American Journal of Applied Sciences, 2012, 9 (11), 1876-1883

ISSN 1546-9239

©2012 Science Publication

doi:10.3844/ajassp.2012.1876.1883 Published OB#li(lel) 2012 (http://www.thescipub.com/ajas.toc)

A PETRI NET BASED AGENT BEHAVIORAL TESTING

1Zina Houhamdi and “Belkacem Athamena

!Department of Software Engineering,
College of Engineering and Information Technology,
2Department of Management Information Systems,
College of Business Administration,
Al Ain University of Science and Technology, Al AiAbu Dhabi, UAE

Received 2012-06-13, Revised 2012-09-08; Accepte@-P9110
ABSTRACT

In Multi-Agent System (MAS), developers concentratecreating design models and evolving them, from
higher level models to lower level models, in saVesteps. Considerable part of MAS implementatiisns
automatically produced from the design models. tfesign model contains faults, they are passetieo t
generated implementations. Practical model validetechniques are required to discover and dedetisf

in abstract design models. We introduce a formak@gch for agent design testing. It specifies &rngs
process that complements Multi-agent Systems Eergimg (MaSE) methodology and strengthens the
mutual relationship between UML and MAS. Besideésgdéfines a structured and comprehensive testing
process for engineering software agents at theyadsiel by providing a systematic way of conveytthe
MAS design models to UML design diagram. Petri {\l) diagram is generated from the UML models to
simulate the behavior of an agent. Because Pets (fNs) are formal models, their analysis tectesqean

be applied to automatic agent behavioral testing.

Keywords. Multi-Agent System (MAS), Petri Net (PN), Softwar€esting, Multi-Agent Systems
Engineering (MaSE), Task Diagram, Activity Diagrapetri Net

1. INTRODUCTION enough to assess agent’'s autonomous behaviorsudidd b
confidence in them (Houhamdi and Athamena, 2011a).
The growing requests for Multi-Agent Systems On the other hand as model-based software
(MAS) in the software application have led to the development discipline such as the Unified Modeling
elaboration of various Agent Oriented Software Languages (UML) have previously obtained
Engineering (AOSE) methodologies to support thereputation, more and more UML-based design,
development of agent-based applications. The agentanalysis, testing and monitoring tools have been
based applications are composed of autonomous andeveloped. UML consist of a set of models that can
intelligent software (agents) that can communicate provide different levels of capacity and accuraoy f
and exchange information to solve problems modeling objects and then can be employed to fulfil
collaboratively (Houhamdi, 2011). Because the different requirements in real word applications.
agents’ interactions in MAS context can conceivably = However, a usual AOSE methodology such as MaSE
lead to behavioral faults like deadlock, the MAS (Bergentiet al., 2004; DelLoach, 2009) presents diverse
behavior should be tested and supervised facing thenew abstractions and design concepts to software
unwanted behaviors (usually known as emergentdevelopment in comparison with regular model-based
behavior) before introducing it to the main strean approaches such as UML. This makes the deploynfent o
commercial software development (Nguyen al., UML-based testing tools for checking the internal
2010). The AOSE methodologies usually do not coverbehavior of MAS difficult and sometimes impossible.
monitoring and testing (Huget and Demazeau, 2004). Thereby, transformation models that fill the gapaeen
As a consequence, testing software agents search fahe AOSE design/ analysis artifacts and the UMLedas
new testing techniques dealing with their particula testing and supervising tools can be very helpfiie
nature. The techniques require to be efficient godd transformation models can assist MAS engineersse u

Corresponding Author: Zina Houhamdi, Department of Software Engineerligllege of Engineering and Information Technology,
Al Ain University of Science and Technology, AliAiAbu Dhabi, UAE

% Science Publications 1876 s

Zina Houhamdi and Belkacem Athamena / American JwhApplied Sciences 9 (11) (2012) 1876-1883

the UML-based testing and supervising tools to > to agents. Each agent is associated with at lesstale.
check the internal behavior of the developed MAfIlBe The conversations among agent classes are alsifiespec
delivering it as commercial software. using the protocols defined in the analysis phake (

