
IEICE Electronics Express, Vol.8, No.11, 788–794

Scanline-based rendering
of 2D vector graphics

Sang-Woo Seo1, Yong-Luo Shen1,2, Kwan-Young Kim3,
and Hyeong-Cheol Oh4a)

1 Dept. of Elec. & Info. Eng., Graduate School, Korea Univ., Seoul 136–701, Korea
2 Fac. of Mech. & Elec. Info., China Univ. of Geosciences, Wuhan 430–074, China
3 R&D Center, Advanced Digital Chips, Seoul 135–280, Korea
4 College of Sci. & Tech, Korea Univ. at SeJong, ChungNam 339–700, Korea

a) ohyeong@korea.ac.kr

Abstract: External memory access exacts considerable timing and
energy burdens from portable devices. However, most hardware accel-
erators for rendering two-dimensional (2D) vector graphics draw images
in a path-based (path-by-path) manner, which frequently causes exces-
sive external memory traffic. This paper proposes a scanline-based
method for rendering 2D vector graphics in portable devices. The
proposed method processes all paths spanning a scanline at a time,
enabling the use of a scanline-sized internal frame buffer (FB). Using
the internal FB, the accelerator can avoid repeated accesses to the ex-
ternal FB and reduce external memory access considerably for images
in which many objects overlap with one another.
Keywords: vector graphics, rendering, hardware accelerator, mem-
ory access
Classification: Electron devices, circuits, and systems

References

[1] S. H. Kim, Y. Oh, K. Park, and W. W. Ro, “Hardware implementation
of a tessellation accelerator for the OpenVG standard,” IEICE Electron.
Express, vol. 7, no. 6, pp. 440–446, 2010.

[2] D. Kim, K. Cha, and S. Chae, “A High-Performance OpenVG Accelerator
with Dual-Scanline Filling Rendering,” IEEE Trans. Consum. Electron.,
vol. 54, no. 3, pp. 1303–1311, 2008.

[3] S.-W. Seo, Y.-L. Shen, S.-C. Lee, J.-S. Lee, and H.-C. Oh, “An Accelerator
for Rendering 2D Vector Graphics,” Proc. Int. Conf. Computer Graphics
and Virtual Reality, pp. 88–93, 2010.

[4] I. Antochi, B. Juurlink, S. Vassiliadis, and P. Liuha, “Memory Bandwidth
Requirements of Tile-Based Rendering,” Lecture Notes in Computer Sci-
ence, vol. 3113, pp. 323–332, 2004.

[5] D. Nehab and H. Hoppe, “Random Access Rendering of General Vector
Graphics,” ACM Trans. Graphics, vol. 27, no. 5, Article 135, 2008.

[6] D. F. Rogers, Procedural Elements for Computer Graphics, WCB/
McGraw-Hill, Boston, MA, 1998.

[7] Khronos Group, OpenVG 1.0 Sample Implementation, [Online]
http://www.khronos.org/developers/resources/openvgc© IEICE 2011

DOI: 10.1587/elex.8.788
Received March 01, 2011
Accepted April 28, 2011
Published June 10, 2011

788



IEICE Electronics Express, Vol.8, No.11, 788–794

[8] Huayue Tech., OpenVG Release, [Online] http://www.hygraphics.com/
English/prod01.htm

1 Introduction

Today’s portable devices require hardware acceleration in rendering two-
dimensional (2D) vector graphic images, because software-only solutions fre-
quently fail to satisfy the real-time requirements of the devices. Some systems
use three-dimensional (3D) hardware engines to render 2D vector graphics,
but these 3D engines are still too expensive for many low-end portable de-
vices, including low-cost toys and smart tools. In addition, a number of
problems must be solved before portable devices can effectively use 3D en-
gines in rendering 2D vector graphics [1].

Most hardware accelerators, including those in [2, 3], for rendering 2D vec-
tor graphics draw images in a path-based (path-by-path) manner. However,
these path-based accelerators suffer from excessive external memory traffic
for some input images. External memory access exacts considerable timing
and energy burdens from a portable device; thus, reducing external memory
access is an important issue in designing 2D vector graphics accelerators.

For 3D graphics, techniques such as tile-based 3D rendering methods [4]
can be used to address this memory traffic problem. However, no successful
technique has been reported for 2D rendering. The cell-based approach [5]
can be a candidate, but its implementation may result in additional external
memory accesses because of the boundary edges generated for the polygons
crossing cell boundaries. It may also increase the time and memory space
required for managing the winding values (WVs) [6].

