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ABSTRACT 

Integrating formal verification techniques into the hardware design process provides the means to rigorously 
prove critical properties. However, most automatic verification techniques, such as model checking, are only 
effectively applicable to designs of limited sizes due to the state explosion problem. The Multiway Decision 
Graphs (MDG) method is an efficient method to define hardware designs into more abstract environments; 
however, the MDG model checker (MDG-MC) still suffers from the state explosion problem. Furthermore, all 
the backward reduction algorithms cannot be used in MDG, due to the presence of abstract state variables. In this 
study, an efficient extractor for MDG Hardware Descrpiton Languge (MDG-HDL) is introduced based on static 
(SS-MDG) and conditioned (CS-MDG) program slicing techniques. The techniques can obtain a chaining slice 
for given signals of interest. The main advantages of these techniques are: It has no MDG-HDL coding style 
limitation, it is accurate and it is competent in dealing with various MDG-HDL constructions.  The main 
motivation for introducing this approach is to tackle the state explosion problem of MDG-MC that big MDG-
HDL may cause. We apply our proposed techniques on different MDG-HDL designs and our analyses have 
shown that the proposed reduction techniques resulted in significantly improved performance of the MDG-MC. 
In this study, we present a general idea of program slicing, a discussion of how to slice MDG-HDL programs, 
implementation of the tool and a brief overview of some applications and experimental results. The underlying 
method and the tool based on it need to be empirically evaluated when applying to various applications. 
 
Keywords: Multiway Decision Graphs, Model Checking, Program Slicing, MDG-HDL 

1. INTRODUCTION 

Nowadays, designers use Hardware Description 
Languages (HDLs) ) (Samat et al., 2011) to describe 
hardware designs at different levels, from high level of 
abstraction to low level circuits. One of the main 
advantages of using HDLs is that they can be formally 
verified to ensure the correctness of the designs at the 
different levels. However, as the complexity of modern 
circuit designs increase, verification of these designs has 
become the main bottleneck in the whole design process  
(Wang et al., 2009; Perry and Foster, 2005).  

One of the interesting HDLs is the HDL of Multiway 
Decision Graphs (MDG-HDL)  (Corella et al., 1997; Xu, 
1999; Xu et al., 1998; Zhou et al., 1994; Zhou and 
Boulerice, 1996). The method of Multiway Decision 

Graphs (MDG) is efficient in representing a design with a 
large data-path, where the Reduced Order Binary Decision 
Diagram (ROBDD)   (Aziz et al., 1994; Bryant, 1992) is 
less efficient. The MDG tool applies its own model 
checking (MDG-MC) to formally verify correctness of 
MDG-HDL designs. However, it is known that model 
checking  (Burch et al., 1990; Clarke et al., 1992; 1996; 
Jhala and Majumdar, 2009) suffers from state explosion 
problem due to the fact that as the number of state 
variables in the model being tested increases, the state 
spaces will increase exponentially. 

Therefore, there is a need to reduce the size of MDG-
HDL descriptions so that their equivalent models have 
fewer states. In many cases, it is not even possible to build 
the state transition relation of the design and the need for 
MDG-HDL reduction techniques is even more essential in 
these particular cases. 
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The idea of the reduction technique is as follows: if 
the model M can be reduced to M’, then the property P 
can be checked on the reduced model M’ and, in this 
case, we may avoid the state space explosion problem. 
Consequently, we need to ensure that P verified on M’ 
will also be verified on M. In other words, we need to 
make sure that M|=P ⇔ M’|=P in order to proceed with 
the property checking on the reduced model. 

Many of the most effective verification strategies are 
based on the idea of the extraction of useful verification 
knowledge from HDL description for design parts of 
interest. Program slicing which was originally proposed 
by (Weiser, 1984), is a static program analysis technique 
to extract appropriate fractions of sequential programs 
relevant to an application. These fractions are referred to 
as slices artifacts that preserve exact information about 
the program’s behavior projected onto the relevant 
segments of the original program. These techniques has 
been widely studied and applied to numerous applications 
in software engineering such as debugging (Deng et al., 
2000), testing (Lyle and Gallagher, 1998), maintenance 
(Gallagher and Lyle, 1991) and reuse (Lanubile and 
Visaggio, 1997). The slicing technique presents an 
opportunity to formulate an efficient method to extract a 
part of a design described in an HDL.  

