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ABSTRACT

This study addresses the correlations between ldgoaganic matter in recent sediment; samples were
collected from the Gulf of Agaba, Red Sea coadigdwophic regions) during 2010. In the presenidgt
TOC analyzer was used to determine Total Organib@a(TOC) and Total Nitrogen (TN) concentrations
and the total amount of mercury (Hgn sediment samples were analyzed by Hydra-C ungranalyzer.
The obtained results indicated that, mercury, T@@ &N average concentrations in the Red Sea were
85.42 ng @', 5.10 and 4.45 mgt, respectively. The results show that the TotalaBig Carbon (TOC) in
sediment represents the sum of various organic oanmgs, which may play a completely different raie i
the distribution and accumulation of Hg. slighthyrelations between the TOC and the concentratidigo

in the studied sediment arise mainly from the klpibrtion of organic matter released. These comg®mun
primarily consist of easily degradable algal-dediVipids and various pigments, which are petrogiegdly
described as a soluble Organic Matter (OM). Thegmeed OM in sediment is commonly entrapped within
the cell walls of phytoplankton and also appears asirface coating on sediment particles. The gtron
affinity between Hg and OM is due not only to iteemical reactivity, but also to the physical chéeestic

of these labile compounds, which plays the mosbittgmt role in the distribution of Hg in sediment.
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1. INTRODUCTION like other metals speciation is affected by reactiath

_ ) _ ) organic and inorganic compounds that present ienvat
Anthropogenic mercury in the aquatic environment Dissolved Organic Matter (DOM), which is
has been an increased awareness due to theirtyofaci ubiquitous in aquatic environments, is bind to érac

the ".f? SO, it is import.ant to understand .the fated metals which affect their speciation, solubilityplpility
reactivity with such environment. Paraquettal. (2004) and toxicity (Buffle et al., 1988). There is increasing

showed that the trace metal are reacted and stobibxe : ) X
suspended particulate matter. In an aquatic envieon gwdenqe th_at DOM_lnFeracts W'th mercury as _vvellol_uh
is altering its speciation and bioavailability iguetic

mercury occurs in different forms including elenant , | b
mercury, lonic mercury and methyl mercury (Berthon, environments (Loux, 1998). In coastal waters, nbem

1995). Methyl mercury is one of the most toxic ferof ~ 60% of the dissolved mercury is associated wittaoig
mercury species; it tends to bioaccumulate andMatters or suspended particles (Fitzgerald and $yon
biomagnify in the fatty tissue of fish more tharhet  1973). Whereas Dissolved Organic Carbon (DOC)
forms. Watras and Huckabed1994) prove that the most appears to be the most important species whichraont
mercury in the most fish species occurs as metleytuny the bioavailability of mercury due to high binding
which is transferred to human via the food chaierddry capacity (Barkayet al., 1997, Caiet al., 1999). The
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previous studies showed a strong interactions heiwe

(Lucas et al., 1986; Pereiraet al., 1998a; 1998b,

Hg and DOM have also been indicated by a positiveRamalhosat al., 2001).

correlation between their concentrations in manyina
waters (Andren and Harriss, 1975; Lindberg and idsrr
1974; Mierle and Ingram, 1991; Meikt al., 1991,
Driscoll et al., 1995; Hurleyet al., 1995; Watrast al.,
1995; Baeyenset al., 1996; Kolka et al., 1999;
Shanleyet al., 2002).

Strong ionic binding is one of the most important
reactions between mercury and reduced sulfur gites
soil and DOM which facilitates the mobility of meiny
across water column and sediment (Wallschlaye.,
1996) and enhanced results in increased water codum
mercury concentrations and help in

This study presents is the first study dealindnlite
distributions of reactive mercury in sedimentsyadl as
dissolved organic matter, in Red Sea-Agaba and
contributes basic information required for regional
balances of carbon and nitrogen fluxes, budgets and
cycles associated with mercury.

