Jour nal of Computer Science, 9 (3): 314-326, 2013

ISSN 1549-3636

© 2013 S. Elmansori, This open access articlessitduted under a Creative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2013.314.326 Published Onling)2013 (http://www.thescipub.com/jcs.toc)

CONDITIONED SLICING FOR EFFICIENT
MULTIWAY DECISION GRAPHSMODEL-CHECKER

Saad Elmansori

Department of Electrical and Computer Engineeringyd@odia University,
1455 de Maisonneuve W. Montreal, Quebec, H3G 1M8aGa

Received 2013-03-09, Revised 2013-04-12; Accepte@-pd123
ABSTRACT

Integrating formal verification techniques into thardware design process provides the means tmougjg
prove critical properties. However, most automagdfication techniques, such as model checking, anly
effectively applicable to designs of limited siztige to the state explosion problem. The MultiwayiSien
Graphs (MDG) method is an efficient method to defirardware designs into more abstract environments;
however, the MDG model checker (MDG-MC) still suffdrom the state explosion problem. Furthermdte, a
the backward reduction algorithms cannot be usddDiG, due to the presence of abstract state vasabi this
study, an efficient extractor for MDG Hardware De#ion Languge (MDG-HDL) is introduced based ortista
(SS-MDG) and conditioned (CS-MDG) program slicieghniques. The techniques can obtain a chainiog sli
for given signals of interest. The main advantagfethese techniques are: It has nho MDG-HDL coditytes
limitation, it is accurate and it is competent iealing with various MDG-HDL constructions. The mai
motivation for introducing this approach is to tecthe state explosion problem of MDG-MC that bigp®+
HDL may cause. We apply our proposed techniquedifferent MDG-HDL designs and our analyses have
shown that the proposed reduction techniques egkinitsignificantly improved performance of the MID&.

In this study, we present a general idea of prog#iezing, a discussion of how to slice MDG-HDL prams,
implementation of the tool and a brief overviewsofme applications and experimental results. Theniyidg
method and the tool based on it need to be emipir@aluated when applying to various applications

Keywords: Multiway Decision Graphs, Model Checking, Prograticing, MDG-HDL

1. INTRODUCTION Graphs (MDG) is efficient in representing a desigth a
large data-path, where the Reduced Order Binarysioec

Nowadays, designers use Hardware DescriptionPiagram (ROBDD) (Aziz e al., 1994; Bryant, 1992) is

; less efficient. The MDG tool applies its own model

Languages (HDLSY) (Samatet al., 2011) to describe X ;
; : : checking (MDG-MC) to formally verify correctness of
hardware designs at different levels, from higheleaf MDG-HDL designs. However, it is known that model

abstraction to onv level c.ircuits. One of the main checking(Burch et al., 1990; Clarkegt al., 1992; 1996;
advantages of using HDLs is that they can be fdsmal jha1a and Majumdar, 2009) suffers from state eiquios
verified to ensure the correctness of the desidrnthes problem due to the fact that as the number of state
different levels. However, as the complexity of reod variables in the model being tested increases,stag
circuit designs increase, verification of theseiglesshas spaces will increase exponentially.
become the main bottleneck in the whole designgs®c Therefore, there is a need to reduce the size o6MD
(Wanget al., 2009; Perry and Foster, 2005). HDL descriptions so that their equivalent modelseha
One of the interesting HDLs is the HDL of Multiway fewer states. In many cases, it is not even pestidbuild
Decision Graphs (MDG-HDL{Corellaet al., 1997; Xu, the state transition relation of the design andribed for
1999; Xuet al., 1998; Zhouet al., 1994; Zhou and MDG-HDL reduction techniques is even more esseittial
Boulerice, 1996). The method of Multiway Decision these particular cases.

////A Science Publications 314 JCS

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

The idea of the reduction technique is as follois: The rest of this study is organized as followsivieg
the model M can be reduced to M’, then the propBrty the related work, a preface the basic backgroutas, A
can be checked on the reduced model M’ and, in thisdescribe the introduced Components Dependence Graph
case, we may avoid the state space explosion proble of MDG-HDL (CDG). Then | discusse conditioned
Consequently, we need to ensure that P verifiedldn gjicing approaches for MDG-HDL. Then | describe how
will also be verified on M. In other words, we need g apply slicing technique for efficient MDG-MC.

make sure that M|=P- M’|=P in order to proceed with ginally | show a case study with expermintal result
the property checking on the reduced model. conclusion and future work.

