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AN ELASTOPLASTIC MODEL FOR UNSATURATED ROCKFILLS AND
ITS SIMULATIONS OF LABORATORY TESTS
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ABSTRACT

This paper describes an elastoplastic model for rockˆlls and simulations of laboratory test by using the model. Rock-
ˆlls express remarkable shear strength reductions and compressive deformations due to saturation. The authors have
already developed elastoplastic models to represent the mechanical properties of unsaturated soils. Two suction eŠects
were taken into account in the models. However for rockˆlls, one suction eŠect: an increase in suction enhances yield
stresses and aŠects resistance to plastic deformations, remarkably appears. The eŠect may be evaluated by formulating
state surfaces. In this paper, a model proposed by authors is modiˆed for rockˆlls. To verify the elastoplastic model
for rockˆlls, simulations of oedometer and triaxial compression tests were carried out. The simulation results could
well express the volume change and shear behavior of the rockˆll, especially the in‰uence of water contents.

Key words: (collapsed settlement), constitutive equation, numerical analysis, rockˆll, suction, unsaturated soil (IGC:
D4/D5/D6/E12)

INTRODUCTION

In order to solve cost reductions and environmental is-
sues in constructions and rehabilitations of dams, it is
very important to use low quality rockˆlls (kohgo et al.,
2007) as construction materials. A main problem for use
of low quality ones as the construction materials seems to
be that the diŠerences between saturated and unsaturated
mechanical behavior are sometimes greater than those in
high quality ones.

The mechanical properties of rockˆlls are closely re-
lated to breakage properties of rock particles (Marsal,
1972; Marachi et al., 1968). The breakage properties are
sometimes strongly aŠected by the degree of saturation
(Terzaghi, 1960; Kohgo et al., 2007). Especially, com-
pression deformations due to saturation, called satura-
tion collapse, seems to be induced by the diŠerence
between saturated and unsaturated breakage properties
of rock particles. The saturation collapse causes cracks
on crests of dams and it may become one of the causes of
hydraulic fracturing. Nobari and Duncan (1972)
proposed a procedure for calculation of collapse defor-
mations in which unbalanced forces were calculated from
the diŠerences between stress-strain relationships of satu-
rated and unsaturated specimens and the collapse defor-
mations were estimated by the unbalanced forces. They
adopted a nonlinear elastic model: Duncan-Chang model
to describe the stress-strain relationships. As the satura-
tion collapse is the phenomenon that arises from the

breakage of rock particles, most of the deformations
should be regarded as plastic deformations. Oldecop and
Alonso (2001) proposed an elastoplastic model that was
only valid to express compression properties of unsatu-
rated rockˆlls. Thus elastoplastic models, which can
describe the saturated and unsaturated mechanical be-
havior (both compression and shear) of rockˆlls, have
not been proposed.

The purpose of this paper is to present an elastoplastic
model for rockˆlls and simulations of laboratory tests by
using the model. The model should have potentials to
describe the saturated and unsaturated mechanical be-
havior of rockˆlls including from low to high quality
rockˆlls. Using the consolidation analysis method
proposed by Kohgo (1995, 1997) combined with this
elastoplastic model, we might not only check the
performance of the dams constructed by low quality
rockˆlls but also design eŠective zonings. Our original
elastoplastic model (Kohgo et al., 1993b) will be modiˆed
to express mechanical behavior of saturated and unsatu-
rated rockˆlls. In order to verify the elastoplastic model,
simulations of oedometer and triaxial compression tests
are conducted.

AN ELASTOPLASTIC MODEL FOR ROCKFILL
MATERIALS

We only consider the time-independent mechanical
properties, here.
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Fig. 1. Possible saturation conditions in real soils

Fig. 2. Relationships between mean maximum compression loads of
particles within vertical displacements Ã2 mm and water contents
for a rockˆll named Material S
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At ˆrst, stress notations used in this paper are deˆned
as follows:

s＝ua－uw, (1)

s*＝〈s－se〉, (2)

p?＝
1
3

(s?1＋s?2＋s?3), (3)

q＝s?1－s?3, (4)

where s is suction or matric suction, ua is pore air pres-
sure, uw is pore water pressure, s* is eŠective suction, se is
air entry suction, s?1, s?2, s?3 are three eŠective principal
stresses, p? is mean eŠective stress, q is deviator stress and
the brackets〈 〉denote the operation〈z〉＝0 at zº0 and
〈z〉＝z at zÆ0.

