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although the majority displayed various degrees of develop-
mental delay and speech disturbances. Other clinical fea-
tures included behavioral problems, hypotonia, and dys-
morphic facial features. Notably, none of the patients was 
diagnosed with a congenital heart defect. We found a high 
degree of inherited duplications. Additional copy number 
changes of unclear clinical significance were identified in 5 
of our patients, and it is possible that these may contribute 
to the phenotypic expression in these patients as has been 
suggested recently in a 2-hit ‘digenic’ model for 16p12.1 de-
letions. The varied phenotypic expression and incomplete 
penetrance observed for distal 22q11.2 duplications makes 
it exceedingly difficult to ascribe pathogenicity for these du-
plications. Given the observed enrichment of the duplica-
tion in patient samples versus healthy controls, it is likely that 
distal 22q11.2 duplications represent a susceptibility/risk lo-
cus for speech and mild developmental delay. 
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 Abstract 
 The chromosome region 22q11.2 has long been recognized 
to be susceptible to genomic rearrangement. More recently, 
this genomic instability has been shown to extend distally 
(involving LCR22E–H) to the commonly deleted/duplicated 
region. To date, 21 index cases with ‘distal’ 22q11.2 duplica-
tions have been reported. We report on the clinical and mo-
lecular characterization of 16 individuals with distal 22q11.2 
duplications identified by DNA microarray analysis. Two of 
the individuals have been partly described previously. The 
clinical phenotype varied among the patients in this study, 
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 The chromosome region 22q11.2 has long been recog-
nized as a hotspot for genomic rearrangement and related 
disorders, such as 22q11.2 deletion syndrome (DiGeorge 
syndrome/velocardiofacial syndrome, OMIM 188400/
OMIM 192430) [DiGeorge and Harley, 1965; Shprintzen 
et al., 1978], der(22) t(11;   22) syndrome (OMIM 609029) 
and cat-eye syndrome (OMIM 115470) [Guanti, 1981; 
Edelmann et al., 1999a]. Der(22) syndrome and cat-eye 
syndrome are rare conditions characterized by increased 
copy-number of the most centromeric part of 22q11 [Zack-
ai and Emanuel, 1980; McDermid and Morrow, 2002], 
whereas the microdeletions of 22q11.2 occur more often, 
with an estimated frequency of 1 in 4,000–6,000 live births 
[Yamagishi, 2002; Botto et al., 2003]. The 22q11 deletion 
syndrome is characterized by congenital heart defects, im-
mune deficiency, transient neonatal hypocalcemia, velo-
pharyngeal insufficiency and a distinctive facial appear-
ance but also by learning disabilities and behavioral anom-
alies. The phenotype is variable with multiple organ 
systems being affected [Shprintzen et al., 1981; Scambler 
et al., 1992; Robin and Shprintzen, 2005]. Although the 
majority of the 22q11.2 deletions are de novo, some dele-
tions (6–25%) are inherited from mildly affected or nor-
mal parents [Leana-Cox et al., 1996; McDonald-McGinn 
et al., 1997, 2001; Ryan et al., 1997; Matsuoka et al., 1998].

  The genomic region of chromosome band 22q11.2 
contains several large segmental duplications/low copy 
repeats (LCRs) that function as mediators of non-allelic 
homologous recombination (NAHR) and predispose the 
genomic region to chromosomal rearrangements [Edel-
mann et al., 1999b; Shaikh et al., 2000; Ensenauer et al., 
2003]. Eight LCR clusters (LCR22A–H) have been iden-
tified in the 22q11.2 genomic region [Edelmann et al., 
1999c; Shaikh et al., 2000, 2007]. The modules that build 
these LCR show significant (97–98%) sequence identity to 
each other, although the LCR22s differ between each oth-
er in content and organization of the modules [Shaikh et 
al., 2000]. Most ( 1 85%) individuals with proximal (in-
volving LCR22A–D) 22q11 deletions (i.e. 22q11.2 deletion 
syndrome) have a 3-Mb deletion [Morrow et al., 1995; 
Shaikh et al., 2000; Emanuel, 2008] with breakpoints in 
LCR22s A and D [Edelmann et al., 1999b; Babcock et al., 
2003], the largest and most complex of the LCR22s. Dele-
tions mediated by distal LCR22s (LCR22E–H) have also 
been described, although these deletions are found less 
frequently than the common proximal 22q11 deletions 
[Rauch et al., 1999; Saitta et al., 1999; Mikhail et al., 2007; 
Ben-Shachar et al., 2008]. This may be due to differences 
in the rates of genomic rearrangement mediated by the 
various LCR clusters (due to underlying sequence iden-