This study describes the theoretical basis of using 
program slicing for dealing with the descriptions of 
designs in a MDG-HDL. We propose a new structure to 
represent the signal dependency between source code’s 
components of the MDG-HDL, the Components 
Dependence Graph (CDG). As a result, we can deal with 
slicing for given signals only with the relevant MDG-
HDL’s components.  To the best of our knowledge, this 
is the first try to use program slicing to extract a part 
from MDG-HDL descriptions. Our method makes 
MDG-MC more efficient in dealing with bigger designs. 
Also, our method can be very helpful in debugging errors 
in a big MDG-HDL source code.   

The contributions of this study are as follows: 

• We proposed and implemented static and 
conditioned slicer techniques for MDG-MC, called 
SS_MDG and CS-MDG 

• Our approaches are fully automatic. In other words, 
our approaches do not need a knowledgeable user to 
be able to generate meaningful slices  

• Our approaches are the first slicer techniques that 
can handle the inter-model signal dependency in 
MDG-based designs 

• We have validated our proposed technique using a 
simple case study. Our results show the remarkable 
efficiency of using our approaches in terms of time, 
size and memory     

The rest of this study is organized as follows. I give 
the related work, a preface the basic background. Alos, I 
describe the introduced Components Dependence Graph 
of MDG-HDL (CDG). Then I discusse conditioned 
slicing approaches for MDG-HDL. Then I describe how 
to apply slicing technique for efficient MDG-MC. 
Finally I show a case study with expermintal results, 
conclusion and future work. 

1.1. Related Work and Backgrounds 

The goal of model reduction techniques is to identify 
substructures of logic, which can be replaced by simpler 
equivalent pieces of logic. In general, there are two 
classes of reduction techniques: automatic techniques 
where the reduction can be done with no manual 
intervention and manual techniques which need some 
degree of manual effort to be able to identify irrelevant 
substructures. In the context of hardware verification, a 
majority of the reduction techniques are applied at the 
gate level (Boolean level) of the hardware design 
description. The following is an overview of the 
reduction techniques used in model checking; it is by no 
means comprehensive, but summarizes the most relevant 
reduction techniques.  

Logic optimization techniques, including Boolean 
minimization and constant propagations, are the basic 
logic minimization algorithms of the reduction 
techniques (Hachtel and Somenzi, 1996; De Michelli, 
1994). Fan-in cone reduction is the class of reduction 
techniques involved in identifying the set of 
environment/model signals that are essential for the 
specification being checked and in neglecting all 
others. The reduction of the independent state 
machines and unreachable states is another category 
of the automatic reduction techniques (FSM 
minimization)  (Aziz et al., 1994). Another class of 
reduction techniques such as symmetry reduction, 
abstraction and compositional verification   can 
significantly reduce state space. However, none of 
these methods are fully automated; therefore, they 
need some manual or full manual effort, or require the 
model to be expressed in an intermediate format. 

Verification approaches are mainly based on the 
extraction of useful verification information from HDLs 
for design component of attention. Various researches 
give a lot of attention to extraction controller from 
datapath  (Moundanos et al., 1998; Ho et al., 1995) and 
verifying the controller part only. Though, the introduced 
techniques are not capable to deal with big designs 
efficiently because the ability of separating controller 
form datapath depends on assigning specific labels 
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manually. This process of labeling hundreds of control 
registers is difficult especially in the case where the 
original designers are not available. 