Suction EŠects
It is necessary to consider two suction eŠects to

represent exactly the mechanical properties of unsaturat-
ed soils (Kohgo et al., 1993a). The two suction eŠects are
as follows:
(1) An increase in suction increases eŠective stresses,
(2) An increase in suction enhances yield stresses and

aŠects the resistance to plastic deformations.
The ˆrst suction eŠect controls changes of the shear

strength on the wet side of the critical state (normally
consolidation or lightly overconsolidated sides) due to
suction, volume reductions due to an increase in suction
(drying) and swellings due to a decrease in suction (wet-
ting). The suction eŠect may be evaluated by using the
relationship between suction and shear strength values at
the critical state (Kohgo et al., 1993a).

The second suction eŠect controls both changes of the
shear strength on the dry side of the critical state (heavily
overconsolidated side) due to suction and volume reduc-
tions due to a decrease in suction, namely saturation col-
lapse. The suction eŠect can be estimated by formulating
the state surface. Because state surfaces express
elastoplastic volume changes of unsaturated soils
(Kohgo, 1987) and the eŠect can be evaluated by using the
state surface concept when plastic volumetric strain is re-
garded as a hardening parameter (Kohgo et al., 1993a).

It is convenient to consider three partially saturation
conditions shown in Fig. 1 in order to understand the suc-
tion eŠects (Kohgo et al., 1993a). The three conditions
are insular air, pendular and fuzzy saturation conditions.
In the insular air saturation condition, pore air only exits
as air bubbles surrounded by water (see Fig. 1(a)). From
some experimental results (Gan et al., 1988; Fleureau et
al., 1993), Terzaghi's eŠective stress equation is valid in
this condition. Then the ˆrst suction eŠect is only eŠec-
tive. It may be namely regarded as the condition where
pores are ˆlled with a single compressible ‰uid mixed with
air and water.

In the pendular saturation condition, water is only
retained in the menisci formed around grain contact
points (see Fig. 1(b)). Suction can only induce a force
named capillary force. The capillary force acts perpen-
dicularly on grain contact points and attracts soil parti-

cles together. Then it is obvious from the friction law that
this force restrains relative sliding between soil particles.
As most of plastic deformations are due to relative sliding
between soil particles, an increase in capillary force in-
hibits the plastic deformations. The second suction eŠect
is namely eŠective in this saturation condition.

In rockˆlls, the mechanism related to the second suc-
tion eŠect is diŠerent from that of unsaturated soils.
Deformations (exactly plastic deformations) of rockˆlls
may be generally due to breakage of rock particles. An
example of relationships between compression loads
(breakage strength) and water contents for rock particles
can be seen in Fig. 2 (Kohgo et al., 2007). The breakage
strength of rock particles may mostly decrease with an in-
crease in water content or a decrease in suction, so more
external loads need to be applied to unsaturated rockˆll
specimens than those to saturated ones to induce the
same plastic deformations. As a result, the second suc-
tion eŠect is also valid for rockˆlls.

In the fuzzy saturation, which is the transitional condi-
tion from the insular air to the pendural saturation condi-
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Fig. 3. A typical soil water retention curve

Fig. 4. A typical soil water retention curve for a rockˆll named
Material S (Symbols: experimental data)

Fig. 5. Comparison between triaxial compression test results of satu-
rated and unsaturated specimens in a rockˆll named Material S

Table 1. Suction eŠects for soils and rockˆlls

Soil type Soils Rockˆlls
Saturation condition Insular air Fuzzy Pendural Insular air Fuzzy Pendural
The ˆrst suction eŠect   ×  × ×

The second suction eŠect ×   × × 

Mechanism of the second suction eŠect Due to capilary force Due to breakage of rock particles

: Consideration, ×: Nonconsideration
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tions during drainage, the situation in small pores is simi-
lar to that in the insular air saturation condition while the
one in large pores is close to that in the pendular satura-
tion condition ( see Fig. 1(c)). Then, we have to consider
two suction eŠects in this saturation condition.