tity/motif organization differences) [Shaikh et al., 2007] 
or the wider phenotypic spectrum associated with distal 
deletions. A systematic assessment of atypical 22q11.2 de-
letions showed that atypical congenital heart defects and 
mild dysmorphism are recognizable features in patients 
with distal 22q11.2 deletions but very uncommon in pa-
tients with conotruncal heart defects [Rauch et al., 2005].

  The proximal breakpoint for most reported distal 
22q11.2 deletions has been shown to lie within LCR22D, 
whereas the distal breakpoints appear to be spread across 
the other LCR22 clusters [Saitta et al., 1999; Shaikh et al., 
2007]. In 2007, detailed molecular analysis reported by 
Shaikh et al. showed that the distal deletion breakpoints 
mapped to a BCRL (breakpoint cluster region-like) mod-
ule, suggesting that homologous sequences within this 
module may represent a rearrangement hotspot. The 
BCRL module is present in all LCR22s except for in 
LCR22B [Shaikh et al., 2007]. The orientation of these 
BCRL modules may predict between which LCR22s it is 
likely that NAHR will occur, since it has been proposed 
that modules within the LCRs that have a direct orienta-
tion with respect to one another are likely to mediate re-
arrangements [Shaffer and Lupski, 2000].

  To date, about 50 index cases with proximal (involving 
LCR22A–D) 22q11.2 duplications have been reported 
[Edelmann et al., 1999c; Ensenauer et al., 2003; Hassed et 
al., 2004; Portnoi et al., 2005; Sparkes et al., 2005; Alber-
ti et al., 2007; Ou et al., 2008; Wentzel et al., 2008; Yu et 
al., 2008]. The phenotypes of the patients with proximal 
22q11.2 microduplications are diverse, with symptoms 
ranging from mild learning disability and mild dysmor-
phic facial features to severe mental retardation and mul-
tiple congenital malformations [Ensenauer et al., 2003]. 
Other phenotypic features observed include speech delay, 
behavioral problems, hearing loss, growth delay, urogen-
ital abnormalities, muscular hypotonia, congenital heart 
malformation, seizures and bladder exstrophy [Wentzel 
et al., 2008; Portnoi, 2009; Draaken et al., 2010; Lundin et 
al., 2010]. Many families in which patients inherited the 
duplication from mildly affected or asymptomatic par-
ents have been reported. The paucity of reported proxi-
mal 22q11.2 microduplication cases may, in part, be ex-
plained by the absence of a defined phenotype and the 
wide range of and sometimes mild symptoms with the 
possibility of incomplete penetrance [Wentzel et al., 
2008]. Therefore, mild cases with microduplications 
within proximal 22q11.2 may not be subject to testing. In 
addition, limitations in the previously used molecular 
techniques made it difficult to detect extra copies of such 
small regions [Sparkes et al., 2005].
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  Twenty-two index cases with 22q11.2 duplications in-
volving the distal LCR22s have been reported so far [Des-
cartes et al., 2008; Ou et al., 2008; Coppinger et al., 2009; 
Shimojima et al., 2010]. Similar to the proximal duplica-
tions, there seems to be a high rate of familial transmis-
sion [Ensenauer et al., 2003; Hassed et al., 2004; Portnoi 
et al., 2005; Ou et al., 2008] and the phenotypes vary 
among family members carrying the duplications 
[Ensenauer et al., 2003; Yobb et al., 2005; Ou et al., 2008]. 
In the study by Coppinger et al., the clinical picture var-
ied with no clearly definable collection of phenotypic fea-
tures shared among the patients and no correlation could 
be recognized between the severity of the clinical features 
and the size or location of the duplications [Coppinger et 
al., 2009].