2. MATERIALSAND METHODS

Study area: The study area is located at the northern end

increased Of the Gulf of AgabaKig. 1), which is the northward

sequestration of mercury in sediments (Cossa andXtension of the desert-enclosed Red Sea. The maxim
Gobeil, 2000). The pore water's mercury that adsdrb depth of the gulf is 1830 m; it is 180 km long &»@6

to sediment particles may affect the biota. Gehgrtie

km wide. Oligotrophic conditions prevail in the §ul

highest mercury concentrations in sediments (maximu waters and evaporation (350 cm')ygreatly exceeds
35 mg g) were found at 30-40 cm depth, precipitation (3 cm ¥) (Reiss and Hottinger, 1984).

correspondingl to the period of maximum industrial
production (Pereirat al., 1998a). However, particulate

mercury escapes when the surface sediments ar

resuspended and transported by the tide to thefdke
lagoon (Pereirat al., 1998b). The contribution of the
dissolved mercury was not evaluated well due tddiae

Surface sediment samples were collected by SCUBA

givers from the upper layer of the sediment (0-2) cm
Using cylindrical plastic tubes for the surface plm
and using the cores for the core samples (0-17, eiftgr

drying; samples were sieved through 63um sieve and

concentrations found and reported in several studie preserved in  the  freezer  untl  analysis.
29.56
sHotels area (51)
® Sediment samples .,
20 §
2831 .Phosphatepoﬂ (823
®(33)
z
= 29.46 ®)Maine science
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Fig. 1. Sampling site the Gulf of Agaba ( S1; Hotel Ar&2; Phosphate Port, S3; Clink, S4; Marine Stat#hi, Station 5, S6;

Station6, S7; Royal Diving Center, S8, IndustriattPo
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Table 1. Correlation with the certified values

Sample Certified value Hug/g) measured % recoveries Certified value Meid) measured Range % recoveries
ERM-CC580 132 134 102 0.075 0.051-0.066 68-88
2.1. Dissolved Organic Matter Extractions adopted; aliquots of homogenized samples were weigh

(0.1- 0.3 g) in pre-cleaned nickel boats beforegtaent

on the Hydra C auto sampler. Samples were analyzed
based on the principle of thermal decomposition,
Iz:’tmalgamation and atomic absorption spectrophotgmetr
detection. The tuna fish (BCR-463) reference maileri
was analyzed to evaluate the accuracy of the acallyt
method, the result (Hg: 25 pg g*) was in excellent
agreement with the certified value (Hg: 2,85g™7).

Sediment DOM was extracted by adding 10.0 mL of
deionized HO to 1.00 g of sediment | in a 15 mL
centrifuge tube. The suspensions were shaken on al
orbital shaker for 30 min at room temperature (321
Centrifuged at 900 g for 30 min and filtered through
0.45 mm Acrodisk syringe filters. The extractiorripd
was selected to minimize microbial DOM alteration

during extraction (Z_hou and Wong, 2000). . Two Certified Reference Materials (CRM’s) were
The concentration of Total soluble Organic Carbon .« o evaluate the accuracy of the analyticahauist
(TOC) in the (_axtracts, was_determined using a Tocthe tuna fish BCR-463 and the estuarine sedimeMER
analyzer  (Shimadzu's ~ TOC-V  Series/Oldenburg ccggg The results presentedTiable 1 show excellent
University, Germany). Absorbs at 240 nm are obthine correlation with the certified values. Recoveriasthe

using a diode - array detector All DOM solutionsreve range of (95-102) % and (68-80) % was achieved for
diluted with DI-H20 to set absorbance at 240-0.f0ta Hgr and MeHg, respectively.