In this study, we propose a formal approach fomtge |inks among tasks within the role model).
testing process by using PN model. This approaploitx

the link between AOSE, UML and PN. We describe the 1.6. Constructing Conver sations
proposed approach with reference to MaSE software . . , —
development methodology and consider MAS as thgetar In this step, the designer defines the coordination
implementation technology. The MaSE design/analysisProtocols between agent couples. In particular, two
artifacts should be converted to the standard UMprdms ~ cOmmunication class diagrams are defined for each
which will be used for constructing PN diagramseiider to ~ conversation. One diagram specifies the initiator
achieve agent formal testing. Then, the PN baselysis behavior during that conversation and the secorel on

techniques can be applied to software testing. specifies the responder behavior during that
The rest of the study recalls basic elements of theconversation. The communication class diagram is

MaSE methodology and introduces related works. designed using a finite state automaton.

1.1. MaSE 1.7. Assembling Agent

The Multi-agent Systems Engineering methodology N this step, the agent's internal architecture is
(MaSE) is a methodology for building practical agen specified. One can use its own architecture todbai
systems that defines MAS in terms of agent claases agent (e.g., Belief-Desire-Intention) or conver tasks
their organization (DeLocah, 2004). There are tasid from the previous step into components. The agent
phases in MaSE: analysis and design. The firsteghas architecture consists of the components and the
Analysis, includes three steps. relationships among them.

1.2. Capturing Goals 1.8. System Design

In this step the system goals are elaborated and This step is aim at presenting the physical system
specified from the system viewpoint and not from tiser ~ architecture and the distribution of the variouserag

viewpoint. A goal is an abstraction of a set ofchiznal classes’ instances within that architecture.

requirements. This stage comprises two sub-stages: According to the results of evaluation in (Elamydan

identifying the goals and structuring them in admiehy. Far, 2008) the MaSE was ranked first in three @ th
. proposed dimensions, i.e., modeling-related attegu

1.3. Applying Use Cases application-related attributes and user perception

split into two sub-stages: the creation of use casel the ranking of evaluated AOSE methodologies.
creation of the sequence diagrams. A use casesés af 1.9. UML
interactions which describes the general systenaviah "

(what the system should do). The transformatiomftbe ~ The Unified Modeling Language (UML) is an OMG
use cases specificaton to sequence diagrams iStandard language for modeling object-orientedesyst
straightforward; each entity becomes a role armtindtion UML is used by developers to describe designs at
passing becomes an event (or a message). different levels of abstraction, from conceptual to

s detailed design (Bergendt al., 2004). There are several
14. Refining Roles advantages gained from using UML OMG, 2007:

In this step the system functional decomposition is
determined by producing a set of roles and thsin@ated
tasks. This stage consists of two sub-stages: ihgilthe
role diagram and specifying the tasks' behavioe ifbuts
for this stage are the goals determined in thestagle and
the sequence diagrams created in the 2nd stage.

In the Design phase, we transform the analysis,
models into constructs useful for actually impletimen
the MAS. The Design phase has four steps.

Firstly, UML includes a set of models that can
provide different levels of capacity and accuraay f
modeling objects and thus can be used to satisfy
various needs in real word applications

e Secondly, UML has emerged as the de-facto
industry standard for software modeling

Thirdly, UML provides high level information that
illustrates the internal behavior of the systemicivh
can be used efficiently and effectively in testing

1.5. Creating Agent Classes UML has 14 types of diagrams divided into two

In this step, the overall MAS architecture is categories. Seven diagram types represent strictura
determined. Agent classes are created by assigoieg information and the other seven represent general

///// Science Publications 1877 s

Zina Houhamdi and Belkacem Athamena / American JwhApplied Sciences 9 (11) (2012) 1876-1883

types of behavior, including four that represent automatically system properties like reachability,
different aspects of interactions. boundedness, liveness, persistence and fairness

