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Abstract: This paper presents a work of utilizing multi-space ran-
dom mapping (MRM) to formulate a dual-factor identification system,
which combines speaker biometric and personal token. Our work has
shown that MRM-system exhibits stronger discriminative ability when
comparing test features to its counterfeit templates, which lied in other
different random subspaces. This advantage thus contributes to better
F-ratio and greater accuracy recognition.
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1 Introduction

Traditional token-based authentication system, e.g., smart card etc. has the
major drawback of being easily fooled by the stolen token. Intruder who is
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holding a stolen token will trespass the security easily. Speaker recognition
emerged as the more reliable authentication system based on the assumption
that human speaking behavior is unique from others thus can be utilized
as the biometric feature for authentication. However, the variation of the
speaking manner of human is the natural disadvantage of speaker-biometric
making it the least accurate biometrics compare to other static-signal bio-
metrics such as fingerprint etc.

By combining the personal token and the speaker biometric, attacker
can no more breaks through the security simply by presenting an stolen
token. Since the personal token is a very unique factor, it can be hashed into
the speaker biometrics, in some manner, to make the speaker feature more
distinctive. Similar works can be seen in [6, 7] where the personal token
is introduced to a trademark biometrics system to cure some major defect
in the current security system. This paper records the work of combining
the token-based authentication with the speaker recognition to gain benefit
from both sides and to alleviate the drawback of them. Multi-space random
mapping (MRM) is used to hash the token information to the speaker feature.

2 Multi-space random mapping

Multi-space random mapping (MRM) composes two stages: (a) feature ex-
traction and (b) random projection. The feature extracted from speech raw
signal is mapped to a client specified random subspace. The mapping is de-
termined by the tokenized pseudo random numbers (PRN), which are unique
from a speaker to another speaker. The random projection can be expressed
as follows [1]:

v = KRw. (1)

Vector w is the original p-order feature and R is the p X p row-wise or-
thonormal random matrix built from the PRN. The value of & is unity since
the feature dimension is remained in this projection.

During enrollment, p? numbers of standard normal distributed PRN are
generated and are assigned to the new-registered speaker. The PRN are
arranged into a p X p matrix to be orthonormalized using singular vector
decomposition (SVD) algorithm to construct the transformation matrix, R.
Each row of R essentially is the axis of the speaker-specified random subspace.
Features extracted from the training speech will be mapped to the random
subspace and speaker template will be produced from those random-mapped
features. Thus, template of different speaker is spanned in different random
subspace. Identification is performed by mapping the test features to each
of the registered subspace to match to the respective template. The arriver
will be identified as the speaker whose template yields the closest distance to
the test features.

Since the transformation is orthonormal, the distance between any two
points that are projected to the same subspace is identical to the original
distance before mapping, e.g.,

|1Tia — Tobl|* = [la — b]]*. (2)
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Therefore the similarity between the test features and the genuine tem-
plate is not altered after MRM is applied to the speaker authentication system
thus preserves the intra-speaker distance.

However, by mapping two points into two different subspaces, we have
found that it is almost certain that the distance between the two points will
be stretched, e.g.,

P (| Tia—Tob|* > [la = b|*) ~ 1. (3)

While the searching for the mathematical evidence to verify Eq. (3) is still
being carried out, Eq. (3) has been proven empirically and the detail of the
experiment will be discussed in the next section. Under MRM scheme, the
test features become more discriminative to the counterfeit templates thus
raises the inter-speaker distance overall. Therefore, the MRM-speaker au-
thentication shows better F-ratio, e.g., ratio of intra-speaker to inter-speaker
distance, as compare to the non-MRM version.

3 Speaker identification system

The block diagram shown in Fig. 1 depicts the speaker identification sys-
tem in this work. MRM scheme is built on the vector quantization (VQ)
speaker recognition framework [3]. Collected speech waveform is blocked into
240-sample frame with 160 overlapped with adjacent frames. Each frame is
categorized into speech and non-speech frame based on the energy profile.
Speech frames are selected to extract the linear predictive (LP) cepstrum [2].
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Fig. 1. Block diagram of speaker identification system.
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During enrollment, a new PRN sequence is generated to form the ran-
dom transformation to map the features extracted from the training speech
signal. The feature vectors in the new subspace are clustered into 16 clusters
using modified K-means (MKM) algorithm [3]. Each cluster contributes one
centroid to be stored as the speaker’s template.