minimize inner filtration effects. Fluorescence

measurements were obtained using a spectrofluoesmet

with the excitation range set from 240-400 nm ama t _3' RESULTS

emission range set from 300-500 nm in 3 nm 3.1. Total Organic Carbon (TOC)

increments. Instrumental parameters were excitatiah The TOC values range frofl0-2.05 mg L™ with a

emission $|_'£S’ 5 nm; response time, 8 s; and spaad, mean value of 5.10 mg tand a standard deviation of
240 nm min” (Zhou and Wong, 2000). 1.59 Fig. 2) for the all sampling locations in a depth
2.2. Mercury Determination interval of 0-14 cm. These values are not lineaglated
to depth. The values were relatively low in thetomntal

The total amo“*?t of mercury (Hg in sediment. slope sediments and increased within the contiheis&
samples was determined by taking exact sample \lve|gh(Fig_ 3).

(200-300 mg) and the samples were analyzed by Hydra )
C mercury analyzer, this machine is capable toyaeal 3.2. Total Nitrogen (TN)

solid and liquid samples without pre-treatmentsr Fo The TN concentration ranges from 4.23-4.54 rilg L
methyl mercury (MeHg) determination, @ 0.5-1.0 § jn the superficial sediment§ig. 2), with a mean value
sample was extracted using 15 mL (HCl: CH3OH, 1:1 of 4 45 and standard deviation of 0.15 in the tatisns
(Vv) for 2 h. After the extraction step, the mixture was sampled at depths from 0-17 cm. The TN concentratio

centrifuged and the supernatant was separated them iy syperficial sediments displays a polynomial exatt
sediment by decantation. Multi extracts were miged  \jith increasing depthF{g. 4).

the pH was adjusted to 4.5 with the addition oftatee i
buffer, followed by derivatization with the additiof 1 3-3. C/N Ratio
ml of 1% sodium tetraphenylborate. The derivative, TOC shows a direct relation with TN in the

phenyl methyl mercury (MeHg Ph) was extracted with syperficial sediments of the deep Gulf of Agaba and
hexane and directly analyzed by GC-MS after adjusts to a linear regression with a correlation
concentration to about 1mL; solvent exchange tgleth coefficient that explains of the cases (r2 = 0Fdg; 5).
acetate also was used for the analysis by HPLC-The carbon-nitrogen ratio (C/N) for the samplesyir
fluorescence technique. depths of 0-15 cm, has a mean value of 1.14 with a
In parallel to this procedure, a derivatizatiorthwi  standard deviation of 0.34. C/N does slightly chang

KBr is now being used for other more samples. Forwith increasing depth. The lowest C/N ratios are
mercury determinations, the US EPA Method 7473 wasobserved (C/N = 0.48) and the highest (C/N = 1.57).
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Fig. 2. The total concentrations (mg/L) of Total Organiaiim (TOC) and Total Nitrogen (TN)
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Fig. 3. The total concentrations (mg/L) of TOC with deptimj

3.4. Total Mercury Comparisons between variations of organic matter
As shown inFig. 6, the concentration of total throughout the sediment cores and the copcentgatkbn

T ; L . Hg were carried out using a leaner regression latioa.
mercury (all forms of mercury, including inorgariad The correlation coefficients between the TOC, TH dre
methylmercury in the top centimeters of Gulf of Agaba g centrations of Hg in the core are shows a sigmif
sediments ranges from apprqximately 28.9-176.60fng | 51ue Fig. 7a and b). The relationship between Hg and
mercury per gram of dry sediment and ( StD 4.25018 qrganic compounds throughout the Agaba sedimer cor
respectively). While sediment mercury concentrationjs glso shown as a regression plot reiterating ar po
generally correlated with organic matter contetie t relationship between Hg, TOC. However, the linear
sharp peak in sediment mercury we observed indpe t relationship between Hg and TN indicates that the
centimeters does correspond to a high organic mattedistribution of Hg in the Agaba sediment samplesniyia
content. It is instead due to the point source efaury. relates to the labile compounds.
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Fig. 7. (a and b) Relationship between Hg and organic matte

4. DICUSSION

1.5% in Grandekt al., 2000). The highest value of this
study is in agreement with the values describe8ddteret