Many of the most effective verification strategae
based on the idea of the extraction of useful igatibn 1.1. Related Work and Backgrounds
knowledge from HDL description for design parts of
interest. Program slicing which was originally pospd The goal of modgl redl_Jct|on techniques is to |cf_9nt|
by (Weiser, 1984), is a static program analysibriégue substructures of logic, wh_lch can be replaced pkr
to extract appropriate fractions of sequential progs ~ €quivalent pieces of logic. In general, there ame t
relevant to an application. These fractions arerreti to ~ classes of reduction techniques: automatic teclesiqu
as slices artifacts that preserve exact informatéibout ~ Where the reduction can be done with no manual
the program’s behavior projected onto the relevantintervention and manual techniques which need some
segments of the original program. These technidpass degree of manual effort to be able to identify levant
been widely studied and applied to numerous apijgits ~~ substructures. In the context of hardware veriftcgta
in software engineering such as debugging (Deng., majority of the reduction techniques are appliedhat
2000), testing (Lyle and Gallagher, 1998), maimtera gate level (Boolean level) of the hardware design
(Gallagher and Lyle, 1991) and reuse (Lanubile anddescription. The following is an overview of the
Visaggio, 1997). The slicing technique presents anreduction techniques used in model checking; fityisi0
opportunity to formulate an efficient method toregt a means comprehensive, but summarizes the most ntleva
part of a design described in an HDL. reduction techniques.

This study describes the theoretical basis of using Logic optimization techniques, including Boolean

program slicing for dealing with the descriptions 0 minimization and constant propagations, are thecbas
designs in a MDG-HDL. We propose a new structure 10\ggic minimization algorithms of the reduction

represent the signal dependency between SourCéSCOdetechniques (Hachtel and Somenzi, 1996; De Michelli,

components of the MDG-HDL, the Components 1994). Fan-in cone reduction is the class of redoct
Dependence Graph (CDG). As a result, we can dehl wi techniques involved in identifying the set of

slicing for given signals only with the relevant \@D . . .
HDL’s components. To the best of our knowledgés th environment/model signals that are essential fa th
. specification being checked and in neglecting all

is the first try to use program slicing to extractpart ; ,
from MDG-%DL desgrip?ions. Ourg method urgnakes others. The reduction of the independent state
MDG-MC more efficient in dealing with bigger design machines and unreachable states is another category

Also, our method can be very helpful in debuggings ~ Of the automatic reduction techniques (FSM

in a big MDG-HDL source code. minimization) (Aziz et al., 1994). Another class of
The contributions of this study are as follows: reduction techniques such as symmetry reduction,

_) abstraction and compositional verification can

* We proposed and implemented static and significantly reduce state space. However, none of
conditioned slicer techniques for MDG-MC, called these methods are fully automated; therefore, they
SS_MDG and CS-MDG need some manual or full manual effort, or reqtire

Our approaches are fully automatic. In other words, model to be expressed in an intermediate format.
our approaches do not need a knowledgeable user to Verification approaches are mainly based on the
be able to generate meaningful slices extraction of useful verification information fromDLs

e Our approaches are the first slicer techniques thafor design component of attention. Various resessch
can handle the inter-model signal dependency ingive a lot of attention to extraction controllerorfn
MDG-based designs datapath(Moundanoset al., 1998; Hoet al., 1995) and

« We have validated our proposed technique using averifying the controller part only. Though, theroduced
simple case study. Our results show the remarkabldechniques are not capable to deal with big designs
efficiency of using our approaches in terms of time efficiently because the ability of separating cotér
size and memory form datapath depends on assigning specific labels

///// Science Publications 315 JCS

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

manually. This process of labeling hundreds of i@nt
registers is difficult especially in the case whéhe
original designers are not available.

Slicing technique(Tip, 1995) is a source to source
transformation technique and it can be used toaek

Compared to other existing approaches our slicing

techniques have several advantages such as: (a) our

proposed techniques have no limitation on the MO@-H
coding style. (b) our method is experimentally groto be
able to extract the part of MDG-HDL descriptionttbaly

part of interest from a design described in HDL. contains the relevant components to the slicirtgréiand

However, slicing algorithms are developed originédir

sequential languages. Therefore, they cannot bd use

without modification for slicing HDLs which tolemat
concurrent constructs.
extended to HDLs and the technique has effectibebn
applied to hardware verification. The study(kachtel

Slicing technique has bee

that of course improve the efficiency of the vesfion

process. (c) our techniques are fully automatibaut user
intervention. (d) it is known that the RTL desighthe
olden model for the low level design processing.
onsequently, dealing with RTL design makes our
proposed techniqgue more efficient than other tegles

that deal with designs in other levels. (e) Finalbr

and Somenzi, 1996) suggested an approach to Uschnique is intrinsically simpler than other MDGodel

program slicing for analyzing VHDL designs. Thegds
the VHDL simulation semantic to explain the slicedal
based on a new dependence graph called signalcspEn
to emulate the concurrent execution of HDL, whishan
inter-process dependence. Claekal. (1999) proposed an
automated slicing technique for VHDL. They introddc
System Dependence Graphs (SDG) and presented
mapping from VHDL to generic graph-reachability
representation. In the work (Vasudewial., 2006), which
is the work most related to ours, the authors wepaa
reduction technique that extends the conditionédngl
technique to HDLs' They have developed a technigue
computing conditioned slicing to HDLs from the
antecedent of property specifications.