Slicing technique  (Tip, 1995) is a source to source 
transformation technique and it can be used to extract a 
part of interest from a design described in HDL. 
However, slicing algorithms are developed originally for 
sequential languages. Therefore, they cannot be used 
without modification for slicing HDLs which tolerate 
concurrent constructs.  Slicing technique has been 
extended to HDLs and the technique has effectively been 
applied to hardware verification. The study in  (Hachtel 
and Somenzi, 1996) suggested an approach to use 
program slicing for analyzing VHDL designs. They used 
the VHDL simulation semantic to explain the slice model 
based on a new dependence graph called signal dependence 
to emulate the concurrent execution of HDL, which is an 
inter-process dependence. Clarke et al. (1999) proposed an 
automated slicing technique for VHDL. They introduced 
System Dependence Graphs (SDG) and presented a 
mapping from VHDL to generic graph-reachability 
representation. In the work (Vasudevan et al., 2006), which 
is the work most related to ours, the authors proposed a 
reduction technique that extends the conditioned slicing 
technique to HDLs’ They have developed a technique for 
computing conditioned slicing to HDLs from the 
antecedent of property specifications. 

In view of the fact that there is no pre-image 
operation in MDG due to the presence of abstract 
variables, none of the backward reduction algorithms are 
appropriate for MDG Consequently, it is desirable to 
apply the reduction techniques at a higher level of 
abstraction. There has been considerable work conducted 
over the years on developing model reduction techniques 
for the MDG-MC in order to solve the state space 
explosion problem (Abed et al., 2007; Al-Sammane et al., 
2007; Hou and Cerny, 2000). The work in (Hou and 
Cerny, 2000) introduces a model reduction technique 
based on property dependent state variables of a property 
P that needs to be verified. The authors proposed a 
technique based on a heuristic iterative reduction 
algorithm. Moreover, the authors of (Al-Sammane et al., 
2007) proposed another idea to construct a reduced 
MDG model for a circuit described in a more abstract 
level. By using a high level symbolic simulation and 
by running appropriate symbolic simulation patterns, 
the reduced model can be obtained from a circuit 
described in VHDL. Also, in (Abed et al., 2007), they 
used a rewriting based SAT solver to prune the 
transition relation Tr of the circuits in order to 
produce a smaller one that is fed to the MDG-MC. 

Compared to other existing approaches our slicing 
techniques have several advantages such as: (a) our 
proposed techniques have no limitation on the MDG-HDL 
coding style. (b) our method is experimentally proven to be 
able to extract the part of MDG-HDL description that only 
contains the relevant components to the slicing criteria and 
that of course improve the efficiency of the verification 
process. (c) our techniques are fully automatic without user 
intervention. (d) it is known that the RTL design is the 
golden model for the low level design processing. 
Consequently, dealing with RTL design makes our 
proposed technique more efficient than other techniques 
that deal with designs in other levels. (e) Finally, our 
technique is intrinsically simpler than other MDG model 
reduction techniques and it lends itself easily to automation. 

  Flowing I give some definitions that are important to 
understand the basic concept of slicing technique and to 
explain our proposed techniques. The following 
definitions are derived from previous research in 
program slicing (Weiser, 1984; Samat et al., 2011; Tip, 
1995). Interested researchers may check the given papers 
for detailed descriptions. 

Definition 1 

Assume that Prg is a sequential program, i represents 
a statement, ∑ is the variables set and V represents a 
subset of the variables in Prg. Let N be the set of nodes 
of the Control Flow Graph (CFG) of Prg On the CFG, i 
represent a nod. The slicing criterion C can be defined as 
a pair of (i, V) such that i∈N and V∈∑.  

Suppose that we have a slicing criterion C = (I, V), 
we can say that a set of statements Is affect the values of 
V at i, when Is computes a subset of V that is used in i. 
In the same way, Is is said to be affected by the values of 
V at i, when a subset of V that is defined at i computes 
the variables used in Is. 

Definition 2 

 Let S be a slice of Prg based on C = (I,V). We can 
say that S represents an executable subset of Prg that 
enclose all Is that possibly will affect or will be affected 
by the values of V at i. 