These three partially saturation conditions can be
divided by utilizing a soil-water retention curve shown in
Fig. 3. When suction is smaller than the air entry value,
the condition is insular air. When suction is very high, the
condition is pendular. The fuzzy saturation lies between
the insular air and pendular saturation conditions.

In the formulation of elastoplastic models for unsatu-
rated soils, it was necessary to formulate not only eŠec-
tive stress equations but also state surfaces for unsaturat-
ed soils. In rockˆlls, if suction is applied from the full
saturation condition, the saturation condition will imme-

diately come into the pendural saturation condition by
small application of suction as shown in Fig. 4 where
symbols express mean experimental values obtained from
the soil column tests (Kohgo et al., 2007). Then, it is
su‹cient to take only the second suction eŠect into ac-
count when suction is higher than air entry suction. This
fact is also seen in Fig. 5. Figure 5 shows typical results of
triaxial compression tests for saturated and unsaturated
(air dry) specimens (Kohgo et al., 2007). The ˆrst suction
eŠect may be evaluated by using the relationship between
suction and shear strength values at the critical state
(Kohgo et al., 1993a). Then it is not necessary to take ac-
count of the ˆrst suction eŠect if both unsaturated and
saturated specimens have the same shear strength at the
critical state. It is obvious from Fig. 5 that shear strengths
of both saturated and unsaturated specimens with the
same conˆning pressures reach almost the same values at
the ultimate states that are consistent with their critical
state. Suction eŠects for soils and rockˆlls are summa-
rized in Table 1.

The eŠective stress equations for rockˆlls are as fol-
lows:

s?＝s－ua＋s (sÃse), (5)
s?＝s－uae＋se (sÀse), (6)

where s? is eŠective stress, s is total stress and uae is pore
air pressure at air entry. Equation (5) is consistent with
Terzaghi's eŠective stress equation, while supposing uae＝
uwe at air entry, the assumption that Bishop's parameter x
＝0 in Eq. (6) is valid. Where uwe is pore water pressure at
air entry.
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Fig. 6. Various state surfaces for geomaterials

Fig. 7. Normal yield surfaces and plastic potential functions of the
elastoplastic model proposed
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Modeling of State Surface
The second suction eŠect can be estimated by for-

mulating the state surface. The shape of the state surface
depends on the types of soils (Kohgo et al., 2001). The
state surfaces can be generally plotted in the space with
the axes: eŠective mean stress p?, eŠective suction s* and
void ratio e. Here four shapes of state surfaces are taken
into account. Figure 6 shows the possible shapes of state
surfaces. Figure 6(a) shows the state surface where the
value of l* (slope of e-log p? curves) monotonously
decreases as the value of s* increases, while Fig. 6(b)
shows the opposite case where the value of l*
monotonously increases. Figures 6(c) and (d) show the
cases where the state surface has the minimum and maxi-
mum slope values, respectively. The state surfaces may be
expressed as:

e＝－l* log p?＋G*, (7)

s*Ãs*m

l*＝l＋
l*f1s*

s*＋a1*
, (8)

G*＝e0
01＋

(G－e0
01)l*

l
, (9)

s*Às*m

l*＝l*m＋
l*f2(s*－s*m)

(s*－s*m)＋a*2
, (10)

G *＝e0
02＋

(G *m－e0
02)l*

l*m
, (11)

where l* is slope of e-log p? curves, G * is void ratio of e-
log p? curves at p?＝unit, l and G are values of l* and G*
at saturation, respectively, s*m is suction where the state
surface has the minimum or maximum slope values, l*＝
l*m at s*＝s*m, G *＝G*m at s*＝s*m, and e0

01, e0
02, l*f1, l*f2, a*1

and a*2 are material parameters.