In view of the fact that there is no pre-image

operation in MDG due to the presence of abstract

variables, none of the backward reduction algorittare
appropriate for MD(5 Consequently, it is desirable to

reduction techniques and it lends itself easilguttmmation.
Flowing | give some definitions that are importémt
understand the basic concept of slicing techniqubta
explain our proposed techniques. The following
definitions are derived from previous research in
program slicing (Weiser, 1984; Sanwtal., 2011; Tip,
995). Interested researchers may check the gigpearp
or detailed descriptions.

Definition 1

Assume that Prg is a sequential program, i reptesen
a statement}, is the variables set and V represents a
subset of the variables in Prg. Let N be the setonfes
of the Control Flow Graph (CFG) of Prg On the CKG,
represent a nod. The slicing criterion C can bénddfas
a pair of (i, V) such thatiN and V1.

Suppose that we have a slicing criterion C = (I, V)
we can say that a set of statements Is affectdhees of
V at i, when Is computes a subset of V that is ueed

apply the reduction techniques at a higher level ofinthe same way, Is is said to be affected by tiaes of

abstraction. There has been considerable work cbediu
over the years on developing model reduction tepghes

for the MDG-MC in order to solve the state space

explosion problem (Abedt al., 2007; Al-Sammanet al.,

2007; Hou and Cerny, 2000). The work in (Hou and

V at i, when a subset of V that is defined at i poibes
the variables used in Is.

Definition 2
Let S be a slice of Prg based on C = (I,V). We can

Cerny, 2000) introduces a model reduction techniquesay that S represents an executable subset ofhBtg t

based on property dependent state variables obzepy

enclose all Is that possibly will affect or will lzgfected

P that needs to be verified. The authors proposed &Y the valuesofV ati.
technique based on a heuristic iterative reductionpefinition 3

algorithm. Moreover, the authors of (Al-Sammaaal.,

2007) proposed another idea to construct a reduced

MDG model for a circuit described in a more abstrac
level. By using a high level symbolic simulationdan
by running appropriate symbolic simulation patterns

Let n be a node in CFG of rg, D(n) be the set of
variables that represent the left-part of an agsigm
defined at n. U (n) be the set of variables that
represent the right-part of an assignment statement
used at n. SUCC (n) be the set of successors ofla n

the reduced model can be obtained from a circuity j the CFG of the Prg. The superscript 0 show tha

described in VHDL. Also, in (Abeedt al., 2007), they

this set of variables is immediately relevant.

used a rewriting based SAT solver to prune the Consequently, computing the variablg§(n) that are

transition relation Tr of the circuits in order to
produce a smaller one that is fed to the MDG-MC.

///// Science Publications

316

immediately relevant to C = (i,V) can be done bg th
following formula:

JCS

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

R(n)={vOV|n=0 0{U(n) | D(n) nR? 1.2.Components Dependence Graph of MDG-
(SUCC(n)# @} 0 {R%(SUCC(n))- D(n))} HDL (CDG)
The MDG-HDL module is normally a non-halting
The search to find the immediate relevant variatiles program with several communicating components. hos

R:(n) starts from node i and goes backward. Thecomponents are executed concurrently. Also, the
primary subset {M1V|n = i}of the above formula is the components communicate with other components via
base case; the following subset signals that are shared between them. The fundament
{U(n) | D(n) n R(SUCC(n) @)} marks the variables used definitions that given for slicing sequential prags can
to assign values to other relevant variables. Telt be trivially extended to apply slicing techniquessoMDG-
subset {RYSUCC(n))- D(n))} removes a relevant HDL source code. But, dealing with concurrent congrs
variable for which all the immediately relevant iales 1S not the same as dealing with statement in proesdn

have been found. sequential programs. Every component in MDG-HDL is
L not called explicitly, but is activated by appreypei changes
Definition 4 in signal values in the inputs outputs sensitiliiy of the

Let S be the statements that are included in thecomponent. These changes may be triggered by other
components that being executed concurrently. Tudec

this inter-components communication, a notion of
Components Dependency is introduced.
| introduce in following some definitions for CDG.

slice. S can be computed by the following formula:

S ={nON|D(n)n (SUCC(N)= @}
Definition 5 Definition 6

Let B? the set of conditional statements which Let IN (comp) the set of inputs of component

control the execution of the statementssin INFL(b) be (€OMP), OUT (comp) the set of outputs of component

. (comp) and IOL (comp) be the inputs/outputs list of

the set of statements based on the conditiorBb.can comp.’Let ST (Comp) be a set of statements in comp.
be computed as follows:

I0L(comp)= {IN(comp)O OUT(comp)}

Definition 7
Computing the full slice Shat can be extracted from)
Prg can be done recursively based on the set @blas Let M be the MDG-HDL model and CRQfsoe its
and statements that have either direct or indirectcomponents Dependency Graph. GP®comps E2m,
influence on V. Starting from zero, the superssript Ncomp, OUTcomp I, Ou), where Nompsis the set of nodes

B =(bON|INFL(B)n S # @)

define the level of recursion: of CDGy, which defines _the components .in M.E is the
set of edges of CDg 2 is the signals set in My] Oy
R (M= R (MO R,y (N) are two sets of particular nodes, whejélty is the set

of primary inputs of M, QX is the set of primary
outputs of M.

| treat all MDG-HDL components structures
including functions and multiplexers as simple
statements and can get the sets of IOL (comp)verye
component from their declarations, which are thgou
and input ports, respectively.

Following | present an illustrative example, a sienp
5 =4" alarm digital circuit, to explain the idea behindro
¢ proposed CDG and how it is used to extract a parhf
the MDG-HDL. Figure 1 demonstrates a simple MDG-
HDL example andFig. 2 demonstrates its CDG.

- i According toFig. 2, | can explain the definition 7 as
OnON:R™(n)= R (n)= R (] follows: The set:

S*(n)={nON|D(n)n R™(SUCC(n)¥ ¢ I B
B ={b ON|INFL(B) ns\" # @

The termination condition for the above formulas ca
be defined as:

where, f is an iteration step such that:

///// Science Publications 317 JCS

,//// Science Publications

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

% Multifile declaration required by Prolog system.
%

- multifile signal/2.

- multifile component/2.

- multifile st nxst/2.

-multifile next_state partition/1.
.- multifile output_partition/1.

- multifile outputs/1.

- multifile init_val/2.

- multifile init var/2.

- multifile par_strategy/2.

signal(windowl , bool).
signal(window?2 , bool).
signal(A_out, bool).
signal(B_out . bool).
signal(E_out, bool).
signal(window5 , bool).
signal(window6 , bool).
signal(C_out, bool).
signal(doorl , bool).
signal(door2 , bool).
signal(D_out, bool).
signal(F_out, bool).
signal(G_out, bool).

component (G_A,or(input(window1,window?2),output(A_out)).
component (G_B,or(input(window1,window2),output(B_out)).

component (G_E.or(input(A out,B_out).output(E out)).

component (G_C,or(input(window3,window6),output(C_out)).

component (G_D.or(input(doorl.door2),output(D_out)).
component (G_F.or(input(C_out.D out).output(F_out)).
component (G_G.or(input(E_out,F_out).output(G_out)).

output([tr]).
output_partition ([G_out]).

%%--- Partition strategy ---

%

par_strategy(auto,auto).

Fig. 1. MDG-HDL source code

318

JCS

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

Window
i _‘

-—
- —

A out B_out
i
k.
N
\.Il.ll
3

G _out

Window2 Window3 Window 6 Doorl Doorl

! /

C_out D_out

Fig. 2. CDG of theMDG-HDL inFig. 1

Neomps ={(A_B),(G_B),(G_E),
(G_G),(G_F),(G_C),(G_D)}

Definition 8

Let CFGomps be a set of control flow graphs of
MDG-HDL components CFGn/ICFGomps Let C =

And the data in the set E are edges; for instancey.. STO, |,) is a slicing criteria where, ¥ is the

{{A_B} -(G_E){(G_B) -(G_E)} {(G_B) -(G_E)}
and so forth:

e Yu={(window 1), (window 2), (window 5)

e (window 6), (door 1), (door 2), (A_out), (B_out)
+ (C_out), (D_out), (E_out), (F_out), (@}

INcomg= {(G_A) —{window 1, window 2}
OUTcomp: {(G_A) - {(A_OUt)}

e Iy ={(window 1), (window 2), (window 5)
(window 6), (door 1), (door 2)}

OM = {Gout}

1.3.Conditioned Slicing Approaches for MDG-
HDL

assign constant variables that will use as a cimmdfor
slcing in every CF&n, STO is the slicing target output.
Vic O Iy and ST Owu.

A chaining slice on a chaining slicing criterion=C
(V1c, STO, l), represented by ChS, is an executable
subset of M including all the component statements
which contribute either directly or indirectly thet value
of >\ starting from the STO. In order to apply slicing
on the MDG-HDL which has concurrent structures, we
need to extend the original Weiser algorithm based
CDGw and CFGomps Our proposed method consists of
three main computing steps: (1) Transforming tiens
criteria to conventional slicing criteria. (2) Agptlicing
on CDG; to find all relevant components and mark each
reached component as Relevant Components (RC). RC

Based on the introduced detentions, we can concludéJRCS, where RCS is Relevant Components Set. (3) The
that CDG, can be applied in same way with minor last step is to slice in the set of extracted comepts

modifications to slice MDG-HDL.