When using UML in the software testing process, we (Oliveira et al., 2007). The advantages of automated
will pay a special attention to the diagrams in the testing are reliability, cost reduction and fastes
Behavioral Elements package. This is because nfost o_ The remainder of the study is organized as follows.
the activities in software testing attempt to detisfects ~ Section 2 discusses the proposed approach; a Rl bas
that appear during the software execution and thes@dent testing process. An illustrative example is
defects are generally dynamic (behavioral) in retur presented in section 3. Similar works are listedeation
(DeLocah, 2004). Nevertheless, there are casesvther 4. Finally, section 5 concludes our work.
behavioral information will need to be augmentedhwi
static information. 2. MATERIALSAND METHODS

UML design models are typically evaluated using
walkthroughs, inspections and other informal typdés
design review techniques that are largely manuatsé
techniques are not effective when applied to UMkigle
models of large or complex systems. Reviewers need
manually track and relate a large number of corscept
across various diagrams and the manual tasks patiyra
become wearisome and fault-prone for complex desig
which is the case in MAS (Houhamdi and Athamena
2011b). Thus, providing a formal approach for MAS
design testing will be considerably helpful.

We have already proposed a PN based approach for
the whole MAS behavior testing (Athamena and
Houhamdi, 2012). In this study, we will focus on
proposing a PN based approach for a single agent
behavior testing. In section 2, a conversion mddel
presented for adopting the MAS design/analysis itsode
created based on MaSE methodology into standard UML
2.0 models and then the UML models are transfortoed
' PNs for formal testing. The proposed approach aserv

is shown inFig. 1.
The approach is divided into two main modules.

1.10. Petri Net 2.1.Module 1. Constructing Agent Behavioral
PNs are a formal language for describing and M odel

studying systems that are characterized as comturre . .

asynchronous, distributed, parallel, nondetermimist A conversion model is proposed to transform the BaS

and/or stochastic. As a graphical tool, PNs candeel as ~ design/analysis artifacts into standard UML 2.0 etad
a visual communication support similar to flow dsar This module uses the MaSE models as input androotsst

block diagrams. In addition, tokens are used isgheets the Agent behavioral models based on UML models.

to simulate the dynamic and concurrent activitids 0 55 NModule2. Converting Behavioral Model to PN
systems. PN consists of places, transitions arsl arc

A conversion model is proposed to transform the

* Transitions are active components. They model v 2.0 models into PNs model. This module uses the
activities which can occur, thus changing the stdte ML models as input and constructs the agent
the system. Transitions are only allowed to fire if penavioral model based on PN model.

they are enabled, which means that all the
preconditions for the activity have been fulfilled

* Places are tokens’ holders. The current state ef th
system being modeled is called marking which is
given by the number and type (if the tokens are
distinguishable by type) of tokens in each place

» Arcs are of two types: Input and output. Input arcs
start from a places and ends at a transitions,ewhil UML activity diagram

" h 4
output arcs start at a transition and end at aeplac , ,
Petri net conversion

MaSE task diagram

UML activity diagram construction

When the transition fires, it removes tokens from —
its input places and adds some at all of its output g P diagram
places. The number of tokens removed/added depends Validation
on the cardinality of each arc.

The use of PNs leads to a mathematical descripfion
the system structure that can then be investigated
analytically. It is possible to set up state oresigic
equations and other mathematical models goveriiag t
behavior of systems. PNs can be used for analyzingrig. 1. Agent design testing flow chart

% Science Publications 1878 s

Zina Houhamdi and Belkacem Athamena / American JwhApplied Sciences 9 (11) (2012) 1876-1883

— MAS

Represented by <

1 "

Composed of

1...*

1
MAS A MasSE task
behavioral = diagram
model (93
1

Consist of

Represented by
1

Consist of
Agentrole Task
Fig. 2. MAS meta-model
Table 1. Concepts mapping from activity diagram to PN
Concepts Activity diagram Petri net
Scenario representation activity CP Net
Entities Swimlane/Partition Will be modeled as acgl
Function and action performed Action Transition