Generalized Elastoplastic Model for Rockˆlls
The model described here is modiˆed on the base of

Kohgo's model (Kohgo et al., 1993b). The model belongs
to cyclic plasticity. In the formulation of the elastoplastic
model, compression stresses are assumed to be negative.

As a subloading surface model is used here, we have to
deˆne normal yield and loading surfaces. The normal
yield surfaces are consistent with the yield surfaces in
classic plasticity. This model has two yield surfaces,
shown as in Fig. 7. One is the Mohr-Coulomb type failure
surface ( f1) and the other is the elliptical cap model with
corners ( f2). Both are connected on the critical state line.
The yield functions are the same as those deˆned by
Kohgo et al. (1993b).

f＝f (I1, J2, u)＝a*csI1＋
J2

g(u)
＝0, (12)

f1＝f1(I1, J2, u)＝a*I1＋
J2

g(u)
－K *＝0, (13)

f2＝f2(I1, J2, u)＝b*2(I1－I0)2＋a2 J2

g(u)2－a2b*2＝0, (14)

g(u)＝
3－sin q?

2( 3 cos u－sin u sin q?)
, (15)

where f is the critical state line, f1 is the failure surface, f2

is the cap surface, I1 is the ˆrst stress invariant, J2 is the
second invariant of deviator stress, u is Lode angle and I0,
a, b*, K *, a* and a*cs are deˆned in Fig. 7. Kohgo et al.
(1993b) have presented the details.

Following two elliptical plastic potential functions are
adopted. They are connected on a phase transformation
line as shown in Fig. 7.

c1＝b2(I1－I0)2＋a*2J2－a*2b2＝0 (I0ºI1ÃP2), (16)

c2＝b2(I1－I0)2＋a2J2－a2b2＝0 (IcºI1ÃI0), (17)

where a* and b are deˆned as follows.

a*＝P2－I0, (18)

b＝－aptI0. (19)

The slope of apt is evaluated as follows so that the slope
is consistent with the slope of Mohr-Coulomb failure
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Fig. 8. Normal yield surfaces and subloading surfaces
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function (Zienkiewicz and Humpheson, 1977).

apt＝
2 sin q?pt

3 (3－sin q?pt)
at axisymmetric compression, (20)

apt＝
2 sin q?pt

3 (3＋sin q?pt)
at axisymmetric extension, (21)

apt＝
tan q?pt

9＋12 tan2 q?pt)
at plane strain condition, (22)

where q?pt is phase transformation angle and P2 is deˆned
in Fig. 7.

The Mohr-Coulomb yield surface shown in Eq. (13) is
the most popular and practical in geomechanical ˆeld and
the elliptical potential functions as shown in Eqs. (16)
and (17) can obtain stable solutions because they have no
corner. That is the reason that we employ the yield func-
tion and potential functions.

Supposing this is an isotropic hardening model with
plastic volumetric strain ev

p as a hardening parameter, the
yield stress Ic may be evaluated by means of the state sur-
face concept (Kohgo et al., 1993a).

Ic＝－3 exp ØB*－ep
v

A* » , (23)

A*＝
(l*－k)

2.3(1＋e0)
, (24)

B*＝
(l*0－k)

2.3(1＋e0)
ln (－p?0)－

(G *0－G *)
(1＋e0)

, (25)

where k is slope of e-log p? curves at unloading, e0 is ini-
tial void ratio, p?0 is initial mean eŠective stress and, l*0
and G *0 are initial values of l* and G *, respectively.

Subloading Surfaces
This model belongs to the original subloading surface

model (Hashiguchi, 1980). Subloading surfaces are de-
ˆned to be similar to the normal yield surfaces. The simi-
lar center is postulated to be consistent with the origin
( see Fig. 8). The ratio of the sizes of subloading surfaces
to the normal yield surfaces is deˆned as

R̃＝
Ĩc

Ic
(0ÃR̃Ã1), (26)

where Ĩc is the value of Ic on the subloading surfaces. The
value of Ĩc can be evaluated from the current stresses, be-
cause the current stress point is always lying on the sub-

loading surfaces.
A loading criterion is deˆned as follows.