  In this present study, we report on the clinical and mo-
lecular characterization of 16 individuals with duplica-
tions of chromosome region 22q11.21–q11.23 (i.e. distal 
22q11.2 duplications).

  Material and Methods 

 Array analysis was performed on 11,463 patients referred to 
different European and Australian clinical genetics centers for a 
variety of neurodevelopmental phenotypes. Six patients were re-
cruited from Nijmegen (the Netherlands), 6 patients from Mel-
bourne (Australia), 2 patients from Oxford (England), 1 patient 
from Pavia (Italy) and 1 patient from Stockholm (Sweden). Two of 
the patients have been published previously elsewhere ( table  1 ) 
[Bruno et al., 2009; Wincent et al., 2011].

  In order to find etiological causes for the patients’ phenotypes, 
DNA samples isolated from peripheral blood lymphocytes were 
analyzed with genome-wide DNA microarrays (molecular karyo-
typing). The arrays used encompassed 38K BAC, 180K Agilent, 
244K Agilent, Illumina-12-300K or 250K NSP Affymetrix ( ta-
ble 1 ). If possible, the patients initially analyzed by the 38K BAC 
array or the 250K NSP array were reanalyzed with the 244K/180K 
Agilent array in order to refine the breakpoints. If available, pa-
rental samples were investigated for inheritance by molecular 
karyotyping or multiplex ligation probe amplification (MLPA). 
Phenotypic data on patients and parents were collected from the 
referring physicians.

  244K/180K oligonucleotide arrays with complete genome cov-
erage produced by Agilent Technologies (Palo Alto, Calif., USA) 
were used. Experiments were performed according to the manu-
facturer’s protocol. After hybridization and washing, the slides 
were scanned on an Agilent Microarray Scanner. Captured im-
ages were analyzed with Feature Extraction Software v. 9.1 and 
ADM2 algorithm in the DNA analytics software (V4.0) (Agilent 
Technologies). Genomic start and stop positions of the duplica-
tions were determined by visual inspection of the numerical nor-
malized log2 ratio values in the table view of the DNA analytics 
software package. Genomic positions are according to the 
NCBI36/hg18 build in UCSC.

  MLPA was used in some of the cases for confirmation of gene 
dose imbalances and for investigation of parental samples. Syn-
thetic MLPA probes were designed as described previously [Bar-
baro et al., 2007]. The MLPA reaction was performed according 
to the manufacturer’s standard protocol and reagents (MRC Hol-
land, Amsterdam, the Netherlands).

  Results 

 Among 11,463 patients with idiopathic mental retar-
dation, brain malformations, autism spectrum disorders, 
and/or speech delay, we identified 16 individuals with du-
plications of chromosome band 22q11.21–q11.23. One 
duplication was flanked proximally by LCR-C, 3 by LCR-
D, 5 by LCR-E and 7 by LCR-F. The distal breakpoints 
were in 1 case flanked by LCR-E, in 2 cases by LCR-F, and 
in 10 cases by LCR-H. In 3 cases the distal breakpoint was 
located between LCR-D and LCR-E ( table 1 ,  fig. 1 ).