Scenario starts and stop

Alternative scenario Sub activity
Concurrency flow Fork node
Alternative flow Decision node
Sequence flow Activity edge
Alternative merge Merge node
Synchronizing concurrent flow Join node

Objects Object node

Initial node and finalenod

A place without any incoming edge and a place
without any outgoing edge, respectively
Subpage
Will be modeled as aditéon
Will be modeled aplace
Arc
Will be modeled ataae
Will be ratedl as a transition
Will be modeled as a place

Table 2. Translation rules of activity edges to PNs
Source node(s) Target node(s)

of edge of edge Transformation

Initial node or Action Node or Arc

Decision node or Fork Node or

Merge node or Join Node

Object node

Initial node or Decision node or Arc, dummy

Decision node or Merge node or Transition and

Merge node or Object node or dummy Arc

Object node Final node

Action node or Action node or Arc, dummy

Fork node or Fork node or place and

Join node Join node dummy Arc
Decision node or

Action node or Merge node or

Fork node or Object node or

Join node Final node Arc

2.3 Constructing Agent Behavioral Model

Figure 2 presents an illustrative meta-model for the
MAS. In this figure, each MAS consists of several
agents. Agents are the building blocks used tondefi
MAS classes and capture system goals during thgrdes

how a goal is achieved by a specific agent taskcam
be represented by PN.

A proposed approach for transforming the agent
behavior from task diagram to UML activity diagrams
introduced in section 2.3. More details on derivipiy
from UML activity diagrams are provided in sectids.

In MaSE, a task is a structured set of activitiesl a
communications, represented by a state machineasiag
which consists of states and transitions. Stateesepts a
stage in the agent behavior pattern and includes th
internal processing of the agent and transitionais
progression from one state to another and willkiggéered

by an event that is either internal or externahto agent.
Thus, transitions allow communication between tasks

A transition in MaSE task diagram uses the synfax o
trigger (guard)/transmission, interpreted as if euent
trigger is received and the condition guard holtien
the message transmission is sent. In this transitio
notation all items are optional.

In Tasks diagram, states may include activities tha
represent internal reasoning, performing actiona vi

phase. With each role is associated several tasdls a agent, or reading a percept from sensors. Several
each task can be presented by a MaSE task diagraractivities can be in a unique state and are exddatan
(Bergentiet al., 2004). Each MaSE task diagram can be uninterruptable succession. Once in a state, tkk ta
converted to a UML activity diagram which describes remains there until the activity sequence is coteple

///// Science Publications

1879

AJAS

Zina Houhamdi and Belkacem Athamena / American JwhApplied Sciences 9 (11) (2012) 1876-1883

Consequently, the activities within tasks diagrams, The table below Table 1) explains the mapping of
their execution constraints and their sequencesbean concepts of Activity Diagrams to PNs.

extracted from the states and the correspondinigitgict The Translation rules of activity edges to PNs are
diagram for a MaSE task diagram can be produced. . .
presented in the following tab{@able 2).

In addition, because the protocol transition in i N
MaSE task diagram uses the syntax of trigger l.\/llaqbool.(2005) propose Q|ff§rent possibilities of
(guard)/transmission and the trigger and transmissi Activity ~Diagrams simplifications before the
are restricted to send and receive messages (Dhalocatransformation to PNs to reduce the number of itians,
2004), trigger should be considered as the lastiact places and arcs in the resulting net.

of the source state and transmission should be

co_nsidered as th_e first activity of_ destina!tionteslan 3. RESULTS

this way, the trigger message is considered as the

activity that after completing its execution thentw|
flow will be transferred to the first activity of
destination state (transmission).