_R̃À0 Loading,

_R̃º0 Unloading,

_R̃＝0 Neutral loading, (27)

where _R̃ is increment of R̃.
Let us consider a conjugate point on the normal yield

surfaces with the same normal direction as the current
eŠective stress point s?ij on the subloading surfaces. Then,
the conjugate eŠective stress tensor âs?ij is

âs?ij＝
s?ij
R̃

. (28)

The hardening modulus H is postulated as

H＝ ÂH－ah ln (R̃), (29)

where ÂH is hardening modulus at conjugate point and ah

is a material parameter.
Procedure for estimation of stress and strain in

elastoplastic range is as follows.

·s?ij＝De
ijkl ·e

e
kl＝De

ijkl[ ·ekl－ ·ep
kl], (30)

·ep
ij＝ _l ânc

ij , (31)

_l＝
ânf
klD

e
klmn ·emn

H＋De
abcd ânf

ab ânc
cd

, (32)

ânf
ij＝

&f
& âs?ij

«Ø &f
& âs?kl

»Ø &f
& âs?kl

»$
1W2 , (33)

ânc
ij＝

&c
& âs?ij

«Ø &c
& âs?kl

»Ø &c
& âs?kl

»$
1W2 , (34)

where ·s?ij is increment of eŠective stress tensor, De
ijkl is

elastic modulus tensor, ·ekl is increment of strain tensor, ·ee

is increment of elastic strain tensor, ·ep
kl is increment of

plastic strain tensor, ânf
ij and ânc

ij are normal vectors to nor-
mal yield surfaces and plastic potential surfaces at con-
jugate point, respectively.

SIMULATIONS OF EXPERIENTAL TESTS

In order to verify the elastoplastic model, we conduct-
ed the simulations of the oedometer and triaxial compres-
sion tests of a rockˆll named Material S (Kohgo et al.,
2007). The K-G model was adopted to express the elastic
properties.

K＝
－2.3(1＋e0)

k
＋Ki, (35)

G＝Gi－gpp?, (36)

where K is bulk modulus, G shear modulus and Ki, Gi and
gp material parameters.
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Fig. 9. Finite element mesh and boundary conditions for simulations
of oedometer tests

Table 2. Material parameters used in simulations

Elasticity Subloading Plasticity
k Ki (kPa) Gi (kPa) gp ah (kPa) q? q?cs q?pt R

0.005 3,500 5,300 100 1×104 42.39 42.59 42.59 1.0

State surface
l G e0

01 a*1 (kPa) l*f1 s*m e0
02 a*2 (kPa) l*f2

0.158 0.872 0.00 0.403 0.093 1.006 1.535 5.75 0.02

Soil water retention
Sre Srm Srf se (kPa) sm (kPa) sf (kPa) cm (kPa－1) cf (kPa－1)

0.85 0.50 0.20 0.07 0.50 5.00 1.0×100 4.0×10－3

Permeability
ks (mWmin) mp np

1×102 3 3
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Soil water retention properties were modeled by using
Tangential model (Kohgo, 1997).

c＝－
&Sr

&s
＝－(1－Sre＋hsSre)

Pa－se

(Pa－s)2 (sÃse), (37)

c＝ce＋(cm－ce)Ø s－se

sm－se
»

mr

(seºsÃsm), (38)

c＝cf＋(cm－cf)Ø s－sf

sm－sf
»

nr

(smºsÃsf), (39)

c＝cf (sÀsf), (40)

mr＝
cm(sm－se)－(Sre－Srm)
(Sre－Srm)－ce(sm－se)

, (41)

nr＝
cm(sm－sf)－(Srf－Srm)
(Srf－Srm)－cf(sm－sf)

. (42)

Where Pa is the atmospheric pressure, Sre is degree of
saturation at air entry, hs is Henry's coe‹cient of solubil-
ity (＝0.02), and subscripts m and f denote respectively
the values at the points F and M. Point F is the point with
the lowest suction among the points where the tangential
slope is almost constant and point M is the point where
the tangential slope is the maximum (see APPENDIX).