This paper proposes a scanline-based method for rendering 2D vector
graphics in portable devices. The proposed method can be considered a 2D
version of tile-based rendering, which uses scanline-shaped tiles. Compared
with the path-based method [2, 3]1, which processes one path at a time, the
proposed method simultaneously processes all paths spanning the current
tile.

2 Path-based accelerator

Fig. 1 (a) depicts an exemplary architecture of path-based accelerators. The
accelerator processes one path at a time. The Tessellator engine reads the
vertices for a path from the external memory, generates the edges for the
path, and stores them into the internal edge buffer (EB) unless the internal
EB is overflowed. Subsequently, the Rasterizer engine reads the edges and
calculates the WVs, as in [2, 3].

The PixelPipe engine reads the WVs, destination and source colors, and
texture images (if necessary), and then calculates the new colors to be stored

1In [2, 3], the path-based method was called the scanline-based rendering, in the sense
that the method processed one scanline at a time while it was rendering a path.

c© IEICE 2011
DOI: 10.1587/elex.8.788
Received March 01, 2011
Accepted April 28, 2011
Published June 10, 2011

789



IEICE Electronics Express, Vol.8, No.11, 788–794

into the Frame Buffer (FB).
In Fig. 1, the part consisting of Rasterizer and PixelPipe implements

the rendering methods, which are of interest in this paper. This part is
denoted as renderer. Unlike 3D renderers, 2D renderers do not suffer from
the computational burden for hidden surface removal because the order of the
paths, from back- to front-most, has already been sorted in the application
stage.

Fig. 1. Top: Path-based accelerator. Bottom: Proposed
accelerator.

3 Proposed (Scanline-based) accelerator

The proposed accelerator processes one scanline, or all paths spanning a scan-
line, at a time. Fig. 1 (b) depicts the architecture of the proposed accelerator.
Tessellator does not use the internal EB. It is because the proposed accel-
erator has to store the edges for all the paths spanning a scanline, so the
amount of edge data to be stored can be too large for the on-chip memories
in portable devices. The edges are stored into the regions predefined for their
corresponding path, in the external EB.

After the Tessellator engine completes writing all the edges for one image
frame, Rasterizer processes the edges in a scanline-by-scanline manner. It
reads all the edges spanning the current scanline, calculates the WVs, and

c© IEICE 2011
DOI: 10.1587/elex.8.788
Received March 01, 2011
Accepted April 28, 2011
Published June 10, 2011

790



IEICE Electronics Express, Vol.8, No.11, 788–794

sends them to PixelPipe. Since the WVs are calculated for one path at a
time and then reset for the next scanline, the proposed method does not
complicate much the calculation of the WVs.

Using the provided information (WVs, source and destination colors, etc.)
for each path, PixelPipe calculates the new colors and stores them into the
scanline-sized internal FB, called tile FB . After PixelPipe completes all the
paths spanning the current scanline, the contents of the tile FB are copied
to the (external) FB.

4 Analysis

This paper focuses only on the rendering methods, or the renderers in the
hardware. In analyzing the renderers, this paper focuses on the amount of
external memory accesses because external memory access is a major source
of power consumption, as well as a primary cause of the performance degra-
dation of portable devices.

The three places where external memory accesses occur are (1) between
the Geometry engine and Tessellator, (2) between Tessellator and Rasterizer,
and (3) at PixelPipe.

The amount of data transferred between Geometry and Tessellator de-
pends on the number of vertices and is decided by the geometry stage. There-
fore, this data transfer does not depend on the type of renderers and is not
considered in this paper.

The amount of data transferred between Tessellator and Rasterizer, de-
noted as M edge, depends on the number of edges. The edges are placed in
the internal EB for the path-based renderer, unless they are spilled over to
the external memory. For the scanline-based renderer, the edges are placed
in the external memory.

The external data accessed at PixelPipe mainly consist of the data trans-
ferred between PixelPipe and graphics memories (external FB and texture
memory). Thus, their quantity, denoted as M pixel, strongly depends on the
number of pixels. For the path-based renderer, every color read/write oper-
ation causes an external memory access. Conversely, for the scanline-based
renderer, managing the tile FB in an internal memory is feasible. Using the
scanline-sized tile FB, the renderer can access the external FB only once per
painted pixel. For the path-based renderer to use the tile FB, a screen-sized
buffer is required.

