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Abstract 

We have implemented an efficient, user-friendly, and web-based “biosimulator” named 
BEST-KIT (Biochemical Engineering System analyzing Tool-KIT: http://www.best-kit.org) 
for analyzing large-scale nonlinear reaction networks such as metabolic pathways.  The 
BEST-KIT mainly consists of a module, “MassAction++,” that can construct and analyze a 
reaction scheme represented by both mass action law (mass balance) and approximated 
velocity functions of enzyme kinetics at steady state.  This module was developed in Java 
applet style and can be carried out on “any” platform machine through a web browser.  In 
this study, we developed the parameter-estimation module for MassAction++. This module 
can estimate the values of unknown kinetic parameters based on the experimentally observed 
time-course data of state variables. We adopted three optimization techniques, the modified 
Powell method, the genetic algorithm, and the Hybrid method, which incorporates the genetic 
algorithm into the modified Powell method. The user can use an appropriate method for each 
purpose. 
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1. Introduction 

In molecular biology, we often see various kinds of technical terms which involve the suffix 
“-ome” or “-omic”, such as genome, proteome, metabolome, and so on. The “-ome” does not 
represent an individual component but, rather, a functional set or group of them. For example, a 
genome is a set of genes that is related to some functional property. Why are the “-ome” or “-omic” 
studies so widedly distributed? One of the answers is that the so-called “some functional property” 
results from the interplay of individual components or modules, which cannot be represented as an 
individual component; we should have a holistic and systemic view. Systems biology is the 
discipline that aims to integrate data generated by genomics, proteomic, and metabolomic analysis 
in order to gain a holistic view of living cells. If we focus on the metabolic pathways in the cell, 
however, a mere collection of static datasets on metabolites and enzymes will not provide us with a 
sufficient view. Inevitably, the dynamic behavior, that is a timed series of responses of target 
metabolites to external perturbation, should be incorporated to develop kinetic models of the 
selected pathway. 

Since the phenomenon that new properties can arise in a system of nonlinearly interacting 
components, has been described by theoretical and mathematical biologists, a variety of 
biochemical network modeling packages as a tool-kit for analyzing a system’s nonlinearity have 
been developed over the years and used by researchers interested in understanding the functional 
properties of metabolic pathways or cellular networks; Some of them are as follows: A-Cell [1], 
BioSpice [2], DBSolve [3], E-Cell [4], Genomic Object Net [5], Gepasi [6], JDesigner [7], MIST 
[8], PLAS [9], Virtual Cell [10], and WinSCAMP [11].  Recently, we also have implemented an 
efficient, user-friendly “biosimulator” named BEST-KIT [12][13] (Biochemical Engineering 
System analyzing Tool-KIT) for analyzing large-scale nonlinear reaction networks such as 
metabolic pathways. The main module of BEST-KIT, “MassAction++ [14],” can be used now from 
“any” platform machine through the web browser. Once the model and mathematical equations are 
generated, numerical integration can be accomplished to simulate a sequence of nonlinear 
biochemical reactions such as those found in metabolic pathways.  However, because of a lack of 
information, the actual kinetics and parameter values could not be used.  Without actual 
information on kinetic parameter values, there is no way to confirm that the simulated dynamics 
actually happened in the real metabolic pathways; and such simulations rarely convince molecular 
biologists. An efficient parameter estimation method or parameter-fitting function combined with 
the use of an experimentally observed timed series of data on the concentrations of target 
metabolites in the selected pathway should be incorporated into a network modeling package.  

Among numerical optimization techniques, the directed-search method, which needs not to 
evaluate the gradient, is most suitable to analyze the dynamics of complex nonlinear control 
systems. The Powell method [15] and the modified Powell method [15][16] are well known to have 
an ultimate fast convergence among direct-search methods, especially where the cost function is 
well approximated by a quadratic form of target parameters. Those conventional optimization 
methods, however, show a strong power only when the initially guessed target parameter value is 
very near to the optimal solution; most of the conventional numerical optimizations can easily be 
trapped in local optima (minima). An efficient method for numerical optimization should be 
developed, which would show fast convergence even if the optimization were to start in a region of 
the parameter space far from the optimal solution.  In this paper, to overcome this difficulty, we 
describe a newly developed hybrid optimization method, which is a unique combination of the 
Real-coded Genetic Algorithm [17] and the modified Powell method, followed by the incorporation 
of this method into the MassAction++ module in BEST-KIT. 
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2. Concept of MassAction++ 