An example of a task diagram describing the locate
victim task is shown irFig. 3 (DeLoachet al., 2002).
o o) Actions within each state are executed sequentaily
2.4 Deriving PN from Activity Diagram are written as functions. Locate victim is a reaetiask,

As already mentioned, PNs is a formal language hwhic Which means that it is initiated whenever a segacba)
can be used for Design validation by simulatingtexeg =~ Message is received from the find area to Seawd ta
the system models. The section 2.4. explain how theAfter the task receives a search area messagans p
concepts introduced in UML 2.0 Activity Diagramsidze ~ route to obtain to the area and then goes aboeli&rg
mapped to PNs. In this conversion, the proposed iy the route. If route execution fails, the task rens the

(Magbool, 2005) was used. route and updates the map.
searchiarea)
(PlanRoute h
loc = getCurrentLocation()
route = planRoute(loc.map,area) ¢
J

r 3 A = t INOT success)] [ExecuteRouteStep 1

success=executeRoute(loc map,area)
\
[success] + [NOT routeCompletion(route)]
(CheckCompletion)

loc = updateLocation(loc,map,area)
route = update(loc,route)

J

‘ [routeCompletion(route)]

f ScanArea N

scannedArea = scan() [NOT found &4& areaDone(area)]

found = foundVictim(area)
area =reduceSize(area)

NOT Tound &&d& NOT arcal Yong area)

[found] && send(fou.nd\'icf.mn:eca:icn},o:ga.nzze:f-‘

Wait

receive(acknowledge(location), organizer) receive(acknowledge(location), organizer)
\ /

Fig. 3. Locate victim task diagram

///// Science Publications 1880 AJAS

Zina Houhamdi and Belkacem Athamena / American JwhApplied Sciences 9 (11) (2012) 1876-1883

Start
Search
: loc = getCurrentLocation }47

route =planRoute(loc, map, area) ‘

v

success = executeRoute(loc, map, area) }47

False @

True

‘ loc = updateLocation(loc, route, map) |

v

route = update(loc, route) |

routeComplation{routs) T

True

‘ scannedArea =scan() ‘

¥

‘ found = foundVictim(} ‘

v

‘ area = reduceSize(area) ‘
[False

areaDone(arss)?

send(foundVictim(location), organizer) l

Fig. 5. Associated PN

l Receive (acknowledge
(location).organizer)

According to the proposed algorithm, the equivalen
PN of activity diagramKig. 4) is shown irFig. 5.

4. DISCUSSION

The rest of the section 4 surveys recent and active
work on testing software agents.
Luck and Gomez-Sanz (2009) presented advances in

When the robot gets to its area, it scans the foea (esting and debugging used in the INGENIAS
victims. If one is found, it notifies an organizete. The ~ Methodology (Pavoret al., 2005). The meta-model of
robot then moves to another area and continuedNGENIAS has been extended to introduce testing
searching. If no victims are found, the robot motes declaration, i.e., tests and test packages. Jisiedh test
another area and scans there. Once it has scatmed icase and suite skeletons can be generated andhe is
area, it sends the find area to search task a etenpl developer’s task to modify them as needed. Theystud
message and terminates. Notice that tasks aculefiye also provided facilities to access mental states of
a plan on how to locate victim&igure 3 shows task individual agents to check them at runtime.

diagram for locate victim andFig. 4 give its Coelhoet al. (2006) proposed a framework for unit
corresponding activity diagram. testing of MAS based on the use of mock agentsnEve

Fig. 4. Corresponding activity diagram

///// Science Publications 1881 AJAS

Zina Houhamdi and Belkacem Athamena / American JwhApplied Sciences 9 (11) (2012) 1876-1883

though they called it unit testing but their work « Reducing/removing side effects in test execution
focused on testing roles of agents at agent léwetk and monitoring because introducing new entities
agents that simulate real agents in communicating in the system, e.g., mock agents tester agents and
with the agent under test were implemented manpally monitoring agent as in many approaches, can

each corresponds to one agent role. : ;
Sharing the inspiration from JUnit (Gamma and influence the behavior of the agents under test

