provide more semantic context 
for domain experts, and more materials knowledge can be obtained by reasoning on the OWL ontology. An 
experimental prototype demonstrates the effectiveness of our proposed approach. 
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1 INTRODUCTION 
 
In recent years, industrial communities and research institutions have accumulated immeasurable amounts of 
materials data (Westbrook, 2003), which are sure to facilitate materials science research. However, the 
complexity of materials data makes it hard for users to integrate and share these scientific data (Iwata, Shichijo, 
& Ashino, 2001). Materials data uses, such as access, acquisition, and interoperability, have gradually become 
the most challenging problems facing materials informatics (Hunt, 2006). As stated at the materials informatics 
workshop held at University of Queensland in 2006 (U Queensland, 2006), informatics is still in its infancy in 
the materials domain, and researchers of materials informatics should keep up with other scientific communities 
such as biology, astronomy, and social sciences. In order to exchange, integrate, and share materials data, a 
unified materials data model is needed. MatML (MatML Schema, 2004) and NMC-MatDB (NMC-MatDB 
Schema, 2007) are materials data models built for this purpose. A CODATA Task Group for Exchangeable 
Materials Data Representation (Task Group, 2006) was established at 2006 to focus on topics related to 
interoperability of heterogeneous data resources. Swindells (2002) described the representation of engineering 
properties, which includes material properties, by the use of ISO 10303 standards (ISO, 1994). ISO 10303-45 
Edition 2 (ISO, 2008) defines an information model to enable the representation of materials and other 
engineering properties of a product. This standard is extended by the development of ISO 10303-235, which 
focuses on the representation of the measurement process of a property and will shortly be published. The 
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terminologies of properties and measurement processes are specified in ISO 13584 (ISO, 2001) as a series of 
dictionaries. 
 
MatML is an extensible markup language developed especially to facilitate the exchange of materials 
information. It can uniformly represent materials property data to resolve syntactic and structural heterogeneity. 
As MatML is simple, flexible, and understandable, it offers many benefits (Sturrock, Begley, & Kaufman, 2001) 
to materials scientists and engineers. Research and applications about MatML have emerged in recent years. 
MatML is used in NSDL MatDL (Bartolo, Lowe, Sadoway, Powell, & Glotzer, 2005), and a web GUI has been 
developed to compare the properties of more than 80 types of materials. Begley and Howard-Reed (2005) have 
discussed the application of MatML to containment emission data, and a mapping approach from RDBMS to 
MatML is presented to transform these emission data into an exchangeable format. Bartolo & Lowe (2003) 
mapped MatML tags to Dublin Core elements to reuse the detailed information provided by MatML, so as to 
equip Dublin Core metadata with the capability of describing materials domain features. Varde, Begley, and 
Fahrenholz-Mann (2006) have presented some success stories for MatML in data mining applications, such as 
failure analysis and decision support systems.  
 
As MatML uses a tree-based structure to represent its content, queries (XPath or XQuery) on MatML are tightly 
coupled with the tree structure of the XML documents. However, materials scientists are more likely to write a 
semantic query by using domain terms that they are familiar with, instead of exploring the complex document 
structure. Therefore, MatML can not meet this requirement elegantly. MatML currently has not defined the 
names of materials properties and experiment data items (Ashino & Fujita, 2006). As such, it lacks the 
capability to describe the high-level abstraction of concept semantics, and machine-processable ontologies are 
required to provide the semantic mappings between related terms (Cheung, Drennan, & Hunter, 2008). 
Furthermore, from the perspective of data integration, the semantics of XML data should be specified explicitly 
to resolve semantic heterogeneity. Ashino and Oka (2007) have shown that MatML is not adequate for data 
exchanges between heterogeneous materials databases and have proposed a framework by using an ontology to 
define the structure of domain concepts. Hunter, Little, and Schroeter (2008) have developed an ontology for 
integration of disparate materials databases. These excellent research achievements pay more attention to the 
semantic integration of databases. Differing from the existing work, we believe that both integration and 
utilization of MatML data are becoming more and more important. However, this topic has not yet been well 
studied. 
 