In the development of MassAction++, we have considered some remarkable concepts as shown 
in Figure 1. The users need not be conscious of either troublesome equations or numerical 
calculations. Cumbersome simultaneous nonlinear differential equations of a constructed reaction 
scheme can be automatically produced without the need to write troublesome equations. 
Mathematical modeling is represented by using the mass action law (mass balance) and the 
approximated velocity function related to steady state enzyme kinetics. These equations are 
calculated by the Gear method [18] as one of the most efficient numerical calculation methods for 
“stiff” differential equations. As shown in Figure 1, MassAction++ has been designed as a 
“client-server system,” where the heavy duty work for numerical calculation of the constructed 
scheme, which might require long cpu-time in a client machine, can be carried out in the server 
machine (a virtual cpu-server having high-performance cpu-capability) through the Internet, and the 
calculated numerical results can be sent back to the client and visualized as graph on there. Since 
we have adopted a dynamic allocation of memory for solving simultaneous differential equations, 
the maximum number of reactants that can be dealt with on MassAction++ depends only on the 
size of the main memory of the cpu-server. Since the cpu-server issues a unique task ID number for 
each calculation request from a client, many users can login and request calculations at once. 

Client Server 

(5) Compile the model of 
  differential equations 

(7) Numerical results  

(2) Start up the simulator 

Figure 1.  Procedure for simulation in MassAction++ 

(1) Access to BEST-KIT homepage 

(3) Construction of reaction scheme 

(4) Automatic derivation of  
  simultaneous differential equation 

(6) Numerical calculation 
  and Optimum calculation 

(8) Visualization as graph 
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 MassAction++ has an efficient GUI (Graphical User Interface) as shown in Figure 2. By using 
the “mouse,” the users can easily construct and update a reaction scheme in the editing window 
(working area) through the GUI, even when the number of reaction components (state variables) is 
relatively large. In this module, each reactant and reaction step comprising a reaction scheme is 
represented as a “symbol,” and the users can construct reaction schemes by connecting the symbols 
with lines.  This GUI provides the following four areas: (1) Menu bar area, (2) Working area, (3) 
Choice area, and (4) Input area. In the Menu bar area, there are several menus such as File (related 
to file handling such as save, upload, load), Edit (related to editing the constructed scheme), 
Calculate (related to numerical calculation) and Graph (related to visualization). The user can 
construct the reaction scheme within the Working area by selecting a suitable kinetic mechanism of 
a steady state enzymatic reaction appearing in the Choice area and by setting the initial 
concentrations and kinetic constants in the Input area. 

We have developed the GUI of MassAction++ in Java applet style by using JDK (Java 
Developer’s Kit) version 1.1.3, so that all users can run this simulator from “any” platform machine. 
There is a requirement, however, that the user’s machine has to be equipped with web browser 
executable JDK1.1 (for example, at least Netscape Navigator 4.0 or Internet Explorer 4.0, etc) in 
order to use this simulator. 

 

 Choice areaChoice area  

Figure  2.  Snapshot of MassAction++ 

 Menu bar areaMenu bar area   

Input areaInput area 

Working areaWorking area  
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Figure 3 shows the procedures for the numerical calculation and optimization in BEST-KIT. (1) 
Cumbersome simultaneous nonlinear differential equations describing the scheme can be 
automatically produced without having to write troublesome equations. At this time, if the users 
select “MassAction” in Reaction Symbol, the differential equations produced will be based on mass 
action law (mass balance). If the users select a reaction symbol other than MassAction, differential 
equations will be produced based on a selected approximated equation of steady state enzyme 
kinetics. (2) The derived differential equations and the initial parameters are packed into a data 
class. The data class is then sent to the server through the Internet by using HORB [19] as a 
communication package that extends Java for distributed object computing to enable data 
communication between a client and the server through the Internet. HORB is the world’s first Java 
ORB (Object Remote Broker) and is 100% compatible with Sun’s Java language specification, 
interpreter, and Java classes. Of course, HORB includes the CORBA IDL complier and CORBA 
IIOP protocol and supports a very fast and functional proprietary protocol as well. The processing 
speed of HORB is very fast, reportedly twice the speed of other ORBs. (3) The data class received 
by the server is saved as a file by using a Java application program. The server produces a 
C-language source code for the mathematical representation of differential equations; (4) and the 
server compiles and links it to the numerical calculation program or the optimization program. (5) 
After the numerical calculation or the optimization has been executed, numerical results are saved 
as a file. (6) The result file is loaded by the Java application program, after which it is packed into a 
result data class. (7) These data classes are sent back to the client via the Internet by means of 
HORB. (8) These are visualized in graphic form on the client’s machine. 

