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Introduction

  Corticotropin-releasing hormone (CRH) is a key 
mediator of endocrine, autonomic, behavioral, and 
immune responses to stress. In response to stress, 
CRH released from the hypothalamic paraventricular 
nucleus (PVN) activates CRH receptor on the an-
terior pituitary corticotrophes, resulting in secretion 
of adrenocorticotropic hormone (ACTH) into the 
bloodstream. Two CRH receptors, CRH-receptor 
type 1 (CRH-R1) and type 2 (CRH-R2), have been 
cloned [1-4]. CRH-R1 is highly expressed in the 
anterior pituitary, neocortex, olfactory bulb, hip-

pocampus, amygdala, septum and relay nuclei of the 
brain stem and hypothalamus [5]. CRH-R2 is ex-

pressed in more limited brain areas than is CRH-R1. 
In the rodent, one splice variant form of the CRH-
R2, CRH-R2a is expressed mainly in the brain, es-

pecially in the hypothalamic ventromedial nucleus 
(VMH) and PVN, lateral septic nucleus, and medial 
amygdaloid nucleus [6]. An other variant form, 
CRH-R2, is expressed mainly in the peripheral tis-
sue as well as in the brain. It is expressed at high 
levels in the heart and skeletal muscles and at low 
levels in the lung and intestine [4, 6] . In contrast to 
rodents, human CRH-R2j3 is only weakly expressed 
in the heart and skeletal muscles, whereas CRH-R2a 
is predominant [7] . More recently, an additional 
variant of CRH-R2, CRH-R2r, was found in human 

[8]. 
 The poor correlation between the sites of CRH and
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CRH-R2 expression, as well as the relatively low 
affinity of CRH for CRH-R2, suggested the presence 
of another ligand for CRH-R2, paving the way for 
the discovery of urocortin (UCN) [9-10]. UCN is 
43% homologous to CRH and has high affinity to 
CRH-R2. UCN is mainly found in the brain-stem 
Edinger-Westphal nucleus, and also found in the 
hippocampus, lateral septum, amygdala, neocortex, 
and nucleus tractus solitarius [11]. It is also found in 

peripheral sites such as the duodenum, uterus, and 
lymphocytes. Intracerebroventricular (icy) adminis-
tration of UCN elicits a strong anorexic effect. 
When it is injected peripherally it reduces blood 

pressure [12]. As UCN has greater affinity to CRH-
R2 than does CRH, it is assumed that UCN is an 
endogenous ligand to CRH-R2. It is accepted that 
the effects of CRH and UCN may be mediated via 
either CRH-R 1 or CRH-R2, or both. However, 
CRH-R 1 and CRH-R2 could be detected only weakly 
in brain areas such as the central amygdala, Edin-

ger-Westphal nucleus and locus coeruleus, these sites 
being the major brain sources of CRH and UCN or 
target areas of these neuropeptides' action. There-
fore, the existence of other yet undiscovered CRH-
related peptides are proposed [13, 14]. 
 Corticotropin-releasing hormone binding protein 

(CRH-BP), which binds CRH and UCN with affini-
ties greater than CRH-R1 and CRH-R2, shows a 
broad distribution in the brain [1 5] . Colocalization 
of CRH-BP and CRH, UCN or CRH receptors has 
been observed in some brain areas. Therefore, free 
CRH and UCN, which do not bind to CRH-BP, are 
the active forms that play physiological roles in the 
brain. 
 Many experiments have been done to clarify which
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subtype of CRH receptors is involved in the activities 

of CRH and UCN. It has been relatively well es-

tablished that CRH-R1 is involved in HPA axis acti-

vation [16-19] and in the stress-induced enhancement 

of anxiety, fear and learning [18-21]. However, the 

physiological roles of CRH-R2 and its endogenous 
ligand have not been fully elucidated. To elucidate 

the role of CRH-R2, many kinds of techniques have 

been used. The in situ hybridization method has 

been used to examine the regulation of VMH CRH-
R2 mRNA expression. Non-selective or selective 

CRH-R1 and/or CRH-R2 antagonists, and antisense 

oligonucleotides against CRH-R1 or CRH-R2 have 

been administered to animals to see the way in which 

they prevented the actions of CRH or UCN. Very 

recently, CRH-R2 knockout mice have been devel-

oped to clarify the physiological role of CRH-R2. In 

this review, the results of these recent investigations 

are summarized.