In this paper, we propose an approach to use the achievements of the semantic web (Berners-Lee, Hendler, & 
Lassila, 2001) by transforming MatML to an OWL (Bechhofer, Harmelen, Hendler, Horrocks, McGuinness, 
Patel-Schneider, et al., 2004) ontology, so that materials scientists can perform semantic queries on materials  
data derived from the MatML documents. The approach formally defines a set of rules to extract the ontology 
(called MatOWL) from a given MatML schema and utilizes an intermediate object model to help instance 
transformation from MatML to MatOWL. The proposed MatOWL can be easily extended by mapping it to other 
ontologies with logic rules. As such, more semantic context for domain experts can be provided for 
semantic-related retrieval tasks. 
 
The remainder of this paper is organized as follows. The related work is discussed in Section 2. Section 3 gives 
the problem description. Section 4 introduces the rules used for extracting MatOWL. Section 5 describes the 
process and algorithm for the instance transformation. Section 6 discusses how to enhance MatOWL and 
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compose SPARQL query on the translated materials data. Section 7 shows experimental results and 
demonstrates the prototype. Section 8 concludes the paper. 
 

2 RELATED WORK 
 
In the recent years, much research has concentrated on how to build mapping from XML to an ontology 
efficiently. From the view point of real-life applications, some researchers focus on metadata generation for web 
pages, while others focus on data integration. From the view point of implementation techniques, some 
approaches aim at extracting an ontology from XML documents or XML schema (Ferdinand, Zirpins, & 
Trastour, 2004; Bohring & Auer, 2005), while others are dedicated to mapping the XML documents to an 
existing ontology (Reif, Jazayeri, & Gall, 2004; Rodrigues, Rosa, & Cardoso, 2005; Kobeissy, Genet, & 
Zeghlache, 2007). 
 
WEESA (Reif, et al., 2004), JXML2OWL (Rodrigues, et al., 2005) and XMLTOWL (Kobeissy, et al., 2007) 
generate mappings between an XML schema and a specific OWL ontology. WEESA and XMLTOWL use XML 
to express mappings, whereas JXML2OWL adopts XSLT. Once the mappings are defined, these approaches can 
transform XML documents to the corresponding OWL instances automatically. The advantage of this kind of 
solution is that an existing ontology can be utilized to provide a semantic interpretation for the XML data. 
 
The XML2OWL (Bohring & Auer, 2005) framework also supports instance transformation, and it can extract an 
OWL ontology from a XML schema or even from XML documents. The extraction and transformation rules are 
implemented by XSLT. On the other hand, Ferdinand, et al. (2004) proposed a method to convert XML to RDF 
as well as to transform a XML schema to OWL, though the two transforming processes are independent of each 
other. 
 
From the perspective of data integration, Lehti & Fankhauser (2004) use an OWL ontology as the global view in 
the data integration system and then construct mappings between the XML schema of a data source and the 
OWL ontology. It does not dump all instances from the data source, whereas the original query on the OWL 
ontology has to be translated into the corresponding XQuery. Different from the simple value correspondence 
between XML and ontology, An, Borgida, & Mylopoulos (2005) propose an approach to help end-users 
construct complex mapping formulas between XML schemas and OWL ontologies. The mappings are expressed 
as a subset of First Order Logic. 
 
Compared with the approaches mentioned above, our method has the following features. First, we do not map a 
XML document to a particular ontology. Alternatively, we focus on how to extract the OWL ontology from the 
XML document and then how to associate it with other OWL ontologies. Second, we are concerned with a 
particular type of XML document (i.e., MatML) in the materials domain. Hence, we must use some specific 
rules to extract information from MatML. Third, we use logic rules to express the relationships between the 
extracted ontology and other domain ontologies, and therefore the extracted ontology can be further used in a 
user-preferred manner. 

