IEICE Electronics Express, Vol.1, No.1, 13-18

A Fast Hybrid Arithmetic Unit
for Elliptic Curve Cryptosystem
in Galois Fields with Prime and
Composite Exponents

Moon Gyung Kim,'® Su Jung Yu,? Yong Surk Lee,!

and Joo Seok Song?

! Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-
dong, Sudaemoon-ku, Seoul, Korea

2 Department of Computer Science, Yonsei University, 134 Shinchon-dong, Sudaemoon-
ku, Seoul, Korea

a) bungae @yonsei.ac.kr

Abstract: In this paper, we propose the efficient flexible hybrid
arithmetic unit for elliptic curve cryptographic applications which exe-
cutes addition, multiplication and inversion in GF(2™). The proposed
flexible hybrid GFAU is beneficial in cost-effectively implementing mi-
croprocessors’ elliptic curve public-key extensions. It targets applica-
tions for smart cards whose gate count is below 20,000.

Keywords: finite field arithmetic, elliptic curves, hybrid GFAU, mul-
tiplication, inversion, cryptography

Classification: Science and engineering for electronics

References i

[1] C. Paar, P. Fleischmann, and P. Soria-Rodriguez, “Fast Arithmetic for
Public-Key Algorithms in Galois Fields with Composite Exponents,”
IEEE Trans. on Comp., vol. 48, no. 10, pp. 1025-1034, Oct. 1999.

[2] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1997.

[3] E. Mastrovito, “VLSI Architectures for Computation in Galois Fields,”
PhD thesis, Dept. of Electrical Eng., Linkoping Univ., Sweden, 1991.

[4] S. Moon, J. Park, and Y. Lee, “Fast VLSI Arithmetic Algorithms for
High-Security Elliptic Curve Cryptographic Applications,” IEEE Trans.
on Consumer FElectron., vol. 47, pp. 700-708, Aug. 2001.

[5] SECG SEC2: Recommended Elliptic Curve Cryptography Domain Pa-
rameters, v1.0, Sept. 20, 2000.

[6] J. Goodman and A. Chandrakasan, “An Energy Efficient Reconfigurable
Public-Key Cryptography Processor,” IEEE J. of Solid-State Circuit,
vol. 36, no. 11, Nov. 2001.

[7] Chi Huang, Jimmei Lai, Junyan Ren, and Qianling Zhang, “Scalable
Elliptic Curve Encryption Processor for Portable Application,” 5th Int.
Conf. ASIC, pp. 1312-1316, Oct. 2003.

13

IEICE Electronics Express, Vol.1, No.1, 13-18

1 Introduction

Elliptic Curve Cryptosystems (ECC) are becoming increasingly more popular
in the limited memory and computational power applications. ECC arith-
metic based on prime fields or extension fields of GF(2), denoted by GF(p)
or GF(2™)[1]. This contribution focuses on specific computer architecture
for the GF(2™) of Elliptic curve (EC) algorithms. ECC Schemes based on
the assumed difficulty of the EC Discrete Logarithm Problem (ECDLP)[2].
The hardware architecture for arithmetic in Galois fields GF(2™) provide
for efficient computation speed. One of the hardware architectures is the
hybrid method. The concept of hybrid architecture was represented by
Mastrovito[3], and a detailed explanation was done by Paar[1]. In this pa-
per, We proposed Hybird GFAU architecture is reinforced by modifying the
implementation slightly and can work on not only composite exponents but
also non-composite exponents of GF(2™). We merge both hybrid multiplier
and hybrid divider into a hybrid GFAU, and we modify the hybrid GFAU
into the flexible hybrid GFAU that can execute 113 - 571 bit-long keys. We
compare performance of our flexible GFAU to DSRCP [6] and SECEP [7],
which can perform encryption with flexible key sizes as similar to ours.

2 The hybrid Multiplier and Divider in GF(2™)

Finite field multipliers can be classified into three kinds : the bit-serial mul-
tipliers with O(m) area requirement, the bit-parallel multipliers with O(m?)
area requirement, and hybrid, which are partially bit-serial and partially bit-
parallel[3]. The hybrid multiplier, which Paar[1] first announced, is twice as
fast as normal GF serial multipliers, but it just works on composite expo-
nents like GF((2")™).

Finite field division in the GF(2™) has the form A(z)/B(xz) modular P(z),
where the degrees of A(z) and B(z) are small than m, and P(z) = 2™ +
St piat is an irreducible polynomial of degree m with p; € GF(2). The
efficient hardware can use for finite field inversion operation. The basic archi-
tecture of a GF divider is based on a 2-bit shift architecture[4]. During each
step, the resulting values are saved to R, S, U, V and the count register can
be calculated. The divider does not need an additional 1-bit shift operation,
because the 7, bit is assumed to be zero in the first step[4].