Seiteret al. (2004) demonstrated TOC values for al. (2004) for tropical regions, including the costital

sediments under well oxygenated conditions are%0.5

The mean values recorded in this study are slightly

margin of western Africa.
The TN values span over a narrow range (TN =

higher than expected (1.02 = 0.3%, range 0.41-1,%2% 0.85-0.91%) which are higher than those expectethto

but lower than those recorded in the continentaigma
(>1.5% in Seiteret al., 2004; 4-16% in Arthuet al.,
1998). The TOC values are similar to those recorded
the northern Gulf of Mexico (0.34-1.59% in Gaatial.,
1997; 1998; Gordon and Goni, 2004; 0.37-1.3% inddor
and Beazley, 2008) and those from other basinsrétis
latitudes, i.e.,; The Argentina Basin (0.26-1.72% i

northern sector of the Gulf of Mexico (TN = 0.0&810%

in Goni et al., 1998; Gordon and Goni, 2004). This is
explained by the broadest geographical coveragbisf
study. The obtained TN values are higher for tHozm

the Argentina Basin (TN = 0.031-0.167% in Stevenson
and Cheng, 1972) and than those recorded in the
continental margin of the Arabian Sea (0.1-0.4% in
Suthhof et al., 2000) and than those recorded in the

Stevenson and Cheng, 1972) and the Arabian Seé (0.0 China Sea (0.02-0.19% in Kabal., 2003).
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The organic material of photoautotrophic origin There was a consistent relationship between Hg and
mixes with continental organic matter near the taas DOC across our sites with, which is higher than the
is usually transported by turbidity currents to #iyssal  studied reported by Grigal (2002) for sites acrtss
plain (Suthhofet al., 2000; Mariet al., 2001; Eppinggt  Northern Hemisphere. The similar slopes between our
al., 2002; Gordon and Goni, 2004). Values of Carbon-study and those reported by Grigal (2002) for thgT
Nitrogen atomic ratio (C/N) suggests an organictenat pOC relationship are likely a function of strong
input derived from vascular plants (Meyers, 1994), correlation between FTHg and the export of humic

characterized by limiting nitrate concentration (Met ~ material associated with hydrophobic organic matter
al., 2001). The mean value of our study (C/N = 1.41 * (Mierle and Ingram, 1991; Grigal, 2002).

0.34) is lower the Redfield ratio (C/N = 5.7; Gondand
Goni, 2004; Weston and Joye, 2005). The TN of the
sediments avoids being remineralized into the water 5. CONCLUSION

column by adsorption to the mineral clay surfacnde Sediments can be a source of dissolved mercury and
recording smaller C/N ratios (Stevenson and Chengorganic matter because of the activity of
1972; Suthhofet al., 2000) that are explained by microorganisms. As the deposited mercury is buried
selective degradation of the organic compoundsk®nd peneath new layers of sediment, organic mattehén t
immobilization of N by microorganisms during early sediment is consumed by certain types, by bacteria
diagenesis (Meyers, 1994). Other factors that canjiying a few millimeters below the sediment water
indicate the origin of organic matter in the seditsebut  jnterface, beyond the reach of oxygen. These biacter

not performed in this study, include the Hydrogedex, et their energy through chemical reactions that
microscopic observations and carbon stable isotopiGnyolve sulfur and iron and produce toxic

composition (Stein, 1990; 1991). The stable isotopemethyimercury as a byproduct.

composition of particulate organic matter in deep

seawater samples from the same stations in the @ulf

Mexico (613C -25.3 to -22.70 %o in the abyssal plain 6. ACKNOWLEGMENT

ands13C -24.11 to -22.12 %o in the continental slope) The researchers wish to thank The Jordan Scientifi
indicate a photoautotrophic origin, with depleted Research Fund (SRSF) for the financial support (No.
values caused by the time of residence in the waterS1/04/2008).

column with a contribution of suspended material
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