The permeability was postulated to be a function of
void ratio and degree of saturation as follows.

k＝ks･Ep･Hp, (43)

Ep＝
1＋e0

1＋e Ø e
e0
»

np

, (44)

Hp＝Ø Sr－Srf

Sre－Srf
»

mp

, (45)

where ks is the permeability at saturation, mp and np are
material parameters.

The simulations were conducted by using the saturated
and unsaturated ˆnite element consolidation analysis
method (Kohgo, 1995, 1997; Kohgo et al., 2006). Qua-
dratic iso-parametric elements for the displacement ˆeld
and super-parametric elements for pore water pressure
ˆeld were used.

Simulations of Oedometer Tests
Two series of oedometer tests (Kohgo et al., 2007):

tests for the specimens with diŠerent initial degree of
saturation Sr0 and tests for the specimens soaked under
constant vertical loads, were simulated. The ˆnite ele-
ment mesh and boundary conditions are shown in Fig. 9.
The right half of the specimen was selected for the anal-
yses. The boundary condition for displacement was set so
that one dimension condition was satisˆed. Seepage con-
dition (suction is greater than or equal to 0) was satisˆed
on the upper surface of the specimen and undrained con-
dition was postulated on the lower surface and both sides
of the specimen. Inundated processes were simulated by
reducing gradually suction values at all nodal points used
to evaluate pore water pressures. This procedure was
adopted to save calculation times and obtain stable solu-
tions. The parameters used in the simulations are shown
in Table 2. The procedures for determination of
parameters concerned with unsaturated properties are
shown in the APPENDIX.

Simulation results are shown in Figs. 10, 11 and 12.
Figure 10 shows e-log sv (total vertical stress) relation-
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Fig. 10. Simulation results of the oedometer tests without soaking for
a rockˆll named Material S

Fig. 11. Simulation results of the oedometer tests with soaking for a
rockˆll named Material S

Fig. 12. The calculated relationships between suction and void ratio
during soaking
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ships of specimens without soaking. The symbols shown
in the ˆgure denote the experimental results and the solid
and dashed lines denote the simulation results. The fol-
lowing experimental evidences were obvious from Fig.

10. The slopes of e-log sv curves in the normally consoli-
dation region depend on the initial degree of saturation
of the specimens. The slope of the specimen with initial
degree of saturation Sr0＝48z is the maximum among
three specimens and that of the specimen with Sr0＝83z
is the minimum. In overconsolidation region, the slopes
of e-log sv curves are almost constant without in‰uence
of the initial degree of saturation. These experimental
properties described above could be well expressed by the
analyses.

Figure 11 shows e-log sv relationships of specimens
with soaking. The great amount of volume reductions
due to wetting could be seen in both experiment and
simulation results. The stress paths after soaking trace on
a unique line that is consistent with the e-log sv line of the
specimen with Sr0＝83z. In this rockˆll, the amount of
volume reduction due to wetting decreases as the vertical
stress increases. The simulation results well agreed with
the experimental ones. The calculated relationships be-
tween suction and void ratio during soaking are shown in
Fig. 12. As the specimen with Sr0＝25z was under over-
consolidation region, little volume reduction occurred
until suction reached about 0.3 kPa. After s＝0.3 kPa the
remarkable volume reductions were induced by wetting.
Meanwhile the specimen with Sr0＝49z had remarkable
volume reduction from the commencement of wetting.
Because the specimen lay on the normal consolidation
surface (state surface) before wetting. Thus once stress
paths encountered the state surface, remarkable volume
reduction occurred.