Definition 3 
 Let n be a node in CFG of rg, D(n) be the set of 
variables that represent the left-part of an assignment 
defined at n. U (n) be the set of variables that 
represent the right-part of an assignment statement 
used at n. SUCC (n) be the set of successors of a node 
n in the CFG of the Prg. The superscript 0 show that 
this set of variables is immediately relevant. 
Consequently, computing the variables 0

cR (n) that are 
immediately relevant to C = (i,V) can be done by the 
following formula: 
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0 0
c c

0
c

R (n) {v V | n i} {U(n) | D(n) R

(SUCC(n) }) {R (SUCC(n)) D(n))}

= ∈ = ∪ ∩

≠ φ ∪ −
 

 
The search to find the immediate relevant variables to 

0
cR (n) starts from node i and goes backward. The 

primary subset {v ∈V|n = i}of the above formula is the 
base case; the following subset 

0
c{U(n) | D(n) R (SUCC(n) )}∩ ≠ φ  marks the variables used 

to assign values to other relevant variables. The third 
subset 0

c{R (SUCC(n)) D(n))}−  removes a relevant 

variable for which all the immediately relevant variables 
have been found. 

Definition 4 

 Let 0
cS  be the statements that are included in the 

slice. 0
cS  can be computed by the following formula: 

 
0
cS {n N | D(n) (SUCC(N)) }= ∈ ∩ = φ  

Definition 5 

 Let 0
cB  the set of conditional statements which 

control the execution of the statements in 
0
cS . INFL(b) be 

the set of statements based on the condition b.  0
cB  can 

be computed as follows: 
 

0 0
c cB (b N | INFL(B) S )= ∈ ∩ ≠ φ  

 
Computing the full slice Sc that can be extracted from 

Prg can be done recursively based on the set of variables 
and statements that have either direct or indirect 
influence on V. Starting from zero, the superscripts 
define the level of recursion: 
 

i 1 i 0
c c b,u (b))R (n) R (n) R (n)+ = ∪  

 
i 1 i 1 i
c c cS (n) {n N | D(n) R (SUCC(n)) } B+ += ∈ ∩ ≠ φ ∪  

 
i 1 I 1
c cB {b N | INFL(B) s }+ += ∈ ∩ ≠ φ  

 
The termination condition for the above formulas can 

be defined as: 
 

f 1
c cS S+=  

 
where, f is an iteration step such that: 
 

f 1 f
c c cn N : R (n) R (n) R (n)+∀ ∈ = =  

1.2. Components Dependence Graph of MDG-
HDL (CDG) 

The MDG-HDL module is normally a non-halting 
program with several communicating components. Those 
components are executed concurrently. Also, the 
components communicate with other components via 
signals that are shared between them. The fundamental 
definitions that given  for slicing sequential programs can 
be trivially extended to apply slicing techniques on a MDG-
HDL source code. But, dealing with concurrent components 
is not the same as dealing with statement in procedures in 
sequential programs. Every component in MDG-HDL is 
not called explicitly, but is activated by appropriate changes 
in signal values in the inputs outputs sensitivity list of the 
component. These changes may be triggered by other 
components that being executed concurrently. To include 
this inter-components communication, a notion of 
Components Dependency is introduced.  

I introduce in following some definitions for CDG.  

Definition 6 

 Let IN (comp) the set of inputs of component 
(comp), OUT (comp) the set of outputs of component 
(comp) and IOL (comp) be the inputs/outputs list of 
comp. Let ST (Comp) be a set of statements in comp. 
 

IOL(comp) {IN(comp) OUT(comp)}= ∪  

Definition 7 

 Let M be the MDG-HDL model and CDGM be its 
components Dependency Graph. CDGM (Ncomps, E,∑M, 
INcomp, OUTcomp IM, OM), where Ncomps is the set of nodes 
of CDGM, which defines the components in M.E is the 
set of edges of CDGM. ∑M is the signals set in M. IM, OM  
are two sets of particular nodes, where IM⊆∑M is the set 
of primary inputs of M, OM⊆∑M is the set of primary 
outputs of M.  

I treat all MDG-HDL components structures 
including functions and multiplexers as simple 
statements and can get the sets of IOL (comp) for every 
component from their declarations, which are the output 
and input ports, respectively. 