 
3 PROBLEM DESCRIPTION 
 
As more and more materials resources emerge in the MatML format, it is significant and necessary to provide a 
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convenient interface for users to access these scientific data. The motivation of our work is to bridge the 
semantic gap between materials experts and structure-aware queries on MatML, so that users can exploit the 
content of MatML in a more semantic way. Structure-aware query here means that the query should more or less 
be aware of the structural information of the source data. Thanks to the rapid development of semantic web 
technology, we therefore can use technologies such as ontology and logic rules to help to solve this problem. 
Before we give the overview of our approach, some related definitions are given below.  
 
The MatML version 3.1 schema contains more than 50 complex and simple types. Elements and attributes of 
MatML are declared as these types. Accordingly, the MatML schema can be formally defined as follows. 
 

Definition 1.  The MatML schema is a 2-tuple _ ( , )MatML Schema CT ST= , where 

{ |  is xsd:complexType}CT ct ct=  and { |  is xsd:simpleType}ST st st= . Further, NR RST ST ST= U  where 

simple types with enumeration restriction belong to RST  and the other simple types belong to NRST ; 

( , )CT E ATT=  where { |  is a xsd:Element}E e e=  and { |  is a xsd:Attribute}ATT att att= . For 

each ct CT∈ , ct.Elements and ct.Attributes are used to get E and ATT of CT respectively. For each st ST∈ , 

getBaseType(st) is defined to get the base type of st. For each x E ATT∈ U , x.name and x.type are used to get 

the name and type of x respectively. If x.type is xsd:IDREF, getRefType(x) is used to get the type referenced by x. 

The set of XML Schema types (e.g., xsd:string) are represented by XSDType.  
 

Applications in the materials science domain need more semantic support, such as that offered by an ontology. 
An ontology is a formal, explicit specification of a shared conceptualization (Gruber, 1993; Studer, Benjamins, 
& Fensel, 1998). An ontology can be used to capture some shared domain knowledge (e.g., the key concepts of 
a domain and important relationships between them), and it can also serve as the basis for logic reasoning on the 
information content in a specific domain. Based on the language description of an OWL (Bechhofer, et al., 
2004), the ontology extracted from MatML can be defined as follows. 
 

Definition 2.  MatOWL is an OWL ontology extracted from the MatML schema, which is a 5-tuple 

MatOWL=(C,OP,DP,I, oA ), where C is a finite set of concepts; OP is a finite set of object properties; DP is a 

finite set of data type properties; I is a set of instances; and oA is a set of axioms. Given ∑=C,OP,DP,I, oA  is a 

logic axiom set over ∑. For each x∈∑ , we use x.id to get a resource identifier of x. For ,c x C∈ , 

c.hasSuperclass(x) is defined to express that class c is a subclass of class x. For p OP DP∈ U  

and , XSDTypex y C∈ U , p.hasDomain(x) is defined to represent that the domain of property p contains class x, 

while p.hasRange(y) is defined to represent that the range of property p contains class y. 
 
Definition 3. f(x) is a name mapping function from the MatML schema into the MatOWL, where x can be a 
name of a type, element, or attribute defined in the MatML schema, and the value of f(x) is the name of a class 
or property defined in MatOWL. 

 
Based on these definitions, we propose an approach for mapping MatML to MatOWL so that users can perform 
semantic queries on materials data. The overview of our approach is illustrated in Figure 1. After four steps, 
users can semantically access MatML-based materials data by SPARQL queries.  
 
Step 1: Extraction of MatOWL. This step analyzes the structure of the MatML schema and extracts the concepts 
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and properties of a MatOWL ontology from the MatML schema by a set of heuristic rules. Through this step, the 
TBox of MatOWL is constructed. 
 
Step 2: Instance transformation. Instance data are transformed from MatML documents to MatOWL. 
Consequently, MatOWL is populated with materials property data, and the ABox of MatOWL is constructed. 
 
Step 3: Enhancement of MatOWL. This step adds more semantics to MatOWL. MatOWL is associated with 
concepts from other existing domain ontology by logic rules.  
 
Step 4: Query building. A SPARQL query is built based on the domain terms that come from MatOWL or the 
associated domain ontology. 
 