Beck, 2000) with Coelhet al. (2006) and Tiryaket al. and the performance of the system as a whole. -
(2007) proposed a test-driven MAS development * Testing emergent properties at macroscopic
approach that supported iterative and incrementaSM design level

construction. A testing framework called SUnit, afni

was built on top of JUnit and Seagent (Dikenetlal.,

2005) was developed to support the approach. The 5. CONCLUSION

framework allows writing tests for agent behaviarsl Testing and monitoring MAS to eliminate the risk of
interactions between agents. unwanted emergent behaviors is an important

Lam and Barber (2005) proposed a semi-automatecbrecondition for introducing MAS to the main streafn
process for comprehending software agent behaviorscommercial software. Most of the exiting testing
The approach imitates what a human user (can be gechniques for MAS have addressed the MAS
tester) does in software comprehension: Building an verification aspects.
refining a knowledge base about the behaviors efieg This study describes a systematic and automatable
and using I|t|‘§o vehrlfyhand egpla:jl_ra beha\gorsi of.rait]geath approach to test agent design models using PNytHEbe
runtime. Although the study did not deal with other \;ag design models, consisting of agent task diagram
pr(_)btlemst_ln test(ljng,lthe v;/?y 'E e\':_aluatefst ager::blelns built based on the MaSE methodology, are conveded
is interesting and relevant for testing softwarerds. T . i

Nunezet al. (2005) introduced a formal framework to UML activity d|a_grams Wh'Ch are used to generate an

equivalent PN diagram. Since PNs are formal languag

specify the behavior of autonomous ecommerce agents , X)
pecify th ; a9 they are used for automatic checking of agent’ tienal

presented by means of a new formalism, calledtytili Properties thereby eliminating human errors.

state machine that embodies users’ preferencessin i

states. Two testing methodologies were proposed to REFERENCES

check whether an implementation of a specified agen

behaves as expected (i.e., conformance testingpéin aAthamena, B. and Z. Houhamdi, 2012. A petri neebas
active testing approach, they used for each agerér multi-agent system behavioral testing. Modern

test a test (a special agent) that takes the formal) . .
specification of the agent to facilitate it to rhaa Applied Sci., 6: 46-57. DOI: 10.5539/mas.v6n3p46

specific state. The operational trace of the agetiten ~ Bergenti, F., M.P. Gleizes and F. Zambonelli, 2004.
compared to the specification in order to detectt$a Methodologies and Software Engineering for Agent
On the other hand, the authors also proposed to use Systems: The Agent-oriented Software Engineering

passive testing in which the agents under test were Handbook. 1st Edn.Springer, Boston, ISBN-10:
observed only, not stimulated like in active tegtin 1402080573, piB36.

Invalid traces, if any, are then identified thartksthe Coelho. R.. U. Kulesza. A. Staa and C. Lucena. 2006

formal specifications of the agents. Unit testing in multi-agent systems using mock

In this study, we have proposed a model checking . s
: : : agents and aspects. Proceedings of the Internationa
approach for agent behavioral testing using the BMaS V\?orkshop on goftware Engintlaegring for Large—ScIaIe

methodology design/analysis artifacts. These atsfa

(more precisely task diagram) are transformed th® Multi-Agent Systems, May 20-28, ACM Press, New
standard UML 2.0 models (exactly into activity diagp) York, pp: 83-90DOI: 10.1145/1138063.1138079
using a proposed conversion model. Then, theseitgcti Deloach, S., E.T. Matson and Y. Li, 2002. Applying
diagrams are used to generate an equivalent PHI5in agent oriented software engineering to cooperative
the analysis techniques of PN can be applied to robotics. Proceedings of the 15th International
automatic MAS testing. FLAIRS Conferences Pensacolo Florida, (PF' 02),
Specifically, the proposed approach contributethéo AAAI Press, pp532-6350. _
existing AOSE methodologies by providing: DelLoach, S.A., 2009. Moving multi-agent systemsrfro
)) research to practice. Int. J. Agent-Oriented Saiwa
« A complete and comprehensive testing process Eng., 3: 378-382. DOI:
for MAS 10.1504/1JA0OSE.2009.025315