Following I present an illustrative example, a simple 
alarm digital circuit, to explain the idea behind our 
proposed CDG and how it is used to extract a part from 
the MDG-HDL.  Figure 1 demonstrates a simple MDG-
HDL example and Fig. 2 demonstrates its CDG. 
According to Fig. 2, I can explain the definition 7 as 
follows: The set: 
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Fig. 1. MDG-HDL source code 
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Fig. 2. CDG of theMDG-HDL in Fig. 1 
 

compsN {(A _ B),(G _ B),(G _ E),

(G _ G),(G _ F),(G _ C),(G _ D)}

=
 

 
 And the data in the set E are edges; for instance 

{{A_B} →(G_E),{(G_B) →(G_E)} {(G_B) →(G_E)} 
and so forth:   

• ∑M = {(window 1), (window 2), (window 5) 
• (window 6), (door 1), (door 2), (A_out), (B_out) 
• (C_out), (D_out), (E_out), (F_out), (Gout)} 
• INcomp= {(G_A)→{window 1, window 2} 
• OUTcomp = {(G_A)→ {(A_out)} 
• IM = {(window 1), (window 2), (window 5) 
• (window 6), (door 1), (door 2)} 
• OM = {Gout} 
 

1.3. Conditioned Slicing Approaches for MDG-
HDL 

Based on the introduced detentions, we can conclude 
that CDGM can be applied in same way with minor 
modifications to slice MDG-HDL.  

Definition 8 

 Let CFGcomps be a set of control flow graphs of 
MDG-HDL components CFGcomp⊆CFGcomps.  Let C = 
(VTC, STO, IM) is a slicing criteria where, VTc is the 
assign constant variables that will use as a condition for 
slcing in every CFGcomp, STO is the slicing target output.  
VTC ⊆ IM and STO ⊆ OM.  
 A chaining slice on a chaining slicing criterion C = 
(VTC, STO, IM), represented by ChS, is an executable 
subset of M including all the component statements 
which contribute either directly or indirectly to the value 
of  ∑M starting from the STO. In order to apply slicing 
on the MDG-HDL which has concurrent structures, we 
need to extend the original Weiser algorithm based on 
CDGM and CFGcomps. Our proposed method consists of 
three main computing steps: (1) Transforming the slicing 
criteria to conventional slicing criteria. (2) Apply slicing 
on CDGM to find all relevant components and mark each 
reached component as Relevant Components (RC).  RC 
⊆RCS, where RCS is Relevant Components Set. (3) The 
last step is to slice in the set of extracted components 
statements using CFGcomps. 
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Fig. 3. Reduced CDG of the MDG-HDL for output (A_out) 
 

 
 
Fig. 4. MDG-HDL source code 

Following  I am going to discuss the three steps of 
our proposed technique. I make one realistic assumption 
on the MDG-HDL as follows: All the variables defined 
in MDG-HDL have to be declared as inputs and 
outputs. This assumption makes it easy to handle all 
MDG-HDL’s components as simple sequential 
statements. Also, it ensures that our technique will not 
lose generality.  

1.4. Slicing the CDGM and CFGcomps 

The slicing criterion that we use in our proposed 
technique differs from the usual sequential slicing 
criterion. Our proposed slicing criterion does not include 
the statements where the criterion variables are defined 
and where the backward slicing started. Consequently, 
we have to transform our criterion into conventional 
form. To do so, we need first to specify  STO and then 
search through the CDGM  to find the set of components 
nodes and mark it as relevant RCS, where RCS = 
{comp|comp∈Ncomps) AND STO∈∑M}. Once all the 
RCS are found, we need to deal with every comp 
included in RCS individually based on its CFGcomp and 
search in its If-Then-Else statements. We slice away the 
statement where the condition value of VTC is not true. 
As a result of the slicing process, all the signals between 
components, the number components including flip flops 
will be reduced.  