Hypothalamic-pituitary-adrenal (HPA) axis 
            regulation

 As CRH-R2a showed a relatively high expression 
in the hypothalamic PVN, it was speculated that 
CRH-R2a might be involved in the autoregulation of 
CRH secretion in the PVN. However, CRH-R2a 
was revealed to localize mainly in the magnocellular 

part of the PVN [22], and icy injection of CRH sig-

nificantly increased CRH-Rl but did not change 
CRH-R2 mRNA levels in the PVN [23]. Lipopoly-
saccharide injection (LPS) induced a significant in-
crease in PVN CRH-R1 mRNA (Fig. 1), while CORT 
administration or adrenalectomy decreased CRH-Rl 
mRNA levels. In contrast, CRH-R2a mRNA levels 
in the PVN were not altered by these manipulations 

[23]. CRH-R2 knockout mice did not show any 
changes in pituitary corticotrophs and the adrenal 
cortex [24, 25], though CRH-R1 knockout mice 
showed a marked reduction in adrenal zona fas-
ciculata [19]. These results indicate that CRH-R2 
does not play an important role in HPA axis regula-
tion. On the other hand, Smagin et al. [26] reported 
that icy administration of anti-sense oligonucleotide 
to CRH-R2 mRNA significantly attenuated CRH-
and UCN-induced HPA activation, suggesting 
stimulatory effects of exogenously administrated 
CRH and UCN on HPA axis are at least partly 
mediated by CRH-R2. However, mice deficient for 
CRH-R2 showed hyperresponse of ACTH and 
CORT to restraint stress [24, 25], and it has been 

postulated that CRH-R2 is involved in physiological 
adaptation to stresses. Kishimoto et al. [27], how-
ever, did not detect ACTH or CORT hyperresponse 
to stress in the CRH-R2 deficient mice they de-
veloped. Whether CRH-R2 is actually involved in 
HPA axis regulation remains to be clarified.

Fig. 1. CRH-R1 (A) and CRH-R2a (B) mRNA hybridization levels in the PVN after i.p. lipopolysaccharide (LPS) or saline 
       injection. Values are mean ±S.E.M. *p<0.05 vs. control, **p<0.01 vs. control, +p<1.001 vs. saline group. (Re-

      produced from Ref. 23 with permission of the publisher)
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Feeding and body weight regulation

  Restraint-induced hypophagia and body weight 
loss was prevented by icy administration of non-
selective CRH receptor antagonist, a-helical CRF (9-
41) [28]. Hotta et al. [29] reported that emotional 
stress-induced inhibition of food intake was reversed 
by both icy injection of a-helical CRF (9-41) and 
intraperitoneal injection of a selective non-peptidic 
CRF-R1 antagonist, CRA 1000, and suggested that 
CRH-R1 mediates at least in part the emotional 
stress-induced reduction of feeding behavior. On 
the contrary, administration of a selective CRH-R 1 
receptor antagonist, NBI 27,914, did not affect icy 
CRH-induced decrease in food intake [26], and a 
selective CRH-R 1 agonist, antalarmin, did not affect 
body weight, carbohydrate metabolism, or leptin ex-

pression [16]. CRH-R1 knockout mice and wild type 
mice showed no difference in total amount of food

intake. Although there was a significant disruption 
in the circadian distribution of food intake, with 

CRH-R1-deficient mice consuming significantly more 

food during the light period than the dark period, the 

normal diurnal pattern could be completely restored 

by oral administration of CORT [30]. These results 

suggest that CRH-R1 is not likely to play a critical 

role in feeding behavior, although some discrepancies 

among reports remain to be clarified. 