  In 2 cases the duplication was de novo, in 10 cases it 
was inherited and in 4 cases parental samples were not 
available. The parents of cases 2, 5, 9, 11 and 15 had dupli-
cations but were reported to be clinically healthy. The du-
plication was also identified in the apparently unaffected 
maternal grandmother of case 5. However, the mother of 
case 3, who had the duplication, had learning  and behav-
ioral problems. The clinical status of the other parents 
carrying duplications was unavailable. Case 1 was initial-
ly referred to the genetic center to exclude Beckwith- 
Wiedemann syndrome because during pregnancy a large 
tongue, a large placenta and polyhydramnion were noted. 
After birth he showed facial hemangioma and a large 
tongue. However, methylation of LIT1 and H19 were nor-
mal and since the boy did not demonstrate any other BWS 
characteristics (such as overgrowth, asymmetry, organo-
megaly, hypoglycaemia, ear creases or umbilical hernia), 
he was no longer suspected of BWS. The de novo duplica-
tion identified in this patient, partly overlapped that of a 
previously reported de novo duplication identified in pa-
tient 10 in the study by Coppinger et al. [2009] ( fig. 1 ). Case 
16, a boy with a severe speech and language disturbance, 
is to the best of our knowledge the first reported patient 
with a de novo duplication involving LCRF–H.

  There have been no previous reports of cases with du-
plications flanked by LCRE–F, but 2 such duplications 
were identified among our patients. Case 5, with a mater-
nally inherited duplication, had mild developmental de-
lay and behavioral problems. The duplication was also 
identified in the maternal grandmother. Case 6 had a se-
vere developmental delay, autism, epilepsy and absence of 
septum pellucidum. The origin of her duplication was 
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unknown. One paternally inherited D–E duplication has 
previously been described in a girl with developmental 
delay and dysmorphic features (patient 7 in the study by 
Ou et al.) [Ou et al., 2008]. We identified a maternally in-
herited D–E duplication in a girl (case 2) with a mild de-
velopmental delay, friendly behavior and dysmorphic fa-
cial features including a high broad forehead, downslant-
ing low-set ears with flat upper helices, coarse nose, broad 
mouth, full lips, and retrognathia.

  In 5 cases (31%), additional copy number changes of 
unclear significance were identified. A paternally inher-
ited 170-kb duplication of chromosome 6p22.3 (chr6: 
15387469–15557420) was found in case 2. The duplication 
comprised 2 exons of  JARID2  which is an ortholog of the 
mouse jumonji gene, which encodes a nuclear protein es-
sential for mouse embryogenesis. Case 3 showed a pater-
nally inherited 1.57-Mb deletion in 16q24.1–q24.2 (chr16: 
85271219–86844155) involving approximately 20 genes 
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  Fig. 1.  Schematic overview of distal 22q11.2 duplications from this study and from the literature. 
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among which were  MAP1LC3B, JPH3,  and  SLC7A5 . Case 
8 had a 77-kb deletion of chromosome 4q12 (chr4: 
56985292–57062624) comprising the genes  PPAT ,  PAICS , 
and  SRP72 . In case 14, a 250-kb deletion of 16p13.2 
(SNP_A-4205445 ] SNP_A-2004534) of unknown origin 
involving  GRIN2A,  that encodes an NMDA receptor sub-
unit, was identified. Submicroscopic deletions, point
mutations and translocation in 16p13 encompassing 
 GRIN2A  have recently been associated with neurode-
velopmental phenotypes [Endele et al., 2010; Reutlinger 
et al., 2010]. This deletion may therefore also contribute 
to the phenotype of this patient. Case 15 had a paternally 

inherited 1.94-Mb duplication of chromosome 4q35.2 
(chr4: 187452010–189387111) comprising 7 genes.

  The phenotypes of the cases are summarized in  ta-
ble 1 . The clinical phenotype varied among the individu-
als in this study, although a majority of cases displayed 
various degrees of developmental delay, ranging from 
mild to severe, and speech disturbances. Other clinical 
features present in more than 5 cases included behavior-
al problems, hypotonia and dysmorphic facial features. 
Notably, none of the cases in our study had a diagnosed 
congenital heart defect.