,//// Science Publications

statements using Ck&aps

JCS

Window 1

Fig. 3. Reduced CDG of the MDG-HDL for output (A_out)

% Multifile declaration required by Prolog system.

%

- multifile
- multifile
- multifile
- multifile
- multifile
- multifile
- multifile
- multifile
- multifile

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

Window 2

A out

signal /2.

component /2.

st rxst/Z.

next state partition/1.
output_partition/l.
outputa/1.

init wval/Z.

init wvar/Z.
par_strateqy/Z.

aignal (windowl , bool).
signal (window? , bool).
signal {4 out , hool).

Ccomponent |

& &, 0r {input fwindowl window?) output (& outy).

ouktput ([]).

output partition {[]).

%-—- Partition strategy —--

%

par_strategylauto,auto).

Fig. 4. MDG-HDL source code

///// Science Publications

Following | am going to discuss the three steps of
our proposed technique. | make one realistic assamp
on the MDG-HDL as follows: All the variables defihe
in MDG-HDL have to be declared as inputs and
outputs. This assumption makes it easy to handle al
MDG-HDL's components as simple sequential
statements. Also, it ensures that our techniquenei
lose generality.

1.4. Slicing the CDGy and CFGomps

The slicing criterion that we use in our proposed
technique differs from the usual sequential slicing
criterion. Our proposed slicing criterion does mmiude
the statements where the criterion variables afmete
and where the backward slicing started. Consequentl
we have to transform our criterion into conventiona
form. To do so, we need first to specify STO ameint
search through the CQ}G to find the set of components
nodes and mark it as relevant RCS, where RCS =
{comp|com@IN¢ompy AND STOOXM}. Once all the
RCS are found, we need to deal with every comp
included in RCS individually based on its Cf& and
search in its If-Then-Else statements. We sliceyathia
statement where the condition value ofc:\Ws not true.

As a result of the slicing process, all the sighedsveen
components, the number components including fopdl
will be reduced.

The method used to find comps based on GRGis
a breadth first searching algorithm. It first maedl the
nodes which have out edges pointing to the criterio
component node comp. The set of nodes found in this
step is represented by Byg, Then, for every comp in
Preomp repeat the same process. The termination
conditions are: (a) when reach primary inputs. \{ihen
reach previous reached component. (c) When reach
conditioned signalgigure 3 and 4 show the result after
applying the slicing process on the abovemetnizadele.

1.5. Slicing for Efficient MDG-MC (CS-MDG)

Even though MDG-HDL slicing approaches have
different application such debugging and fixing big
MDG-HDL source code, our main aim to proposed this
approaches is to tackle the state space explosaiigm
of MDG-MC that big MDG-HDL may cause. Therefore,
following we are going to explain how to utilizeese
approaches to address the state explosion problem.

Basically, in MDG-MC, digital designs under
verification are modeled by Abstract descriptions o
State Machines (ASMs), where both sets of stateks an
relations are encoded by MDGs. The specification

JCS

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

language called o is used to express the properties to beto consider that the slicing target output is defiras

verified in the MDG-MC. The approach to model chiagk
is to build automatically additional ASMs that regent the
property to be verified, connect the two ASMs tostauct
one ASM and then check a simpler property (flag)ten
composite machine. | am not going to go in détathis
issue since it has been explained in detail inipesvMDG

research papers. What | want to emphasize that this

composite circuit is simply an MDG-HDL code and een
apply our proposed approaches on it with minor
maodification on the slicing criteria such that:

C= (Voo lag, 1)

Figure 5 shows the structure of the MDG-MC, which
includes the following modules:

e« MDG based model (MDG-HDL)

» Desired property which is the specification being
checked (In the Lpe specification language).(the
form of property A((Next_let formula) U
(Next_let_formula) is not consider in our proposed
technique)

» Apl_parser (which takes the input files, the MDG
based model and the desired property, to consaruct
composite circuit. This is done as follows

e The property P is transferred into a simplified
property (circuit). For example, the property
AG(apl_formula) is transferred into a simplified
property AG (flag = 1)

e The simplified property (circuit) is plugged withet
original model M. This is what we call a composite
circuit

» Property checking step is to verifies the property
validation and return (fail/pass) as a result

1.6. lllustrative Example

Figure 6 shows an example of a composite circuit.
The highlighted part of the circuit is the part ttha
represents ASM of the property:

AG (LET(v =reg2)IN(x== 0&®l== Q —
(X(reg2== finc(v))))

While the other part is the part that represenés th
circuit needs be verified (the model M). So, &adl that
dealing with the code describing this circuit isstju
basically dealing with normal MDG-HDL. We need only

///// Science Publications 321

(flag) and the W is defined as Yein this caseFigure

7 demonstrate the Ckg of the composite circuit, where
CM means composite modeFigure 8 shows the
reduced CDGy.