3 The Proposed Fast Arithmetic Unit Using Hybrid method

3.1 The Proposed Hybrid Multiplier
we implemented not only 2?A(z) operation but also xA(z) operation. This

implementation is done not only by combining two separate kinds of circuits
and selecting one, but by implementing each circuit and sharing common
blocks. Initially, a common serial multiplier works based on the Eq.(1).

Zl(LE) = bm_l_iA(.’L') + DL'Zi_l(.’L') (1)

14

IEICE Electronics Express, Vol.1, No.1, 13-18

Here, to reform a serial multiplier into a hybrid multiplier, we modified the
Eq.(1) to derive the modified Eq.(2)

Z,(x) = (bm_l_gil‘ + bm_l_Qi_l)A(l‘) + :EZi_l(:E) (2)

This Eq.(2) is presented in completed form in Eq.(3).

m—2
Zi(x) = bm-1-2i ¥ a;7 T+ b1 _9iam 12" + b1 21 A()
=0
m—3)
+ > Zja? P Zpyga™ + Zppqa™ ! (3)
=0

There is a common block in Eq.(3) which is independent from bit-location
j and can be shared among bit-functional blocks. Those overlapping blocks
statistically significantly reduce overall area of the circuit. This method can
be applied to operations such as 23 A(z) and 2*A(x).
We designed a bit-functional block by using above Eq.(3). All operations
except for last one are completed by using 2-bit shift operation. Last one is
calculated using 1-bit shift operation to satisfy the odd-number length.

3.2 The Proposed Hybrid Divider

We implemented the new hybrid GF divider on the basis of the above stan-
dard hybrid architecture. To be certain of our hypothesis, we need to define
an all-inclusive equation for U/x and U/z?. First, we can calculate U/z con-

sidering the fact that the coefficient pg in P(z) is always one, and obtain the
following Eq.(4).

m—1 m—2
Ux)/z =Y wa'™ +uo/e =Y (uir1 +uopis1)z’ +uoa™ (4)
i=1 i=0

Next, we can calculate U/z? while dividing U/z with x, and obtain Eq. (5).

Ulx)/x)/x

-2

Ux)/z? =

—~

3

(wit1 + wopir1)z ™" 4+ uozr™ 2 + (uy + ugp1) /@

Il
i

3
d

= (w12 + uopive + (u1 + uop1)piv1)x’

~
Il
o

+(u0 + (ul + Uopl)pm_l)wm_z + (Ul + uopl)wm—l (5)

Using above equations, we implemented the RS cell and UV cell. We can
determine that the RS cell does not require any modulo operations, so we
simplified the cell.

3.3 The Proposed Hybrid GFAU
We merged the multiplier and the divider, which are implemented as pre-
sented above. First, the hybrid divider can calculate zU, 2V, 2?U, and 22V

15

IEICE Electronics Express, Vol.1, No.1, 13-18

operations, and those operations are the essential operations of our hybrid
multiplier. To execute hybrid multiplication within the hybrid divider, there-
fore we need to add control logic and modify the UV cell. The control signal
in the divider is generated from 7,71, not ry,_17m—2, so the processing
sequence is changed to the beginning 1-bit shift once, and continues as a 2-bit
shift. The resulting modification is applied to the UV cell and the final logic
of the RS cell and UV cell is shown in Fig.1

fi2 RSM," RSM, =0
()R
1 RSM,=0, RSM,=1
(i)xR
RSM,=1, RSM,=0
(i):x2R
fi-1
RSM,=1, RSM,=1, RSM,=1, RSM,=1
(i):x(s-R)
RSM,=0, RSM,=0
(i):x2(S-R)
RSM,=1, RSM,=1, RSM,=0
(i) =x(S—xR)
RSM,=0, RSM,= 1, RSM,=1
(i):x(xS-R)
]
1) — —— (i):x(R—x(S—R))
1
| —
RSM,=0, RSM,=0
Si2 T (i):S
' o RSM,=0, RSM,= 1
I,
St N (i)xS
0 |RSM, RSM,=1
s; (i)x2s
Y '@
oot e 2 !
3 B G- 1V-U-UA
U,
o o L3 (- 12 V-Uk
u, (xu
h.
U0
Wi v
GV-U-Ufx ' et
V- vi (xv-u
1 UYM=0, UWd =0, UvM=0
A b (RV-Urs
.UVH o |U UVMS0, LW, U=
(- ———:lb) (iv-U-Urx
@V-xVexU 1 v UVMA0, UW=1, Usid=0
s, 0 (RV-b,xU
UVME1, U0
™ v, . Wby (ms,)V
- i-1 UVMET, UW=1
(iU-»v b (kb byxU- (ms, v
() V-xvexU P L UVMET, UW=0
=
[T é LS (i:byU+ (ms,)V
Vs UVMT, UV=1,UMA=1, UM =1
1] | 3 1 |owe (i:byLie byxUs (g, 18V
N t ms,
’—e 3 0 [] Wie
Uz) (e
U,
Y] 3 1 1
Pt Piz
-0, U0
Vs vast (-20UAE
: : g
i+ 2)ix?
Wiy UViy A1, U0
G+ 1XU-5Y [osyaray ls2)x(v-L)
Geiyv-xvext | | aenneseen e vk

Fig. 1. The Hybrid GFAU architecture using RS cell and
modified UV cell.