Case dup chr22 band Seg dup bp start; stop
(NCBI36/hg18)

Size
(Mb)

Platform Origin Additional aberrations Age of
patient when
investigated

Sex Developmental 
delay (mild/
moderate/
severe)

1 q11.21q11.22 C–D/E 19388824; 20784027 1.39 180K Agilent de novo 14 months M no

2 q11.21q11.22 D–E 20128873; 21284860 1.15 180K Agilent maternally inherited 
(healthy mother)

dup(6)(p22.3), 170 kb (1 gene),
paternally inherited

2 years
6 months

F mild

3 q11.21q11.22 D–D/E 20160123; 21039509 0.88 Illumina-12 - 300K maternally inherited
(affected mother)

del(16)(q24.1q24.2), 1.57 Mb
(20 genes), paternally inherited

F yes

4 q11.21q11.22 D–D/E 20253470; 20982454 0.73 250K NSP
Affymetrix

maternally inherited 16 years F mild

5 q11.21q11.22 E–F 21328248; 21984237 0.65 180K Agilent maternally inherited 
(healthy mother)

2 years M mild

6 q11.22q11.23 E–F 21392613; 21984436 0.59 Illumina-12 - 300K unknown F severe

7 q11.22q11.23 E–H 21322838; 23319936 1.99 Illumina
CytoSNP-12

unknowna 9 years F no

8 q11.22q11.23 E–H 21328284; 23326964 1.99 180K Agilent unknown del(4)(q12), 77 kb (3 genes),
origin unknown

3 years
6 months

F moderate

9b q11.22q11.23 E–H 21362255; 23325382 1.96 244K Agilent paternally inherited 
(healthy father)

0–4 years ? moderate

10 q11.23 F–H 21998015; 23322070 1.32 180K Agilent maternally inherited 
(healthy mother)

35 years M moderate

11 q11.23 F–H 22003184; 23307286 1.30 Illumina-12 - 300K maternally inherited 
(healthy mother)

4 years F yes

12 q11.23 F–H 22003184; 23409925 1.41 Illumina-12 - 300K paternally inherited M ?

13 q11.23 F–H 22014324; 23321952 1.31 244K Agilent maternally inherited ? yes

14 q11.23 F–H 22017292; 23284714 1.27 250K NSP
Affymetrix

unknown del(16)(p13.2), 250 kb (1 gene), 
origin unknown

11 years M moderate

15 q11.23 F–H 22038020; 23409925 1.37 Illumina-12 - 300K paternally inherited 
(healthy father)

dup(4)(q35.2), 1.94 Mb (7 genes) 
paternally inherited

M ?

16c q11.23 F–H 21998015; 23308071 1.31 244K Agilent de novo  4 years M mild

Summary 12/14

 a Not in father and two siblings. Mother unavailable. b Case 10, Bruno et al. [2009]. c Case 34, Wincent et al. [2011].

Table 1. Molecular details and phenotypic features of individuals with a distal 22q11.2 duplication
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  Discussion 

 In the present study, we report on the clinical and mo-
lecular characterization of 16 individuals with distal du-
plications of chromosome band 22q11.21–q11.23 (involv-
ing LCR22E–H and located distal to the region typically 
deleted in DiGeorge syndrome). Distal 22q11.21–q11.23 
duplications are rare and to date only 22 cases have been 
reported. We identified in this study 16 such duplications 
among 11,463 patients tested which results in an estimat-
ed frequency of around 0.1%. The estimated frequency is 
slightly elevated in our patient population compared to 

the study by Coppinger et al. [2009], who identified 18 
distal duplications among 22,096 patients tested. This 
may be due to patient selection, since a patient cohort 
with speech delay, brain malformations and autism spec-
trum disorders were included in our study. In concor-
dance with the findings by Coppinger et al. [2009], many 
of the duplications in our cohort were flanked by LCRE–
H and LCRF–H. Since BCRL-E, BCRL-F, and BCRL-H 
are in the same orientation [Shaikh et al., 2007], our find-
ings of E–H-, E–F- and F–H-mediated duplications sup-
port the hypothesis by Shaikh et al. that BCRL motifs in 
the same orientation facilitate NAHR [Shaikh et al., 