1.7.MDG-HDL Slicing Algorithm

Basically, the MDG-HDL algorithm obtains the
MDG-HDL source code and the slicing criteria asuitsp
then iterates over all the criterion variables donpute
the slice. The concluding slice for the criterianthe
union of all the slices for the criterion variahless
we mentioned before, the termination condition is
when slicing in CDG reached all the relevant
componentsFigure 9 shows the schematic diagram
of our proposed techniquesigure 10 shows our
MDG-HDL slicing algorithm.

1.8. A Case Study

Now we are going to use the same examplEign 6
with some modifications such as defining the entire
signal in the circuit in Boolean level. The reagonthat
is to compare our work with previous work (iHou and
Cerny, 2000).

MDG- based Desired
model Property {P}
l v
Apl_parser

|

Composite circuit

Y

Property checker

Y
Yes/No

Fig. 5. MDG-MC

JCS

Saad Elmansori / Journal of Computer Science B(3):326, 2013
1
914” %
apld
olS, pI6)
ol >.ﬂ
@ ®
L g2 apl11
plB: pl12
apﬂ.jw
—n_reg3 e
]
k- Finc_in > ap

2
. 1
Mii

"_reg =

LB dwony

't |
et e
1

0
g
3
n_reg2e ©
]
&
(=]

xn dwon

=
:

@—

Finc_out

RO dwen
I
%
Bai dwen
Finc
]
S

reg5s
§ g
1 é 3
| _regs—# °
B I}
g ©
b Gl

u
F " £
Finc_out £

Fig. 7. CDGgy, of circuit inFig. 5

///// Sdience Publications 322 JCS

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

Fig. 8. Reduced CDg, of circuit inFig. 6
MDG-

HDL
MDG-HDL compiler (Apl)
STO [Test case

MDGCC (Input)

Slicing core

Transform sliced
CDG to MDGCC

Property
®)

Reduced
MDGCC

MDG_MC

Fig. 9. Schematic diagram of slicing techniques

,//// Science Publications 323 JCS

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

Table 1. Experimental results by using MDG-MC

Without reduction Iterative reduction Sliciteghnique
Reg
--------------------- State Time Mem State Time lohe: State Time Mem
P No Width vars (sec) (MB) vars (sec) (MB) vars (sec) (MB)
PL 28 20 2.42 2.05 11 2410 1.72 11 0.87 1.56
212 28 3.17 2.87 15 3.730 241 15 0.93 1.64
216 36 4.73 3.94 19 5.600 3.24 19 1.16 1.73
220 N.T N.T N.T 23 10.500 4.77 23 1.86 1.96
228 N.T N.T N.T 31 19.600 8.54 31 2.14 2.11
1228 N.T N.T N.T 31 3863.600 517.80 31 2.14 2.11
P2 28 20 1.77 1.9 4 1.860 1.36 4 0.16 0.98
212 28 2.58 2.59 4 2.320 1.80 4 0.16 0.98
216 36 3.66 2.46 4 3.220 2.30 4 0.16 0.98
220 N.T N.T N.T 4 5.270 3.19 4 0.16 0.98
228 N.T N.T N.T 4 11510 5.81 4 0.16 0.98
1228 N.T N.T N.T 4 4006.600 507.30 4 0.16 0.98
1 conditioned Slice algorithm
(M:MDG-HDL code, C:slicing criterion)
2. declare
3. CFGeomp: component’s control flow
CDGy: Components dependence graph
RCS: relevant components set, RM: projection of
M. CRSS: component relevant statement set
4. begin
5. *Step 0: for applying static slicing build
the CDGy; *
6. CDGy; = the components dependency
graph that corresponds to M
7. *Step 1: Identify RCS *
8. RCS = {comp | comp is reachable via E
directly or indirectly based on C} + {EXIT}
9. *Step 2: for applying conditioned slicing
build CFC omps*
10. CDGy; = the control dependency graph for
every component in RCS
11. CRSS = { RST (comp) | RST (comp) =
ST (comp) and RST (comp) is the set of
statementin component where the condition
Vipee 18 true}
12, /*Step 3: Create RM Projection™®
13. BRM :=reconstruct reduced M based on
RCS and CRSS
14. return(RM)
15. end
Fig. 10. Conditioned slicing algorithm
324 ics

///// Science Publications

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

The structure of the circuit is somewhat familiar i We have presented the essential foundation of bow t
data processing circuits. The suitable contexti{sascset Use slicing techniques to extract a part of MDG-HDL
of memory data, registers) is selected based on thdhe technique was successfully implemented as a
control signals, then dealing out with the selectedtext ~ Prototype tool and effectively used for improving

and modified context is stored in the same memoryverlflcatlon of design in MDG-HDL. .
: L . Our analyses have shown that the proposed reduction
element. This circuit is also used somewhat in

L o . . technique resulted in significantly improved the
telecommunication circuits in which channel or link q 9 Y P

_ ' performance of the MDG model checker.
number select the matching registers to be updateel. In the future, we aim to apply our technique to enor
structure of this circuit can be simply extended an cqmplex hardware designs in order to identify its
modified to build larger circuit by adding more isgrs strengths and limits.
and increasing the size of the registers.