In the following sections, each of the four steps is described in more detail. 

 

Figure 1. Overview of the approach 
 
4 EXTRACTING MATOWL  
 
Because MatML is a data model for materials property data, the MatML schema can provide the basic 
vocabulary and structure for the description of this domain. Therefore, extracting an ontology from the MatML 
schema is not only a good idea but also a feasible solution. Hunter, et al. (2008) have designed an ontology 
based on MatML for database integration. Inspired by this idea, we deeply analyze the complex types and 
simple types defined in the MatML schema and propose a set of heuristic rules for extracting both concepts and 
properties from the MatML schema to build MatOWL. The extracted ontology involves the concepts and 
properties about materials property data. The main rules for extracting MatOWL from the MatML schema are 
given as follows. 
 

Rule 1. Rule for class generation. 

( )Rt CT ST∀ ∈ U ( ) ( . ( . ))c C c id f t name→ ∃ ∈ ∧ =  (1) 
This rule implies that each t, which is a complex type or simple type with enumeration restriction, is 
transformed to a corresponding class in MatOWL. For example, complex type PropertyData and simple type 
ChemicalElementSymbol in MatML are transformed to owl:Class. 
 
Rule 2. Rule for object property generation 

( . . ) . ( )Rct CT x ct Elements ct Attributes x type CT ST∀ ∈ ∧ ∀ ∈ ∧ ∈U U  
( ) ( . ( . )) ( . ( ( . ))) ( . ( ( . . )))op OP op id f x name op hasDomain f ct name op hasRange f x type name→ ∃ ∈ ∧ = ∧ ∧  (2) 
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. ( . : )ct CT att ct Attributes att type xsd IDREF∀ ∈ ∧ ∀ ∈ ∧ =  
( ) ( . ( . )) ( . ( ( . ))) ( . ( ( . )))op OP op id f att name op hasDomain f ct name op hasRange getRefType att type→ ∃ ∈ ∧ = ∧ ∧  (3) 

Formula (2) implies that for each complex type ct, if the type of its element (or attribute) x is a complex type or 
simple type with enumeration restriction, x is extracted as an object property op. Meanwhile, class f(ct.name) is 
added to the domain of op, and class f(x.type.name) is added to the range of op. For example, the element Name 
in the complex type PropertyDetails is extracted as an object property hasName. On the other hand, formula (3) 
implies that for each complex type ct, if the type of its attribute x is xsd:IDREF, x is extracted as an object 
property. As the attribute Property in the complex type Propertydata has type of xsd:IDREF, it is transformed to 
an object property. 

 

Rule 3. Rule for data type property generation. 

( . . ) . NRct CT x ct Elements ct Attributes x type ST∀ ∈ ∧ ∀ ∈ ∧ ∈U  
( ) ( . ( . )) ( . ( ( . ))) ( . ( ( . )))dp DP dp id f x name dp hasDomain f ct name dp hasRange getBaseType x type→ ∃ ∈ ∧ = ∧ ∧  (4) 

( . . ) .ct CT x ct Elements ct Attributes x type XSDType∀ ∈ ∧ ∀ ∈ ∧ ∈U  
   ( ) ( . ( . )) ( . ( ( . ))) ( . ( . ))dp DP dp id f x name dp hasDomain f ct name dp hasRange x type→ ∃ ∈ ∧ = ∧ ∧  (5) 
Formula (4) implies that for each complex type ct, if the type of its element (or attribute) x is a simple type 
without enumeration restriction, x is extracted as a data type property dp. At the same time, class f(ct.name) is 
added to the domain of dp, and class f(getBaseType(x.type)) is added to the range of dp. For example, the 
element Notes in the complex type PropertyData is extracted as a data type property notes whose range is 
xsd:string. As shown in Formula (5), if x.type is a kind of xsd type, the range of dp is just x.type. 