The method used to find comps based on CFGcomps is 
a breadth first searching algorithm.  It first marks all the 
nodes which have out edges pointing to the criterion 
component node comp. The set of nodes found in this 
step is represented by Precomp. Then, for every comp in 
Precomp, repeat the same process. The termination 
conditions are: (a) when reach primary inputs. (b) When 
reach previous reached component. (c) When reach 
conditioned signals. Figure 3 and 4 show the result after 
applying the slicing process on the abovemetnioed example. 

1.5. Slicing for Efficient MDG-MC (CS-MDG) 

Even though MDG-HDL slicing approaches have 
different application such debugging and fixing big 
MDG-HDL source code, our main aim to proposed this 
approaches is to tackle the state space explosion problem 
of MDG-MC that big MDG-HDL may cause. Therefore, 
following we are going to explain how to utilize these 
approaches to address the state explosion problem. 

Basically, in MDG-MC, digital designs under 
verification are modeled by Abstract descriptions of 
State Machines (ASMs), where both sets of states and 
relations are encoded by MDGs. The specification 
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language called LMDG is used to express the properties to be 
verified in the MDG-MC. The approach to model checking 
is to build automatically additional ASMs that represent the 
property to be verified, connect the two ASMs to construct 
one ASM and then check a simpler property (flag) on the 
composite machine.  I am not going to go in detail in this 
issue since it has been explained in detail in pervious MDG 
research papers. What I want to emphasize that this 
composite circuit is simply an MDG-HDL code and we can 
apply our proposed approaches on it with minor 
modification on the slicing criteria such that:  

 

antce MC (V ,flag, I )=  

 
Figure 5 shows the structure of the MDG-MC, which 

includes the following modules: 

• MDG based model (MDG-HDL) 
• Desired property which is the specification being 

checked (In the LMDG specification language).( the 
form of property A((Next_let_formula) U 
(Next_let_formula) is not consider in our proposed 
technique) 

• Apl_parser (which takes the input files, the MDG 
based model and the desired property, to construct a 
composite circuit. This is done as follows 

• The property P is transferred into a simplified 
property (circuit). For example, the property 
AG(apl_formula) is transferred into a simplified 
property AG (flag = 1) 

• The simplified property (circuit) is plugged with the 
original model M. This is what we call a composite 
circuit 

• Property checking step is to verifies the property 
validation and return (fail/pass) as a result 

1.6. Illustrative Example 

Figure 6 shows an example of a composite circuit. 
The highlighted part of the circuit is the part that 
represents ASM of the property: 
 

( )
( )
AG(LET(v reg2)IN x 0 & &reg1 0

X(reg2 finc(v)) )

= == == →

==
 

 
While the other part is the part that represents the 

circuit needs be verified (the model M).  So, it clear that 
dealing with the code describing this circuit is just 
basically dealing with normal MDG-HDL. We need only 

to consider that the slicing target output is defined as 
(flag) and the VTC is defined as Vantce in this case. Figure 
7 demonstrate the CFGCM of the composite circuit, where 
CM means composite model. Figure 8 shows the 
reduced CDGCM. 

1.7. MDG-HDL Slicing Algorithm 

 Basically, the MDG-HDL algorithm obtains the 
MDG-HDL source code and the slicing criteria as inputs, 
then iterates over all the criterion variables to compute 
the slice. The concluding slice for the criterion is the 
union of all the slices for the criterion variables. As 
we mentioned before, the termination condition is 
when slicing in CDGM reached all the relevant 
components. Figure 9 shows the schematic diagram 
of our proposed techniques. Figure 10 shows our 
MDG-HDL slicing algorithm.  

1.8. A Case Study 

Now we are going to use the same example in Fig. 6 
with some modifications such as defining the entire 
signal in the circuit in Boolean level. The reason for that 
is to compare our work with previous work in  (Hou and 
Cerny, 2000). 
 