5 Experiments

An edge is represented in a two-word reduced format. The path-based ren-
derer internally has a 2 KB next active edge list (NAEL) for storing the active
edges for the next scanline [3] and uses a 2 KB internal EB in Tessellator.
The proposed scanline-based renderer internally has a 640-word buffer as the
tile FB and uses a larger (3 KB) NAEL to handle more paths simultaneously.

Four benchmark images, shown in Fig. 2 (a), are used: (1) Tiger [7] (for
which stroke operations dominate), (2) Subway [8] (which has many letters),

c© IEICE 2011
DOI: 10.1587/elex.8.788
Received March 01, 2011
Accepted April 28, 2011
Published June 10, 2011

791



IEICE Electronics Express, Vol.8, No.11, 788–794

and (3) Manga [8] and (4) Clock [8] (for which fill operations dominate).
Both path-based and scanline-based renderers were modeled in Verilog

and simulated using Cadence NC-Sim. Xilinx ISE 12.2 suite with the CORE
generator was used to generate and simulate memory models such as SRAMs
and register files.

The designs were verified by implementing the accelerators shown in Fig. 1
on an FPGA kit with Xilinx xc5vsx95t, as shown in Fig. 2 (b). The system-
on-a-chip platform presented in [3] was used in the verification. Even though
the proposed scanline-based renderer can be generally adopted for various
2D vector graphics standards, the accelerators used in the verification were
designed for the OpenVG standard [7]. The implemented scanline-based ac-
celerator operating at 50 MHz can render a Tiger image of size 640×480 pixels
on the screen of size 640 × 480 pixels, at the speed of about 27 frames per
second.

Fig. 2 (c) summarizes the M edge and M pixel required by the renderers.
The size of the images, that is, the number of painted pixels affects the

Fig. 2. Top Left : Benchmark images, Tiger, Manga,
Clock, and Subway (clockwise, from top left). Top
Right : Design verification using FPGA kit. Bot-
tom: M edge and M pixel for the path-based (PB)
and scanline-based (SB) renderers (in words).

c© IEICE 2011
DOI: 10.1587/elex.8.788
Received March 01, 2011
Accepted April 28, 2011
Published June 10, 2011

792



IEICE Electronics Express, Vol.8, No.11, 788–794

performance; thus, images with three different sizes were employed: big (B;
1280×960), medium (M; 640×480), and small (S; 320×240). The screen size
is 640 × 480 pixels for all images. The properties of the benchmark images
are summarized in Table I.

Table I. Specification of benchmark images.

The path-based renderer performs well for Subway because there are fewer
objects overlapping with one another (that is, fewer repeated accesses of
color values to the external FB). Furthermore, although Subway includes
considerably more edges than do the other images (Table I), each path of
Subway consists of a small number of edges. Thus, the path-based renderer
can manage all the edges in the internal EB and NAEL.

On the other hand, except for Subway, the scanline-based renderer ac-
cesses much less pixel data and reduces external memory accesses by about
55% (harmonic mean) compared with the path-based renderer. A maximum
reduction of 81% is observed for the image with many objects (paths) over-
lapping with one another, for which the repeated updates of pixels to the
external FB can be reduced using the tile FB.

In the experiments, the scanline-based renderer uses about 1.5 KB more
memory. However, the path-based renderer requires about 1.2 MB buffer to
adopt the tile FB, for the screen size used in the present paper.

6 Conclusion

A scanline-based method for rendering 2D vector graphics has been pro-
posed to reduce external memory access. The reduction comes mainly from
decreasing the repeated accesses of the color values to the external FB. Thus,
the proposed renderer is superior to the path-based renderer for images in
which many objects overlap with one another. Such images usually cause
bottlenecks in the real-time rendering operation of portable devices.

Even though the accelerators were designed based on the OpenVG stan-
dard in the experiments, the renderers were independent of the API standard
of 2D vector graphics. Thus, the proposed rendering method is not confined
to any specific API standard of 2D vector graphics.c© IEICE 2011

DOI: 10.1587/elex.8.788
Received March 01, 2011
Accepted April 28, 2011
Published June 10, 2011

793



IEICE Electronics Express, Vol.8, No.11, 788–794

Acknowledgement

This work was supported financially in part by Korea University. The CAD
tool was provided by IDEC, Korea.

c© IEICE 2011
DOI: 10.1587/elex.8.788
Received March 01, 2011
Accepted April 28, 2011
Published June 10, 2011

794