 

Rule 4. Rule for cardinality generation. 
( . . ) ( . ) ( . )ct CT x ct Elements ct Attributes Exist x minOccurs Exist x maxOccurs∀ ∈ ∧ ∀ ∈ ∧ ¬ ∧ ¬U  

( ) ( . ( . )) ( ) ( . ( . )) . 1)cc C c id f ct name p OP DP p id f x name p Cardinality→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ =U      (6) 
( . . ) . 0 ( . )ct CT x ct Elements ct Attributes x minOccurs Exist x maxOccurs∀ ∈ ∧ ∀ ∈ ∧ = ∧ ¬U  

( ) ( . ( . )) ( ) ( . ( . )) ( . 1) ( . 1)c cc C cid f ct name p OP DP pid f x name p MinCardinality p MaxCardinality→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ = ∧ =U   (7) 
( . . ) ( . ) ( . ' ')ct CT x ct Elements ct Attributes Exist x minOccurs x maxOccurs unbounded∀ ∈ ∧ ∀ ∈ ∧ ¬ ∧ =U  

( ) ( . ( . )) ( ) ( . ( . )) . 1)cc C c id f ct name p OP DP p id f x name p MinCardinality→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ =U       (8) 
( . . ) ( . ) ( . ' ')ct CT x ct Elements ct Attributes x minOccurs m x maxOccurs unbounded∀ ∈ ∧ ∀ ∈ ∧ = ∧ =U  

( ) ( . ( . )) ( ) ( . ( . )) . )cc C c id f ct name p OP DP p id f x name p MinCardinality m→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ =U      (9) 
This set of rules is used to generate cardinality restrictions for the generated property. Exist(x.att) is used to test 
whether a xsd:Element (or xsd:Attribute) x has the attribute att. .cp Cardinality . 
( .cp MaxCardinality , .cp MinCardinality ) represents a Cardinality (MaxCardinality, MinCardinality) restriction on 
property p for class c. In the MatML schema, if there is no miniOccurs (maxOccurs) declared in an element or 
attribute, it implies miniOccurs=1 (maxOccurs=1). Therefore, if neither miniOccurs nor maxOccurs exists, it 
indicates “exactly one.” The expression maxOccurs=’unbounded’ means there is no upper bound for occurring 
times, so the corresponding property has no MaxCardinality restriction. 

 

Rule 5. Rule for hierarchy relationship generation. 

( . ' ') .ct CT ct name Metadata e ct Elements∃ ∈ ∧ = ∧ ∀ ∈  

( ) ( . ( . . )) ( . ( (' ')))c C c id f e type name c hasSuperclass f Metadata→ ∃ ∈ ∧ = ∧                    (10) 
The complex type Metadata in the MatML schema has eight sub-Elements (i.e., AuthorityDetails, 
DataSourceDetails, MeasurementTechniqueDetails, ParameterDetails, PropertyDetails, SourceDetails, 
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SpecimenDetails, TestConditionDetails), each of which has its own declared types. The corresponding classes to 
these types are defined as subclasses of f(‘Metadata’). 
 
An example is given in Figure 2, which illustrates how the above extraction rules are used to accomplish the 
MatML schema transformation. The left part of Figure 2 is a snippet of the MatML schema, and the 
corresponding MatOWL is on the right. The complex type PropertyData is extracted as the class PropertyData. 
The attribute property, whose type is xsd:IDREF, is transformed to the object property isPropertyOf, and the 
referenced type PropertyDetails is translated into the class Property, which becomes the range of the property 
isPropertyOf. The element Name is converted into the object property hasName whose domain contains the 
class Property, and the range is the class Name. The element Notes is mapped to the data type property notes 
whose range is xsd:string and the domain contains the classes PropertyData, Specimen, DataSource, etc. 
 

 
Figure 2. Example for extracting MatOWL 

 

5 INSTANCE TRANSFORMATION 
 
After extracting MatOWL from the MatML schema, instance data of MatML can be populated into MatOWL. 
As XML has a very different structure from OWL, it is a nontrivial task to get data from MatML and change 
them to OWL instances. However, MatML can be naturally described by a set of associated objects because the 
structure of MatML can be considered as an element tree. Hence, we design an object model (named MatOO) to 
represent the hierarchy of MatML. The object model has a similar structure to MatML, and it has the similar 
style (classes and relationships) to the OWL model. Thus, the object model is built as the intermediate model for 
instance transformation. The process of instance transformation is shown in Figure 3. 