Simulations of Triaxial Compression Tests
The three series of tests (Kohgo et al., 2007): tests for

the saturated specimens, tests for the unsaturated speci-
mens and tests for the specimens soaked during shearing,
were simulated. The ˆnite element mesh and boundary
conditions are shown in Fig. 13. The right and upper
quarter of the specimens was selected for the analyses.
Axial symmetric problems were set. For unsaturated
specimens, seepage condition was satisˆed on the upper
surfaces of the specimens and undrained condition was
postulated on the bottom and both sides of the speci-
mens. Inundated processes were simulated by the same
procedure used in the simulations of oedometer tests. The
shearing process was simulated by applying constant ver-
tical displacements per time to the nodal points on the up-
per surface of the specimens. The parameters used in the
simulations are also shown in Table 2.

Simulation results are shown in Figs. 14, 15, 16 and 17.
Figure 14 shows the simulation results of saturated speci-
mens. The thick and thin lines denote the simulation and
experimental results, respectively. The stress-strain
relationships calculated were well consistent with the ex-
perimental ones. However, the volumetric strain vs. axial
strain relationships calculated were a little bit departed
from the experimental ones and the calculated relation-
ships were almost expressed as a curve.

Figure 15 shows the simulation results of unsaturated
specimens. Though both experimental and simulation
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Fig. 13. Finite element mesh and boundary conditions for simulations
of triaxial compression tests

Fig. 14. Simulation results of the triaxial compression tests for satu-
rated specimens of a rockˆll named Material S

Fig. 15. Simulation results of the triaxial compression tests for un-
saturated rockˆll specimens of a rockˆll named Material S

Fig. 16. Simulation result of the triaxial compression test for the
specimen with s3＝100 kPa soaked during shearing of a rockˆll
named Material S
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results expressed strain-softening behavior in low con-
ˆning stress, the level of strain softening decreased as the
conˆning stresses increased. Especially, the stress-strain
relationship of the specimen with s3＝100 kPa was con-
sistent with the experimental one. The simulation results
well expressed that shear strength magnitudes of unsatu-
rated specimens were greater than those of saturated
ones. The estimated stress-strain relationship well agreed
with the experimental ones.
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Fig. 17. Simulation result of the triaxial compression test for the
specimens with s3＝300 kPa soaked during shearing of a rockˆll
named Material S
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Figures 16 and 17 show the simulation results of the
specimens soaked during shearing. Figures 16 and 17 are
the results of the specimens with s3＝100 kPa and s3＝
300 kPa, respectively. The simulated results could well
express the behavior that deviator stresses during soaking
decreased and were smaller than those of the saturated
specimen. The remarkable volume reduction during inun-
dation occurred in both experimental and simulation
results and the axial strain-volumetric strain relationships
stayed below those of the saturated specimens. The rea-
son that the q-ea and ea-ev relationships after inundation
are not consistent with those of the saturated specimens is
as follows. The amounts of volume reductions due to
consolidation pressures in the saturated specimens are
greater than those in the soaked specimens, because the
soaked specimens were under the air dry condition during
the consolidation. The diŠerent volume reductions be-
tween saturated and soaked specimens during the consoli-
dation may be induced during the inundation. Then the
q-ea and ea-ev relationships of soaked specimens after in-
undation were not consistent with those of the saturated
specimens.

Thus, we could well simulate not only consolidation
behavior but also shear one by using this elastoplastic
model.

CONCLUSIONS

We proposed an elastoplastic model for unsaturated

rockˆlls that was applicable for both compression and
shear. The model was constructed by a simple modiˆca-
tion of the generalized elastoplastic model for unsaturat-
ed soils proposed by authors(1993b). To verify the
elastoplastic model, the simulations of the oedometer and
triaxial compression tests for a rockˆll were carried out.
The simulation results could well express both saturated
and unsaturated mechanical behavior of the rockˆll.