In our care, we have defined all the signals in the 3. ACKNOWLEDGEMENT
circuit in Boolean level. The registers are repnése as
number of bits and every bit is treated as one &l | would like to thank Libyan ministry of higher
signal. The properties to be verified are as folliow education and aide financiere aux etudes Quebec for

)) their support.
 P1:ifx =0, Regl= 0 and the value of Reg2 = thin

current clock cycle, then the value of Reg2 willlbe 4. REFERENCES
in the next clock cycle
+ P2:ifx =0, Regl = 0 and the value of Reg2[0] = 0 Abed, S., O.A. Mohamed, Z. Yang and G. Al-Sammane,
in th current clock cycle, then the value of Re¢2{0 2007. Integrating SAT with multiway decision
0 will be 1 in the next clock cycle graphs for efficient model checking. Proceedings of
the Internatonal Conference on Microelectronics,
The two properties were verified on the model with Dec. 29-31, IEEE Xplore Press, Cairo, pp: 129-132.
different register numbers and registers sizes. We DOI: 10.1109/ICM.2007.4497677
compare our result with previous research workltesu ~ Al-Sammane, G., S. Abed and O.A. Mohamed, 2007.
Table 1 illustrates our experimental results by using High level reduction technique for multivay
MDG-MC. Base on the results we can conclude that ou decision graphs based model checking. Proceedings
proposed technique has considerably improve the Of the First International Conference on Verificati

efficiency of MDG-MC. The (N.T) in the table stafat and Evaluation of Computer and Communication
Not Terminate. Systems, (ECCS’ 07)British Computer Society
Swinton, UK., pp: 80-93.
2. CONCLUSION Aziz, A., V. Singhal, G.M. Swamy and R.K. Brayton,

1994. Minimizing interacting finite state machines:

To alleviate the state explosion problem in the MDG A compositional approach to language containment.

model checking tool, we have proposed a reduction Proceedings of the IEEE International Conference

techniques called SS_MDG and CS-MDG. The goal of on Computer Design: VLS| in Computers and

our technique is to construct a reduced MDG-HDL Processors, Oct. 10-12, |IEEE Xplore Press,
source code using the Composite Circuit Dependency Cambridge, MA., pp: 255-261. DOI:

Graph (CDGy) and CFGomps 10.1109/ICCD.1994.331900

Our technique consists of two phases: In the firstBryant, R., 1992. Symbolic Boolean manipulationhwit
phase of the reduction based on Static SlicingNiB&3), ordered binary-decision diagrams. ACM Comput.
our technique extracts the relevant componentsatffett Syst., 24: 293-318. DOI: 10.1145/136035.136043
the flag using the CDfa Then, in the second phase, the Burch, J., E. Clarke and D. Long, 1990. Symboliadeio
reduction that is based on the Conditioned SliciG&- checking with partitioned transition relations.
MDG) is applied using the information in the prdyer Proceedings of the IFIP TC1l0/WG 10.5
antecedent and CFGcompsChfss to reduce the International Conference on Very Large Scale
components’ statements and eliminate the irrelevant Integration, Aug. 20-22Edinburgh, Scotland, IFIP
statements where the conditiog.M:is not true. Transactions A-1 North-Holland.

///// Science Publications 325 JCS

Clarke, E., O. Grumberg and D.L. Peled, 1992. ModelLyle, J.R. and K.B.A. Gallagher,

Saad Elmansori / Journal of Computer Science 8B(3):326, 2013

checking and abstraction. Proceedings of the
Nineteenth Annual ACM Symposium on Principles
of Programming Languages, Jan. 19-22M New
York, NY, USA., pp: 343-354. DOI:
10.1145/143165.143235

Clarke, E., O. Grumberg and D.L. Peled, 1996. Model

checking. Cambridge University Press.

Clarke, E.M., Fujita and M. P.S. Rajan, 1999. Paayr

slicing of hardware description languages.

Proceedings of the Conference Correct Hardware

Design and Verification Methods, (CHARME’ 99),
Springer-Verlag London, UK., pp: 298-312.

Corella, F., Z. Zhou, X. Song, M. Langevin and E.