 On the other hand, CRH-induced anorexia was 

significantly attenuated by the CRH-R2-selective 

antagonist antisauvagine-30 [31, 32]. As CRH-R2 

mRNA is highly expressed in the VMH, classically 
referred to as the satiety center, we speculated that 

anorexiogenic effects of CRH or UCN are transduced 

via CRH-R2 in the VMH. Starvation and adrenal-

ectomy, each of which lowered plasma insulin and 

leptin levels, were associated with decrements in 

CRH-R2 mRNA levels in VMH but not in PVH (Fig.

Fig. 2. Hybridization levels of CRH-R2 mRNA in the VMH and PVN after starvation for 2 or 4 days (A) and adrenalectomy 

   (B). Values are means±SME. *p<0.05 vs. control group (A) or sham group (B). (Reproduced from Ref. 33 with 
   permission of the publisher)
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2) [33]. The concordance of a fall in plasma insulin 

and leptin levels with the fall in VMH CRH-R2 
mRNA levels during starvation and adrenalectomy 

supports the idea that compensatory responses under 

the conditions of starvation and adrenalectomy in-

clude not only the disinhibiting effects of reduced 

insulin and leptin levels on appetite through already 

reported mechanisms but also via an effect of reduced 

leptin on VMH CRH-R2. A single intraperitoneal 

or continuous subcutaneous injection of leptin in-

creased CRH-R2 mRNA levels in the rat VMH (Fig. 

3) [34], suggesting that the anorexic effect of leptin 
may be transduced by upregulation of CRH-R2 

mRNA. A large amount of CORT administration, 

which induces food and body weight reduction, also 

upregulates CRH-R2 mRNA [34]. Rats immobilized 

for 2 hr daily for 6 days reduced their food intake 

and body weight. Repeated daily immobilization 

increased PVN CRH mRNA and lowered plasma 

insulin and leptin concentrations as well as VMH 

CRH-R2 mRNA levels [35]. Low leptin and VMH 

CRH-R2 mRNA levels may also produce counter-

regulatory responses against the anorexic effects of 

CRH or UCN. These results provide additional 

evidence linking plasma leptin and VMH CRH-R2 

mRNA. Richard et al. [36] reported that expression 

of the CRH-R2 transcript was reduced in the VMH 

of obese rats. 
 Recently it has been reported that mice deficient 

for CRH-R2 express normal basal feeding and weight

gain. UCN initially suppressed food intake in these 
mice, but they recover food intake more rapidly and 

completely than do wild-type mice. These results 

suggest that CRH-R2 is essential for sustained feed-

ing suppression induced by UCN. Injection of anti-

rat UCN rabbit y-globulin into the bilateral VMH 

in freely fed rats significantly potentiated food and 

water intake compared with rats that received normal 

rabbit y-globulin, suggesting that endogenous UCN 

in the VMH exert inhibitory control on ingestive be-

havior [37]. It is likely that VMH CRH-R2 is more 
important than CRH-R1 in mediating the anorexic 

effect of CRH, UCN, or unknown CRH-related 

peptides, and that stress-induced reduction of food 
intake is transduced by CRH-R2, though this remains 

to be confirmed. On the other hand, it has been 

reported that in the immature rat, CRH-R2 mRNA 

levels in VMH are governed primarily by maternal or 

suckling-derived sensory input rather than by food 

intake or peripheral stress hormones [38].

Anxiolytic role

 It has been suggested that CRH mediates behav-
ioral responses caused by stress. CRH increased 

anxiety [39, 40], startle response [41], and grooming 

[42], and decreased explorative behavior [43], though 
it has not been fully clarified which subtype of 

receptors is involved in these responses. A selective 

non-peptide CRH-R1 antagonist, antalarmin, im-

paired both the induction and expression of con-
ditioned fear [17, 44]. Other selective nonpeptide 

CRH-R1 antagonists CP-154,526 [45, 46], CRA 

1000, and CRA 1001 [47], also showed anxiolytic-

and antidepressant-like properties in various ex-

perimental models. Chronic infusion of CRH-R1 
antisense oligonucleotide into the rat brain also 

caused an anxiolytic-like effect [20]. CRH-R1 

deficient mice displayed markedly reduced anxiety 

[18, 19] . These results all suggest that CRH-R 1 plays 
a key role in mediating anxiety-related behavior. 