 
Figure 3. Process of instance transformation 
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5.1 MatOO model 
 
MatOO is a model that is used to facilitate the process of instance transformation. Actually, MatOO is an 
object-tree with the same hierarchy as the element-tree of MatML. The elements are defined as Java classes, and 
the children of an individual element are defined as its member variables. If a child element can occur multiple 
times, then the corresponding member variable is defined as an object array; if the type of the child is 
xsd:IDREF, it is defined as the correcponding referenced type. Figure 4 shows a part of the MatOO model. For 
example, PropertyData’s child specimen is the type of xsd:IDREF, so it is defined as the class SpecimenDetails; 
because PropertyData’s child ParameterValues may occur multiple times, it is defined as an array. The names of 
the Java classes and member variables come from MatML schema, and both getter and setter methods are also 
defined in these classes. We also define a mapping table to describe the name correspondence between MatOO 
and MatOWL. Currently, we just use a XML document to describe the name mappings by which the name of 
class and property from MatOO can be mapped to the identifier of MatOWL class and property. 

ParameterDetails
format : String
...

getData()
setData()
getFormat()
setFormat()
getName()
setName()

Name
text : String

getAuthority()
setAuthority()
getText()
setText()

AuthorityDetails
Name : String
Notes : String

getName()
setName()
getNotes()
setNotes()

-authority

PropertyDetails
type : String
...

getUnits()
setUnits()
getName()
setName()
getType()
setType()

-name
SpecimenDetails

type : String
notes : String

getName()
setName()
getNotes()
setNotes()
getType()
setType()

-name

PropertyData

addParameterValue()
getData()
setData()
getParameterValues()
setParameterValues()
getProperty()
setProperty()
getSource()
setSource()
getSpecimen()
setSpecimen()
getTechnique()
setTechnique()

-property

-specimen

-name

-parameterValues[ ]

 
Figure 4. MatOO Model (partial) 

 
5.2 Algorithm for instance transformation  
 
Due to the similar structure of MatOO and MatML, it is easy to parse a MatML document and populate the 
instance data into the objects of MatOO. How to dump data from MatOO to MatOWL is the key step of our 
approach. The algorithm for the instance transformation from MatOO to MatOWL is given in Table 1 as pseudo 
code. The input of the algorithm is an ontology (i.e., MatOWL) model OM, a root class C of MatOO, and an 
initial instance I. The output of the algorithm is an ontology model OM’ with populated OWL instances. 
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Table 1. An algorithm for instance transformation from MatOO to MatOWL 

Algorithm. transform (OntModel OM, Object C, Individual I) 

Input: the MatOWL ontology model OM,  
a root class C of MatOO model,  
an initial individual I  

Output: the ontology model OM’ with populated instances. 
1.  FC=getAllFieldsFromClass(C);    
2.  for each cf i  in FC   
3.   pstr=getOntPropNameFromMappingTable( cf i ); 
4.       if pstr!=null 
5.       p=OM.getOntProperty(pstr); 
6.                for each ,

cfOi k  in cf i  
7.       if p.isDatatypeProperty() 
8.           I.addProperty(p, ,

cfOi k ); 
9.       else if p.isObjectProperty()  
10.            RIp =CreateRangeIndividual(p); 
11. I.addProperty(p, RIp); 
12.            transform(OM, ,

cfOi k , RIp);       
13.    else   transform(OM, cf i , I);  