NOTATION

a1*, a2* material parameters for state surface
e void ratio
e0 initial void ratio

e0
01, e0

02 material parameters for state surface
f critical state line
f1 normal yield surface (failure surface)
f2 normal yield surface (cap surface)
ânf normal vectors to normal yield surface at

conjugate point
ânc
ij normal vectors to plastic potential surface at

conjugate point
De

ijkl elastic modulus tensor
G shear modulus.
H hardening modulus
ÂH hardening modulus at conjugate points
I1 the ˆrst stress invariant
Ic yield stress
Ĩc value of Ic on subloading surfaces
J2 the second invariant of deviator stress
K bulk modulus

Ki, Gi, gp material parameters for elastic modulus.
p? mean eŠective stress
q deviator stress

p?0 initial mean eŠective stress
R material parameter for aspect ratio of ellipti-

cal cap yield surface
R̃ size ratio of subloading surfaces to normal

yield surfaces
_R̃ an increment of R̃
s suction

s* eŠective suction
se air entry suction

Sr0 initial degree of saturation
ua pore air pressure
uae pore air pressure at air entry
uw pore water pressure
ah material parameter for hardening modulus

of subloading surfaces
G value of G * at saturation

G * void ratio of e-log p? curves at p?＝unit
G *0 initial values of G *
·ekl increment of strain tensor,
·ep
kl increment of plastic strain tensor
ep

v plastic volumetric strain
u Lode angle
k slope of e-log p? curves at unloading
l value of l* at saturation

l* slope of e-log p? curves
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Fig. A–1. A typical soil water retention curve and three input points
for Tangential model

Fig. A–2. Iso-degree of saturation lines estimated from oedometer test
data
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l*0 initial values of l*
l*f1, l*f2 material parameters for state surface

s total stress
s? eŠective stress

s?1, s?2, s?3 eŠective principal stresses
s?ij eŠective stress tensor
·s?ij increment of eŠective stress tensor
âs?ij conjugate eŠective stress tensor
s?v vertical eŠective stress
q? internal friction angle of failure line
q?cs internal friction angle of critical state line
q?pt internal friction angle of phase transforma-

tion line
c1, c2 elliptical plastic potential functions
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APPENDIX: DETERMINATION OF PARAMETERS
FOR SOIL WATER RETENTION CURVE AND
STATE SURFACE

Tangential Model for Soil Water Retention Curve
In Tangential model, three points are selected to

predict a soil water retention curve obtained from soil
water retention tests ( see Fig. A–1). The three points are
denoted as F, M and E. The point F is the point with the
lowest suction among the points where the tangential
slope is almost constant, the point M is the point where
the tangential slope is maximum and the point E is the air
entry point. The values of degree of saturation Sr, suction
s and tangential slope of soil water retention curve
c(＝－&SrW&s) are identiˆed from the soil water retention
curve obtained. It is very di‹cult to identify the point E
for rockˆll materials. Here we supposed that Sre＝0.85
and se＝0.07 kPa (nearly equal to 0.0) because the e-log
sv relationship obtained from oedometer tests shows that
the relationship is almost consistent with the ones of
specimens soaked when SrÆ0.85.
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Fig. A–3. A linear relationship between s* and s*W(l*-l)
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State Surface
We adopted the following procedure to identify

parameters for state surface: 1) determine l and G by us-
ing e-log p? relationship obtained from the oedometer
test data for almost saturated and soaked specimens.
Here mean eŠective stresses are calculated by p?＝(1＋
2K0)s?vW3 and K0 value is estimated by using Jaky's equa-
tion 1－sin q?, 2) draw iso-degree of saturation e-log s?v
lines as shown in Fig. A–2 from oedometer test results, 3)
these lines intersect at a point. The value of void ratio at
the intersect point is e0

01, 4) read the slopes l* of the iso-
lines, 5) draw a graph shown in Fig. A–3, 6) from Eq. (8),
the following linear relationship is valid: s*＝l*f1[s*W
(l*－l)]－a*1, so you can estimate parameters l*f1 and a*1
from Fig. A–3, and 7) if you have more data, you may
identify parameters l*f2 and a*2 by using the same opera-
tions 2) to 6). Here, the e-log s?v line had the maximum
slope at Sr＝25z, so s*m＝1.006 kPa was identiˆed by us-
ing the Tangential model.