However, Radulovic et al. [21] observed by using a 

selective CRH-R2 antagonist, anti-sauvagine 30, that 

a high dose of CRH induced anxiety in rats probably 

via septal CRH-R2, which remains to be clarified. 

 In contrast, CRH-R2 knockout mice exhibited en-

hanced anxiety-like behavior in several anxiety tests, 

such as dark-light emergence task test and plus-maze
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test [25, 27]. The enhanced anxiety of CRH-R2-

deficient mice was not due to changes in hypothal-

amic-pituitary-adrenal axis activity, but rather re-

flects impaired responses in specific brain regions 

[27}. Neither was it due to altered locomotor activi-
ty, because CRH-R2-deficient mice or mice given 

CRH-R2 antisense oligonucleotide did not show 

changes in overall locomotor activity [20, 25, 27]. 

These results suggest that CRH-R2 predominantly 

mediates a central anxiolytic response, opposing the 

anxiogenic effect of CRH mediated by CRH-R1. 

CRH-R2 seems to play a role counterregulatory to 

that of CRH-R1.

Learning and memory

  The modulation of learning and memory seems to 
be one of the major roles of CRH in the brain. In-

jection of CRH into the dorsal hippocampus en-
hanced learning before and after training, and this 
effect was prevented by the local injection of the 
nonselective CRH-R1 antagonist astressin but not by 
the CRH-R2 specific antagonist antisauvagine-30 

[21]. Therefore, hippocampal CRH-R1 may medi-
ate stress-induced enhancement of learning. In con-
trast, injection of CRH into the lateral intermediate 
septum impaired learning, which was blocked by 
antisauvagine-30. When antisauvagine-30 was in-

jected alone into the lateral intermediate septum, 
learning was enhanced. These results suggest that 
CRH-R2 in the lateral intermediate septum plays a 

part in the impairment of learning. The existence of 
two receptors that mediate opposite effects provides 
the CRH system with high flexibility and a dynamic 
role in the adaptation of the CNS to environmental 
challenge [21].

Cardiovascular regulation

 Icy administration of CRH mimics stress-induced 

elevation of blood pressure and heart rate as well as 
the elevation of plasma norepinephrine (NE) and 

epinephrine (E) levels [48]. Although the CRH-

induced cardiovascular effect was attenuated by 

pretreatment with a nonselective CRH-R antagonist, 
a-helical CRF (9-41) [49], it was unclear which type 

of CRH receptor was responsible for the CRH-

induced autonomic responses. Icy treatment of a 
selective CRH-R1 antagonist, CP-154526 did not 
affect baseline heart rate, plasma NE and E levels, 
whereas it partially blocked the CRH-induced in-
crease in heart rates and plasma NE and E levels, 
indicating that CRH activates the sympathetic ner-
vous system at least in part via CRH-R1 [50]. 
  In the rodent, CRH-R2 mRNA is found in 

peripheral tissues, especially in the heart and skeletal 
muscle, while CRH-R1 mRNA is undetectable in 
the heart. CRH-R2 mRNA expression in the heart 
is regulated by systemic administration of UCN, 
CORT, and cytokines [51, 52]. Systemic injection of 
LPS markedly downregulated CRH-R2 mRNA levels 
in the heart in a dose- and time-dependent manner, 
while CRH-R2 mRNA levels in skeletal muscle in-

creased following exposure to endotoxin, suggesting 
that CRH-R2 may be differentially regulated in 
cardiac tissue and skeletal muscle [53]. 
  CRH-R2 mRNA levels in spontaneously hyper-
tensive rats (SHR) were significantly higher than 
those in normotensive controls. In contrast, CRH-
R2 mRNA levels in the hearts of deoxycorticosterone 
acetate (DOCA)-salt hypertensive rats were signifi-
cantly lower than that of sham-operated controls 
after 6 weeks of treatment (Fig. 4) [54]. Although 
the mechanisms governing the changes of CRH-R2 
mRNA may differ in these hypertensive models, these 
results also suggest some roles of CRH-R2 in blood 

pressure regulation. CRH-R2-deficient mice showed 
elevated mean arterial pressure (MAP) and diastolic 