Figure 3.  Procedures for the optimization in client-server 
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3. Parameter fitting 

 By using a parameter-fitting function in MassAction++, the users can estimate the values of 
unknown kinetic parameters based on the observed time-course data of reactants. Figure 4 
represents the situation where both the kinetic values of inhibition constant (Ki1) in the competitive 
enzymatic reaction producing the product B from the substrate A (A  B), and the Michaelis 
constant (Km2) in the Michaelis-Menten reaction producing the product C from the substrate B (B 

 C) are supposed to be unknown, and two sets of experimental time-course data of reactants A, B, 
and C shown in Figure 5 are given. By assigning “unknown” to the estimated parameters and 
setting initial guess values for these parameters, the simulator estimates the values of the kinetic 
parameters that can realize the experimental time-course data by using nonlinear numerical 
optimization techniques such as the modified Powell method (MP), genetic algorithm (GA), or the 
Hybrid method (GA + MP). In this case, as shown in the upper side of Figure 6, the estimated 
values are 0.09017 for Ki at A  B, 0.133685 for Km at B  C, and the mean squared relative 
error between the calculated values and experimentally observed ones is 4.518585%. The lower 
side figures of Figure 6 represent the time courses of A, B, and C calculated by using estimated 
kinetic values and two sets of experimentally observed data (Figure 5). 

 
 

(1) Construction of the reaction scheme (3) Input optimum conditions 

(2) Setting known-valued and unknown-valued  
parameters and input initial conditions for calculation 

Select optimization method and input  
initial guess values of unknown-valued 
parameters and error allowance between 
experimental data and calculated ones.  

Figure 4.  Parameter-fitting module 
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Figure 5. Experimentally observed time-course data 
 

 
 

Figure 6. Result of parameter-fitting 
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4. Optimization techniques 

MassAction++ adopts three optimization techniques for estimating the values of unknown 
kinetic parameters, the modified Powell method, the genetic algorithm, and the Hybrid method; and 
the users can use it properly according to their purpose. The features of each technique are 
described below. 

4.1 Modified Powell method (MP) 

The MP is well known to have an ultimate fast convergence among direct-search methods 
without using the derivative of the objective function, especially where the cost function is well 
approximated by a quadratic form of the parameters to be estimated; the MP has enough power to 
accelerate the dropping to a minimum point in quadratic form. This method has a critical 
disadvantage, however, that the minimum points obtained may not be the global minimum; most of 
the conventional conjugated gradient methods can easily be trapped in local optima (minima) by 
constraints in a region of the parameter space far from the optimal solution. 

 

4.2 Genetic Algorithm (GA) 

The GA is known as one of the heuristic algorithms that can seek out the global minimum; by 
escaping from being trapped in the local minimum, the “best” solutions will be found in regions of 
the parameter space containing a relatively high proportion of “good” solutions, and these regions 
can be explored and exploited by several genetic operations such as selection and crossover. The 
GA has the major disadvantage, however, that there is a considerably large computational cost (cpu 
time) for the large numbers of runs of the solution candidates. The actual procedure of a typical or 
conventional GA is as follows: 
 

1) Generation of Initial Population 
Randomly generate an initial population of size N. 
 

2) Selection for Reproduction 
Select a pair of individuals to become parents from the population. 
 

3) Generation of Offspring 
Generate offspring by applying crossover and mutation to the selected pair of individuals 
in step 2). 
 

4) Selection for Survival 
Choose two individuals from the family containing the parents and their offspring. 
 

5) Repeat the procedures between step 2 and step 4 until a certain condition for 
termination is satisfied. 
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We adopted MGG [20] (Minimal Generation Gap) as the generation-alternation model shown in 
Figure 7. 
 

Selection for 
Reproduction 

Randomly 

Generation of 
Children by Crossover 

Selection for Survival 
Elite +Roulette 

Figure 7.  MGG (Minimal Generation Gap) 
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The MGG is a new generation alternation model that does not consider mutation. It is the most 
desirable model that can avoid early convergence and suppress evolutionary stagnation. The 
algorithm of the MGG is described as follows. 
 

1) Generation of Initial Population 
Make an initial population that is composed of random real number vectors. 
 

2) Selection for Reproduction 
Select a pair of individuals by random sampling without replacement from the population. 
The selected pair of individuals becomes parents of offspring. 
 

3) Generation of Offspring 
Generate offspring by crossover between the selected pair of individuals. 
 

4) Selection for Survival 
Select two individuals from the family comprising the parents and their offspring; one is the 
best individual (Elite individual) and the other is selected by rank-based roulette wheel 
selection (Roulette individual). Replace the parents chosen in Step 2) in the population 
with the two individuals. 
 