De

Cerny, 1997. Multiway decision graphs for
automated hardware verification. Formal Methods
Syst. Design, 10: 7-46. DOI:
10.1023/A:1008663530211

Michelli, G., 1994. Synthesis and Optimizatioh o
Digital Circuits. 1st Edn., McGraw-Hill, New York,
ISBN-10: 0070163332, pp: 579.

Deng, Y., S. Kothari and Y. Namara, 2000. Program

slice browser. Proceedings of the 9th International
Workshop on Program Comprehension, May 12-13,
IEEE Xplore Press, Toronto Ont., pp: 50-59. DOI:
10.1109/WPC.2001.921713

Gallagher, K.B. and J.R. Lyle, 1991. Using program

slicing in software maintenance. IEEE Trans.
Software Eng., 17: 751-761. DOI: 10.1109/32.83912

Hachtel, G. and F. Somenzi, 1996. Logic Synthesd a

Ho,

Verification Algorithems. Kluwer
Academic Publishers,
0792397460, pp: 600.
R., C. Yang, M. Horowitz and D. Dill, 1995.
Architecture validation for processors. Proceedings

of the Annual International Symposium on

1st Edn.,
Boston,

1998. Program
decomposition scheme with applications to software
modification and testing. Proceedings of the
Software Track, Proceedings of the Twenty-Second
Annual Hawaii International Conference on System
Sciences, Jan. 3-6, IEEE Xplore Preksjlua-
Kona, HI., : 479-485. DOl:
10.1109/HICSS.1989.48029

Moundanos, D., J.A. Abraham and Y.V. Hoskote, 1998.

Abstraction techniques for validation coverage
analysis and test generation. IEEE Trans. Comput.,
47:2-13. DOI: 10.1109/12.656068

Perry, DL. and H. Foster, 2005. Applied Formal

Verification. 1st Edn., McGraw-Hill, New York,
ISBN-10: 9780071588898, pp: 240.

Samat, P.A., A.M. Zin and Z. Shukur, 2011. Analysis

the model checkers’ input languages for modeling
traffic light systems. J. Comput. Sci., 7: 225-233.
DOI: 10.3844/jcssp.2011.225.233

Tip, F., 1995. A survey of program slicing techreéquJ.

Progr. Language, 3: 121-189.

Vasudevan, S., E. Emerson and J. Abraham, 2006.

Improved verification of hardware designs through
antecedent conditioned slicing. Int. J. Software
Tools Technol. Transfer, 9: 89-101DOI:
10.1007/s10009-006-0022-x

Wang, J., J. Shao, Y. Li and J. Ding, 2009. Sureny

formal verification methods for digital IC.
Proceedings of the 4th International Conference on
Internet Computing for Science and Engineering,
Dec. 21-22, IEEE Xplore Press, Harbin, 2009 pp:
164-168. DOI: 10.1109/ICICSE.2009.46

ISBN-10: Weiser, M., 1984. Program slicing. IEEE Trans.

Software Eng., 10: 352-357. DOI:

10.1109/TSE.1984.5010248

Xu, Y., 1999. Model checking for a first-order teonal

logic using multiway decision graphs. Ph.D. Thesis,
University of Montreal.

Computer Architecture, Jun. 22-24, ACM Press, xy Y. C. Eduard, S. Xiaoyu, C. Francisco and A.M.

New York, USA., pp:
10.1145/223982.224450

404-413. DOI:

Hou, J. and E. Cerny, 2000. Model reductions in MDG

based model checking. Proceedings of the 13th

Otmane, 1998. Model checking for a first-order
temporal logic using multiway decision graphs.
Comput. Aided Verificat.,, 1427: 219-23DOI:
10.1007/BFb0028747

Annual IEEE International ASIC/SOC Conference, Zhou, Z. and N. Boulerice, 1996. MDGs Tools (V1.0)

Sept. 13-16, IEEE Xplore Pregslington, VA., pp:
347-351. DOI: 10.1109/ASIC.2000.880762

Jhala, R. and R. Majumdar, 2009. Software model

checking. ACM Comput. Surv. DOI:

10.1145/1592434.1592438

Lanubile, F. and G. Visaggio, 1997. Extracting ehis

///// Science Publications

functions by flow graph based program slicing.
IEEE Trans. Software Eng., 23: 246-259. DOI:
10.1109/32.588543

326

User’'s Manual. University of Montreal.

Zhou, Z., X. Song, F. Corella, E. Cerny and M.

Langevin, 1994. Description and verification of
RTL designs using multiway decision graphs.
Proceedings of the IFIP International Conference on
Hardware Description Languages. IFIP International
Conference on Very Large Scal Design Automation
Conference, Aug. 29-Sep. 1, IEEE Xplore Press,
Chiba, pp: 575-580. DOI:
10.1109/ASPDAC.1995.486372

JCS