Autism/
behavioral
problems

Speech or
language
problems

Dys-
morphic
features

Heart
defect

Hypotonia Seizures Other

no no yes no no no Beckwith-Wiedeman-like facial features, macroglossia, facial hemangiomata, 
polyhydramnios, enlarged placenta

no yes yes no yes no high broad forehead, downslanting low-set ears with flat upper helices,
coarse nose, broad mouth, full lips, retrognathia 

? ? ? ? ? ?

behavioral
problems,
automutilation

? yes no yes neonatal no cervical syringomyelia, Chiari I malformation, retrocerebellar cysts, hirsutism, 
coarse facies

yes yes yes no no no

autism ? no ? ? epilepsia absence of septum pellucidum

yes expressive language 
impairment

no no no no peculiar gait

no yes yes no lax ankle joints yes,
rolandic epilepsy

brachycephaly and fetal pads, (may have downslanting palpebral fissures), 
MRI showed enlarged Sylvian fissure

? ? no ? ? yes frontomedial polymicrogyri and corpus callosum agenesis, normal growth

autism yes no no yes no at �25 years progressive decline in functioning: loss of speech, progressive 
spasticity (now wheelchair dependent), problems with swallowing/eating 
(PEG); high suspicion of mitochondrial disorder, tests still ongoing

? ? ? ? ? ? consanguine parents (first cousins); the patient’s genome showed 5%
homozygosity

? ? ? ? ? ? IUGR/ failure to thrive, central sleep apnea

? ? yes ? ? ?

no yes no no mild yes MRI normal

? speech delay ? ? ? ?

no severe speech and
language disturbance

no no no no  

5/10 8/9 6/12 0/9 5/9 4/11
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2007]. More surprising was that 3 of our distal break-
points were not flanked by known LCR22s, but all resid-
ed in a region of  � 20.9–21.0 Mb on chromosome 22q 
( fig. 1 ). This could indicate an additional locus that pre-
disposes to NAHR (the proximal breakpoints lie within 
LCR22s likely excluding a replication-based mechanism).

  Case 16 in our study, with a de novo duplication involv-
ing LCRF–H, has a phenotype that is highly concordant 
with that of patient 14 in the study by Coppinger et al.  
 [2009] (in that article, the patient L photo in fig. 1 corre-
sponds to patient 14 in table 2 [pers. commun.]). Both cas-
es had speech impairment and they have a similar facial 
appearance ( fig. 2 ), although neither shows evident facial 
dysmorphic features. Case 16 had very mild developmen-
tal delay but severe speech and language disturbance. It is 
noteworthy that 6 of the 10 patients with E/F–H duplica-
tions in our study had a speech delay. Case 7 had expres-
sive language impairment with articulation difficulties. 
She was also reported to be shy and oversensitive and had 
problems in maintaining friendships. Her father, who did 
not carry the duplication, had literacy problems and a 
family history of dyslexia. Case 7 and her 2 older brothers, 
neither of whom carried the duplication, all attended 
mainstream education and had performance IQ in the 
normal range. The oldest brother had some expressive vo-
cabulary problems but was otherwise linguistically nor-
mal and the younger of the brothers had some difficulties 
in following and giving simple instructions but had no 

overt language difficulties. Case 8 used approximately 20 
words and she did not put 2 words together at the age of 
3.5 years. Case 10 spoke his first words at 4 years of age and 
although was later able to speak, he has had a severe de-
cline in functioning since age 25 and can no longer speak. 
Furthermore, he had a gastrostomy because of severe dif-
ficulties with swallowing, and he is now wheelchair de-
pendent due to progressive spasticity. There is a high sus-
picion of a mitochondrial disorder, although this could not 
be confirmed by genetic tests ( TK2, POLG1, DGUOK,  
Twinkle,  PDHA1  mutation analysis in fibroblasts).