Basically, the implemented GFAU executes a division operation. How-
ever, it can execute addition, subtraction or multiplication if the control
signal is properly applied. Addition and subtraction can be processed when
operands are put into the U and V registers and passed through UV cell.
Multiplication can be calculated when V register is initialized to zero and
the multiplicand and multiplier values are loaded into U and R registers,

16

IEICE Electronics Express, Vol.1, No.1, 13-18

respectively. If the V register is not initialized to zero, the multiplication
process produces a multiply-and-accumulation result, which aid in reducing
the overall number of calculations.

3.4 The Flexible Design of GFAU

Standard for Efficient Cryptography Group(e.q. SECGI5]) founded Certi-
com Corporation to solve the facing problem with which vendors or users are
faced while developing interactive security solution[5].

We modify the hybrid GFAU to support those polynomials by SECG. Also,
we need to shrink the GFAU small enough to locate in a smart card appli-
cations. To implement that modified GFAU, we divide operands into words
which are sliced by 128-bit word length. The modified GFAU execute word-
length operations. The modified GFAU is called a flexible GFAU, which can
execute all word-length operations with any reduction polynomials.

4 Measurements and Comparisons

4.1 Synthesis Result

We implement all hybrid units for GF(27%%) and the flexible GFAU unit for
128-bit word-length with Verilog HDL, and synthesize them with Design An-
alyzer of Synopsys. The library used in synthesis is a Hynix 0.25um standard
cell library, and the synthesis condition is tested in the worst case condition,
100C and 2.30V. Table I shows the synthesized result of the hybrid multiplier,
the hybrid multiplier, the hybrid GFAU, and the flexible hybrid GFAU.

Table I. Synthesis Result of The Hybrid Units

Hybrid Hybrid Hybrid Flexible
Multiplier | Divider GFAU GFAU

Gate count 8,829 31,114 30,412 16,893
Critical path delay | 16.41ns 15.71ns 17.44ns 9.24ns
Clock Frequency 60.9MHz 63.6MHz 57.3MHz 108.2MHz
Power consumption | 5.46mW 8.88mW 14.91mW | 10.58mW

4.2 Performance Comparison

We can reduce memory access by using these calculation results as input
operands. If we assume that the memory access cycle is s, it takes 20s+2m+5
cycles for a point addition operation, and 13s+2.5m+2 cycles for a point
double operation. The calculation process is like the hybrid GFAU, but the
flexible GFAU cannot process RS cell and UV cell simultaneously because it
can load only two operands at once. Moreover, the flexible GFAU divides
operands into word size and loads the pieces of operands sequentially. With
these results, if we assume the number of words is w, it takes m(s+1)(8w+1)
cycles for a point addition operation, and m(s+1)(10w+1.5) cycles for a point
double operation.

17

IEICE Electronics Express, Vol.1, No.1, 13-18

To calculate scalar multiplication in GF(2™) ECC, we execute (m/2)
point additions and (m — 1) point doubles on average. If we assume that the
memory access cycle s is one, we can obtain 4m? % (7w + 1) — m(20w + 3)
cycle count on average with the flexible GFAU. We sacrifice performance for
the incredible reduction of area and power consumption to locate in a smart
card applications. The performance comparison is shown in Table II

Table II. Performance Comparison Among GF Processors

| Hybrid GFAU | DSRCP [6] | SECEP [7]

Gate count 16,983 880,000 56,000
Peak operating frequency (MHz) | 108.2 50 100
Power(mW) 10.58 74 >14
Time of one point multiplication

(@256 bit) 39.17ms 14.5ms

(@251 bit) 37.65ms 5.5ms

5 Conclusion

In this paper, we implement hybrid logics for GF(2™) arithmetic and expand
it being flexible. The base architecture originates from a hybrid multiplier,
and its architecture is modified to implement a hybrid divider. The hybrid
GFAU is based on a hybrid divider, and it can execute addition, multiplica-
tion and division. Then, we sacrifice the performance for the flexible GFAU
to execute all reduction polynomials and to be small enough to locate in a
smart card applications.

Acknowledgments

The authors would like to thank Hynix Semiconductor for their generous
assistance and financial support.

18