 
 
Fig. 5. MDG-MC 
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Fig. 6. Illustrative example 
 

 
 

Fig. 7. CDGCM of circuit in Fig. 5 
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Fig. 8. Reduced CDGCM of circuit in Fig. 6 
 

 

 
 

Fig. 9. Schematic diagram of slicing techniques 
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Table 1. Experimental results by using MDG-MC 
   Without reduction  Iterative reduction  Slicing technique 
 Reg  ----------------------------------------- -------------------------------- ---------------------------------------- 
 --------------------- State Time Mem State Time Mem State Time Mem 
P No Width vars (sec) (MB) vars (sec) (MB) vars (sec) (MB) 
P1 2 8 20 2.42 2.05 11 2.410 1.72 11 0.87 1.56 
 212 28 3.17 2.87 15 3.730 2.41 15 0.93 1.64 
 216 36 4.73 3.94 19 5.600 3.24 19 1.16 1.73 
 220 N.T N.T N.T 23 10.500 4.77 23 1.86 1.96 
 228 N.T N.T N.T 31 19.600 8.54 31 2.14 2.11 
 1228 N.T N.T N.T 31 3863.600 517.80 31 2.14 2.11 
P2 2 8 20 1.77 1.9 4 1.860 1.36 4 0.16 0.98 
 212 28 2.58 2.59 4 2.320 1.80 4 0.16 0.98 
 216 36 3.66 2.46 4 3.220 2.30 4 0.16 0.98 
 220 N.T N.T N.T 4 5.270 3.19 4 0.16 0.98 
 228 N.T N.T N.T 4 11.510 5.81 4 0.16 0.98 
 1228 N.T N.T N.T 4 4006.600 507.30 4 0.16 0.98 

 

 
 

Fig. 10. Conditioned slicing algorithm 
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The structure of the circuit is somewhat familiar in 
data processing circuits. The suitable context (such as set 
of memory data, registers) is selected based on the 
control signals, then dealing out with the selected context 
and modified context is stored in the same memory 
element. This circuit is also used somewhat in 
telecommunication circuits in which channel or link 
number select the matching registers to be updated. The 
structure of this circuit can be simply extended and 
modified to build larger circuit by adding more registers 
and increasing the size of the registers.  

In our care, we have defined all the signals in the 
circuit in Boolean level. The registers are represented as 
number of bits and every bit is treated as one Boolean 
signal. The properties to be verified are as follows: 
 
• P1: if x = 0, Reg1= 0 and the value of Reg2 = 0 in th 

current clock cycle, then the value of Reg2 will be 1 
in the next clock cycle 

• P2: if x = 0, Reg1 = 0 and the value of Reg2[0] = 0 
in th current clock cycle, then the value of Reg2[0] = 
0  will be 1 in the next clock cycle 

 
The two properties were verified on the model with 

different register numbers and registers sizes. We 
compare our result with previous research work results. 

Table 1 illustrates our experimental results by using 
MDG-MC. Base on the results we can conclude that our 
proposed technique has considerably improve the 
efficiency of MDG-MC. The (N.T) in the table stand for 
Not Terminate. 

2. CONCLUSION 

To alleviate the state explosion problem in the MDG 
model checking tool, we have proposed a reduction 
techniques called SS_MDG and CS-MDG. The goal of 
our technique is to construct a reduced MDG-HDL 
source code using the Composite Circuit Dependency 
Graph (CDGM) and CFGcomps. 

Our technique consists of two phases:  In the first 
phase of the reduction based on Static Slicing (SS-MDG), 
our technique extracts the relevant components that affect 
the flag using the CDGM. Then, in the second phase, the 
reduction that is based on the Conditioned Slicing (CS-
MDG) is applied using the information in the property 
antecedent and CFGcompsCFGcomps to reduce the 
components’ statements and eliminate the irrelevant 
statements where the condition Vantce is not true.  

We have presented the essential foundation of how to 
use slicing techniques to extract a part of MDG-HDL.  
The technique was successfully implemented as a 
prototype tool and effectively used for improving 
verification of design in MDG-HDL. 

Our analyses have shown that the proposed reduction 
technique resulted in significantly improved the 
performance of the MDG model checker. 

In the future, we aim to apply our technique to more 
complex hardware designs in order to identify its 
strengths and limits.  
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