pressure compared with wild-type mice [24]. Sys-
temic UCN administration decreases MAP in intact 
rats [10], but not in CRH-R2-deficient rats [24, 25]. 
These results suggest that peripheral CRH-R2 medi-
ates the hypotensive effect of systemically admin-
istered UCN. 
 UCN stimulated atrial natriuretic peptide (ANP) 

and brain natriuretic peptide (BNP) secretions from 
neonatal rat cardiomyocytes [55]. It also stimulated 
leucine uptake into neonatal rat cardiomyocytes and 

potentiated the endothelin-induced increase of leu-
cine uptake. CRH-R2 may be involved in UCN-
induced ANP and BNP secretions. However, the 

physiological role of CRH-R2 in the heart remains to 
be clarified.
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Other roles of CRH-R2

  Intravenous administration of CRH and UCN 
causes an inhibition of gastric emptying, which is 
fully reversed by the non-selective CRH receptor an-
tagonist, astressin [56]. Astressin also completely 

prevented abdominal surgery-induced inhibition of 
gastric emptying, while the selective nonpeptide 
CRH-R1 antagonists antalarmin and NBI-27914 did 
not prevent CRH- and UCN-induced delay of gastric 
emptying. These results suggest that peripheral 
CRH-R2 is involved in intravenous CRH-, UCN- and 
abdominal surgery-induced gastric stasis. CRH-R2 
is also involved in the central CRH-induced delay of 

gastric emptying [57]. 
  Intradermal UCN at a concentration as low as 

10 nM induced skin mast cell degranulation and in-
creased vascular permeability in rats [58]. Both the 
selective nonpeptide CRH-R 1 antagonist, antalar-
min, and the nonselective peptide antagonist, astres-
sin, reduced UCN-induced vascular permeability, but 
not completely, suggesting that UCN-induced skin 
mast cell degranulation and subsequent vascular per-
meability in rodents may involve a CRH receptor 
other than the known CRH-R1, CRH-R2a, and 
CRH-R2j3 subtypes. A possible candidate may be 
the CRH-R21, which has been identified in human 
brain tissue [8].

Summary

 Recent investigations of the physiological roles of 

CRH-R2 are reviewed and summarized in Fig. 5. 

VMH CRH-R2 is more important than CRH-R1 

in mediating anorexic effect of CRH or urocortin 

(UCN) and stress-induced reduction of food intake. 
CRH-R2 mediates a central anxiolytic response, op-

posing the anxiogenic effect of CRH mediated by 
CRH-R1. Hippocampal CRH-R1 mediates stress-

induced enhancement of learning, while CRH-R2 in

Fig. 4. Hybridization levels in the heart of SHR (A) and DOCA-salt hypertensive rats (B). Values are means ± SEM. 
*p < 0.01 vs. WKY (A) or control (B). +p < 0.01 vs. 7-week-old SHR (A) or 3-week-treatment. (Reproduced 
from Ref. 54 with permission of the publisher)

Fig. 5. Relationship among CRH-related peptides, their 

       receptors and their physiological roles. CRH-BP: 

       corticotropin-releasing hormone binding protein, 

       UCN: urocortin, CRH-R1: CRH receptor type 1, 

       BP: blood pressure, HR: heart rate.
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the lateral intermediate septum may act to impair 

learning. CRH-R 1 mediates CRH-induced blood 

pressure elevation, while peripheral CRH-R2 medi-

ates the hypotensive effect of systemically admin-

istered UCN and CRH. It is likely that CRH-R2 

does not play an important role in hypothalamic-

pituitary adrenal axis regulation, though it has been 
reported that CRH-R2-deficient mice showed hyper-

response of ACTH and corticosterone. Peripheral

CRH-R2 mediates UCN-induced mast cell degranu-

lation, vascular permeability, and abdominal sur-

gery-induced gastric stasis. These recent investiga-
tions have revealed that the existence of two CRH 

receptors, which mediate some opposite effects, pro-

vides the CRH and UCN systems a high flexibility 

and dynamic role in the adaptation of the body to 

environmental challenge.
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