///// Science Publications 1882 AJAS

Zina Houhamdi and Belkacem Athamena / American JwhApplied Sciences 9 (11) (2012) 1876-1883

DelLocah, S.A., 2004. The MaSE Methodology. In: Luck, M., and J.J. Gomez-Sanz, 2009. Agent-Oriented
Methodologies and Software Engineering for Agent Software Engineering. 1st Edn., Springer-Verlag
Systems: The Agent-oriented Software Engineering Berlin, Heidelberg, Berlin, ISBN-10: 3642013376,
Handbook, Bergenti, F., M.P. Gleizes and F. pp: 289.

Zambonelli, (Eds.)., Springer, Boston, ISBN-10: Magbool, S., 2005. Transformation of a core scenari
1402080573, pp: 107-127. model and activity diagrams into Petri nets. M.Sc

Dikenelli, O., R.C. Erdur and O. Gumus, 2005. Seage Thesis, University of Ottawa, Ontario, Canada.

A platform for developing semantic web based multi Nguyen, C., A. Perini and P. Tonella, 2010. Goal-
agent systems. Proceedings of the 4th International oriented testing for MASs. Int. J. Agent-Oriented

Joint Conference on Autonomous Agents and Multi- Software Eng., 4: 79-109. DOI:

Agent Systems, (AAMAS’ 05), ACM Press, New 10.1504/1JAOSE.2010.029810

York, pp: 1271-1272. DOI: Nunez, M., I. Rodriguez and F. Rubio, 2005.

10.1145/1082473.1082728 Specification and testing of autonomous agents in e
Elamy, A. and B. Far, 2008. A statistical approdzh commerce systems. Software Test. Verific. Reliab.,

evaluating and assembling agent oriented software 15:211-233. DOI: 10.1002/stvr.v15:4
engineering methodologies. Agent-Oriented Inform. Oliveira, E., H. Almeida and L. Silva, 2007. Formal

Syst., 6: 105-122. modelling and verification of a component model
Gamma, E. and K. Beck, 2000. JUnit: A regression using coloured petri nets and model checking.
testing framework. CiteULike. Proceedings of the 1st Symposium Applied
Houhamdi, Z. and B. Athamena, 2011a. Structured Computing, (SAC’ 07), ACM Press, New York,
integration test suite generation process for multi USA,, pp: 1427-1431. DOl
agent system. J. Comput. Sci., 7: 690-697. DOI: 10.1145/1244002.1244309
10.3844/jcssp.2011.690.697 Pavon, J., J. Gomez-Sanz and Rientes-Fernandez,

Houhamdi, Z. and B. Athamena, 2011b. Structured 2005. The INGENIAS Methodology and Tools. In:
system test suite generation process for multiagen ~ Agent Oriented Methodologies, Fuentes, R., (Ed.).,
system. Int. J. Comput. Sci. Eng., 3: 1681-1688. Universidad Complutense de Madrid, Spain, pp:

Houhamdi, Z., 2011. Multi-agent system testing: A 236-276.
survey. Int. J. Adv. Comput. Sci. Appli., 2: 135114 Tiryaki, AM., S. Oztuna, O. Dikenelli and R.C. fird

Huget’ M. and Y. Demazeau, 2004. Eva|uating 2007. SUNIT: A unit testing framework for test
multiagent systems: A record/replay approach. driven development of multi-agent systems. Agent-
Proceedings of the IEEE/WIC/ACM International Oriented Software Eng., 4405: 156-173.
Conference on Intelligent Agent Technology, Sept.

20-24, IEEE Xplore Press, pp: 536-539. DOI:
10.1109/IAT.2004.1343013

Lam, D.N. and K.S. Barber, 2005. Debugging agent
behavior in an implemented agent system. Program.
Multi-Agent Syst., 3346: 104-125.

% Science Publications 1883 AJAS