 
The algorithm first gets all fields (members) of the root class C, with FC being a set of fields of class C (line 1). 
For each field ccf Fi ∈ , the algorithm then tries to transform its value to the MatOWL instance (line 2). In the 
next step, the property name pstr in MatOWL corresponding to cf i  is retrieved from the mapping table 
between MatOO and MatOWL (line 3). If the property name is not null, the algorithm gets the ontology 
property object p from the ontology model OM (line 4-5). Because cf i  may be an array, for each object ,

cfOi k  
in cf i  array, the algorithm then tries to transform ,

cfOi k  to the MatOWL instance (line 6). Obviously, if cf i  
is not an array, it can be considered as an array with only one array element. Then we will judge whether p is a 
data type property or an object property. If p is a data type property, the content of ,

cfOi k  will be assigned to 
the property p of the instance I (line 7-8); otherwise, if p is an object property, we first get the range of p (named 
RIp), and link I and RIp by property p; then the algorithm makes a recursive call using ,

cfOi k  as the root class 
and RIp as the initial instance respectively (line 9-12). Finally, if pstr is null, it means that no corresponding 
property name is found in the mapping table. The algorithm recursively executes lookup from the next level in 
the object-tree in order to check if the corresponding property name can be found (line 13). When this recursive 
algorithm stops, it has traversed all MatOO objects whose instance data have been populated into the ontology 
model OM, which now becomes the result ontology model OM’. 
 
Figure 5 shows an example of the instance transformation from MatML to MatOWL. The left part is a snippet 
code of an input MatML document, while the right is the partial MatOWL instances generated by the algorithm. 
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Figure 5. An example for instance transformation 
 
6 MATOWL EXTENSION AND SEMANTIC QUERY  
 
After getting the OWL instances of MatOWL, we can use the concepts and properties from MatOWL to retrieve 
these instances with semantic queries. However, two issues should be taken into consideration in the semantic 
query. First, although OWL is more expressive than XML, all contents of MatOWL come from the MatML 
schema. Actually, MatOWL is an OWL version of MatML. Therefore, it is hard to say that MatOWL can 
provide more semantics than the MatML schema. Second, MatOWL is not convenient enough for users to write 
a query. On the contrary, users are more willing to write a query by using domain terms that they are familiar 
with, i.e., one user-oriented query view is more convenient for materials scientists. If we would like to get more 
interesting query results from MatOWL with an OWL inference engine, additional concepts, axioms, and rules 
should be added to MatOWL. Therefore, it is necessary to extend MatOWL. 
 
In our opinion, there are two ways to make MatOWL more useful in the semantic world: (1) to add domain 
concepts, property, and axioms to MatOWL directly; (2) to map MatOWL to other existing ontologies in 
materials science. Then the DL axiom or logic rules could be built to associate MatOWL with the new contents 
in both ways.  
 
After enhancing MatOWL by new domain concepts with the logic rules, writing semantic queries on the 
materials data becomes fairly intuitive to materials scientists. When users want to retrieve materials data from 
MatOWL, they can utilize not only concepts and properties from MatOWL but also domain concepts and 
properties from other domain ontologies. In this way, we can implement a user-oriented and semantic-based 
query on the MatOWL instances which are derived from MatML. 
 
For example, a user wants to perform a semantic query for materials selection using domain terms such as 
high-strength materials or corrosion-resistant materials. We should build a (or use an existing) materials 
selection ontology that defines the related domain concepts and properties. Then we can map the materials 
selection ontology to MatOWL by adding the logic rules between them. In other words, we use knowledge from 
MatOWL to explain the concepts of materials selection ontology (shown in Figure 6). Once the mapping rules 
are created, we can compose a query using terms from the materials selection ontology, which is just a virtual 
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view for users. The rule engine can help to answer query automatically using the instances from MatOWL. 
 

 

 
Figure 6. Mapping between ontologies using logic rules 
    
When users select materials, assuming they intend to find high-strength materials, they can just use the term 
HighStrengthMaterial to make a query. The SPARQL query is presented as follows: 
 

SELECT ?mat  ?name 
WHERE { ?mat  rdf:type  HighStrengthMaterial. 
         ?mat  matselect:name  ?name 
        } 

 
The rule engine can automatically classify the related instances from MatOWL to HighStrengthMaterial. The 
materials scientists need to know only the domain terms they are familiar with instead of the concepts from 
MatOWL. 