In the identification session, test speech waveform and the PRN sequence
are inputted to the identifier. Feature extracted from the test speech is
mapped to the random subspace that is described by the PRN. Nearest-
neighborhood matching is performed to compare the projected test feature
to each registered templates [4] in each random subspace.

4 Database

The experiment was conducted on YOHO speaker verification corpus [5].
The speech tokens from the first enrollment session are used to generate
the template from all 138 speakers. All speech tokens from testing session
are used to evaluate the system. Thus each speaker template is generated
from 24 tokens and there are total 5,520 (40 tokens x 138 speakers) trails of
identification testing.

5 Experiments and Discussion

The fact that there is such a great possibility that the distance between two
points will be stretched resulted from MRM, as stated in Eq. (3), has been
proven through experiments. The experiment has been carried out by run-
ning 50,000 trials to collect the amount of distance that is extended between
two points resulted from MRM. Two points, a; and b;, are picked randomly
in every trial and to be mapped into two different random subspaces. The
random mapping is described by the orthonormal random matrixes, R and T',
which are refreshed in every trial. Table I tabulates the mean and the stan-

dard deviation of the original distance, d; = |la; — bs||?, projected distance,
m; = ||[Rja; — Tibi||2, and the amount of extension of the distance resulted
from MRM, e.g.,
e = Mmy —di
= ||Riai — Tibi||* — fla; — bil>. (4)
Experiment is carried out in the dimension of 10, 15, 20, 30, and 50
orders.
Table I. Extension of the distance in MRM
Order _Or1g1nal Projected Extension  n(e >0) P(e>0)
d o4 m Om 3 Oe¢

10 1.669 0.625 6.668 2.497 4.999 2.527 49616 0.9923
15 2,503 0.752 9978 3.060 7.475 3.096 49930 0.9986
20 3.333 0.884 13.306 3.518 9.979 3.565 49990 0.9998
30 4993 1.079 19.987 4.316 14.993 4.382 49999 1.0000
50  8.330 1.386 33.324 5.565 24.994 5.643 50000 1.0000
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As observed, almost all trial stretches the distance, e.g. e; > 0, therefore
the following conclusion is drawn thus certifies Eq. (3), e.g.,

Ple>0)~1

5
P (|[Ra = Tb|* > fa —b]*) =~ 1. 5)

As observed, when the experiment is repeated in the dimension of higher
orders, more trials were experienced distance extension. At the order of 50,
distance is extended in all 50,000 trials. Thus, we deduce a conclusion that it
is more certain that MRM extends the distance at higher order of dimension.

In order to monitor the effect of MRM to the speaker identification sys-
tem, experiments are carried out to compare the performance of the MRM-
system with the non-MRM system. Without engaging MRM, the identifi-
cation system follows the traditional VQ-speaker recognition framework [3].
The accuracy and the F-ratio of the system at different feature order are
shown in Table II as follows.

Table II. Performance of the system with MRM and with-

out MRM
Order Identification rate (%) F-ratio
MRM non-MRM MRM non-MRM
8 100 71.0 0.171 0.585
10 100 76.4 0.163 0.575
12 100 79.8 0.156 0.587
14 100 81.6 0.151 0.602
16 100 82.6 0.148 0.615
18 100 83.8 0.146 0.630
20 100 83.3 0.144 0.650

The MRM-system scores the perfect identification rate at feature order
from 8 to 20. For MRM-identification system, higher feature order yields
better F-ratio. This is contrast with the manner of the F-ratio shown by
the original system, where higher order produces weaker F-ratio. The phe-
nomenon is due to the behavior of MRM where higher order MRM stretches
greater distance between two points. At higher feature order, the inter-
speaker matching yields better discrimination thus contributing to lower F-
ratio.

6 Conclusion

In this work, MRM system has been shown to possess remarkable discrim-
inative ability in counterfeit comparison thus contribute to better accuracy
recognition. MRM has been incorporated with the classical VQ speaker iden-
tification system to form a dual-factors identification system that combines
the speaker biometric and the personal token. Experiments on YOHO corpus
has scored perfect identification rate.
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