  So far, microduplications of distal chromosome 
22q11.2 may be largely undetected as a result of an unspe-
cific and/or mild phenotype leading to problems with
ascertainment. In concordance with previous studies of 
both proximal and distal 22q11.2 duplications, we found 
a high degree of inherited duplications (in 83% of cases in 
this study where parental samples were available). Parents 
of a child with an inherited chromosome abnormality 
may sometimes show mild variations of the child’s phe-
notype, which for example have been reported for the 
22q11.21 microdeletion syndrome that predominantly 
has a de novo occurrence [Leana-Cox et al., 1996; Mc-
Donald-McGinn et al., 1997, 2001; Ryan et al., 1997; Mat-
suoka et al., 1998]. Unfortunately, we only had pheno-
typic data available on 7 of the parents from whom du-
plications were inherited. Six of these parents were 
reported to be healthy and 1 parent was affected.

  The varied phenotypic expression and incomplete 
penetrance observed for distal 22q11.2 duplications 
makes it exceedingly difficult to ascribe pathogenicity for 
these duplications. Although the fact that all probands 
reported so far display a clinical phenotype might be due 
to ascertainment bias, distal 22q11.2 duplications are 
rarely reported as normal variants. The duplications re-
ported in control samples in the Database of Genomic 
Variation [http://projects.tcag.ca/variation/] overlapping 
the duplications identified in our patients are smaller and 
do not cover all the genes. Given that distal 22q11.2
duplications, along with a growing number of recurrent 
genomic deletions and duplications [Itsara et al., 2009], 
appear to be enriched in individuals with neurodevel-
opmental and neurobehavioral phenotypes compared to 
control samples, it is likely that distal 22q11.2 duplica-
tions represent a susceptibility/risk locus for speech and 
mild developmental delay rather than causal variants. 
These copy number changes are insufficient to cause the 
observed phenotypic abnormality, and additional genet-
ic, epigenetic or environmental factors may be required.

  Fig. 2.  Facial features of case 16. 



 Sixteen New Cases with Distal 22q11.2 
Microduplications 

 Mol Syndromol 2010;1:246–254  253

  To this end, it is noteworthy that a digenic/multigenic 
model has recently been demonstrated for 16p12.1 dele-
tions [Girirajan et al., 2010], which are inherited in the 
majority of cases and show considerable variability in ex-
pression. These deletions have been shown to cooccur 
with secondary pathogenic or ‘uncertain significance’ 
copy number change in approximately 24% of cases. The 
second hit could potentially be another copy number 
variant, a disruptive single-base-pair mutation in a func-
tionally related gene, or an environmental event that in-
fluences the phenotype. We identified additional copy 
number changes of unclear clinical significance in 5 of 
our cases making a 2-hit event plausible. These addition-
al copy number changes were in case 2, 3 and 15 inher-
ited and in case 8 and 14 parental samples were not avail-
able. In case 15, the additional copy number change was 
inherited from the parent carrying the 22q11 duplication. 
However, in case 2 and 3, the additional change was in-
herited from the non-22q11.2 duplication carrier parent 
making these additional copy number changes good can-
didates for the ‘second hit’ event. Nevertheless, proving 
digenicity/multigenicity in individual cases is not feasible 
at present, and it is unlikely that copy number variations 
represent the additional ‘hit’ in the majority of cases. The 
study of individuals/families with distal 22q11.2 duplica-
tions by whole genome or exome sequencing, as has re-
cently been demonstrated on a small number of idiopath-
ic mental retardation cases [Vissers et al., 2010], may be-
gin to shed light on how and to what extent the duplications 
contribute to phenotypic expression.

  Conclusion 

 Although there are now more than 35 index cases with 
distal 22q11.2 microduplications (including the cases 
from this study) reported in the literature, extended in-
vestigations of families harboring these duplications are 
needed to provide insight into the mechanisms of patho-
genicity of these duplications. There is an urgent need for 
ascertainment of risk figures for phenotypic abnormality 
in individuals with 22q11.2 distal duplications to help al-
leviate the current interpretational challenges for diag-
nostic (including prenatal) testing and counseling.
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