 
7 EXPERIMENTAL PROTOTYPE 
 
An experimental prototype has been implemented to evaluate our proposed method. In particular, the prototype 
has the following four functionalities: (1) it can be used to browse materials property data in MatML documents; 
(2) one or more MatML documents can be transformed into corresponding MatOWL instances; (3) we can use 
this prototype to execute a SPARQL query to retrieve the desired resources from the translated MatOWL; and (4) 
the prototype utilizes the OWL reasoner and rule engine to return the inferred query results. 
 
The graphic user interface (GUI) of the prototype is developed by Java Swing, and DOM4j (DOM4j, 2005) is 
used to parse MatML. The Jena API (Jena, 2007) is used to manipulate the extracted OWL, and logic rules are 
defined based on the Jena rules. We use the MatML schema version 3.1 as on the MatML website, with the 
MatML documents from MatDL Materials Selector (MatDL) as our experimental data set. 
 
As shown in Figure 7, we can import one or more MatML documents into our system. Thanks to the proposed 
MatOO model, we can easily browse both structure and materials data from an imported MatML document in 
detail. When a user selects a MatML document from the tree on the left, he/she can browse detailed information 
such as property data, chemical composition, and parameter values.  
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Figure 7. Loading and browsing MatML 
 
As shown in Figure 8, the button show MatOWL displays the translated MatOWL on the left as a concept tree. 
For example, the concept matselect:HighStrengthMaterial is an imported class from a certain ontology, and it 
has been mapped to a set of MatOWL concepts and properties by a logic rule. All MatML documents that have 
already been imported in the system can be transformed into the corresponding MatOWL instances one at a time 
by clicking the button begin transforming. The resulting instances are shown in the text area on the right side 
after the transformation.  
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Figure 8. MatOWL instance transformation 
 
The SPARQL query generator is still in development and will provide a GUI to help users build a SPARQL 
query based on an ontology. Currently, users can use a SPARQL query form to input SPARQL queries as shown 
in Figure 9. The right rule list shows the logic rules that have been defined in advance. With user-defined rules, 
the system can automatically perform ontology reasoning with the Jena rule engine and return the inferred 
answers to the user. 
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Figure 9. Query interface 
 
By translating the MatML into our MatOWL, we can conclude the following advantages: (1) both XQuery and 
XPath on the MatML documents are essentially queries on the structural tree, whereas the SPARQL queries on 
the MatOWL instances are queries on a semantic graph. Obviously, the SPARQL query allows users to explore 
the content of a MatML document more semantically. (2) Once a common conceptual model (i.e., MatOWL) is 
built, the integration of different MatML data sets will become more convenient. (3) Combined with the existing 
domain ontology by logic rules, the MatOWL instances can be accessed in a more semantic way. (4) The 
existing inference mechanism can be easily integrated into the system to find more useful knowledge from the 
original MatML data. The detailed comparison between MatML and MatOWL is shown in Table 2. 

 
Table 2. MatML vs. MatOWL 

Comparison Item MatML MatOWL 
Structure definition XML Schema Ontology 
Data structure tree graph 
Query Language XPath/XQuery SPARQL 
Query construction structure aware semantic aware 
Relationship parent/son/brother subclass /object property 
Reasoning ability no yes 
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8 CONCLUSION 
 
In this paper, we have presented an approach to support semantic query on MatML-based materials data by 
transforming the MatML into the corresponding OWL ontology. A set of rules are formally defined for 
extracting MatOWL, and an intermediate object model is built to facilitate the instance transformation. The 
proposed method allows users to conveniently exploit the original MatML from the view of different domain 
ontologies by rule-based mapping between them. The experimental prototype has shown the feasibility and 
effectiveness of our proposed approach. The major limitation of the current prototype tool is the lack of GUI 
support for both logic rules construction and query generation. In the future, we plan to support SWRL 
(Horrocks, Patel-Schneider, Boley, Tabet, Grosof, & Dean, 2004) rules, implement a logic rule editor to 
simplify the process of writing logic rules, and develop a query generator based on domain terms, which will 
make it much easier for materials scientists to build a semantic query. 
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