5) Repeat the procedures between step 2 and step 4 until a certain condition for 
termination is satisfied. 
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In this study for the generation of children by crossover in Figure 7, UNDX [21] (Unimodal 
Normal Distribution Crossover) is applied as a crossover operation.   

The UNDX generates offspring from a normal distribution area defined by three parents, as 
shown in Figure 8. Offspring are made around the line segment connecting two parents, Parent 1 
(p1) and Parent 2 (p2). The mathematical representation of UNDX is as follows: 

∑ ∑
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where c1 and c2 are children, p1 and p2 are parents, and m is the middle point of parents. Further, d1 
is the distance between two parents, and d2 is the distance between the third parent p3 (randomly 
selected) and the line connecting p1 to p2; and z1: N(0, σ 1

2) and zk: N(0, σ 2
2) (k = 2,…,l: number 

of estimated parameters) are normally distributed random numbers. A and B are constants given by 
the user. 

Figure 8.  Searching region by using UNDX (Unimodal Normal Distribution Crossover)  
                     for the estimations of 2 parameter-values (x, y). 
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4.3 Hybrid method (GA+MP) 

There are many variations on how to incorporate the GA into the MP [16][22]. As shown in 
Figure 7, in the MGG, two individuals are selected from the family comprising the parents and their 
offspring after the genetic operation; one is the best-fitted individual (elite individual) and the other 
is randomly selected. Since the MP can accelerate the dropping to the minimum point in quadratic 
form as shown in Figure 9, we have applied the MP to the selected two individuals. By using this 
unique hybrid method, fast convergence can be expected without the loss of effectiveness of the GA 
(MGG+UNDX shown in Figure 7 and Figure 8). The following is the actual procedure as is 
diagrammed in Figure 10. 

 
1) Generation of Initial Population 

Make an initial population that is composed of random real number vectors. 
 

2) Selection for Reproduction 
Select a pair of individuals by random sampling without replacement from the population. 
 

3) Generation of Offspring 
Generate offspring by applying the UNDX to the selected pair of individuals. 
 

4) Selection for Survival 
Select two individuals from the family comprising the parents and their offspring; one is the 
best individual (Elite individual) and the other is selected by rank-based roulette wheel 
selection (Roulette individual). 
 

5) Apply the modified Powell method 
Apply the modified Powell method to each of the two selected individuals in step 4) 
After applying the MP, replace the parents selected in Step 2) in the population with the 
two newly obtained individuals. 
 

6) Repeat the procedures from step 2 to step 4 until a certain condition for 
termination is satisfied. 
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Figure 9.  The conceptual diagram of the Hybrid method 
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5 Numerical Experiments 

We examined the searching efficiency of three optimization methods: the MP, the GA, and the 
Hybrid method (GA+MP).  

We assumed a Michaelis-Menten type reaction with two enzyme-substrate complexes, which is 
shown in the upper part of Figure 11. The initial concentrations of the reactants are as follows: [X1] 
= 1.0x10-6(M), [X2] = 1.0x10-4 (M), [X3] = [X4] = [X5] = 0.0 (M). The standard values for rate 
constants in the corresponding steps are fixed at k1 = 3.0x107 M-1sec-1, k-1 = 3.0x102 sec-1, k2 = 
3.0x105 sec-1, k-2 = 3.0x104 sec-1, k3 =7.2 sec-1. The calculated time-course data for reactants under 
the standard parameter set are shown in the lower right side in Figure 11. These time-course data 
are treated as a given set of observed data for optimization in the following case study.  As the 
condition for optimization, the targeted error allowance (tolerance) per sampling point is 5%. The 
population size of individuals is 100, and the number of children generated at each crossover is 100. 
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5.1 Case Study 1 

As case study 1, assume the values of kinetic rate constants k1 and k3 are unknown.  By using 
each optimization method, the task is to estimate those values that can realize the experimentally 
observed time course shown in Figure 11. By the GA and the Hybrid method, the searching region 
for k1 is estimated to be [ 8100.1  ,0.0 × ] and [ 0.15  ,0.0 ] for k3. 

By applying the MP to this task, the following results are obtained (Table 1). 
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Table 1. Optimization results for the modified Powell method (the MP) 
Initial Guess Estimated Value 

k1 k3 k1 k3 Error (%) cpu time* 
(sec.) 

7100.1 ×  7.0  7.14 3.70 7.1 
7100.1 ×  9.0 fail to estimate 27.36  

1.0 6.5 7108.2 ×  7.25 3.31 7.8 
1.0 6.0 fail to estimate  19.03  

*Ultra SPARC IIi 333MHz 
 
As for k1, the optimal solution can be estimated from a wide distribution of initial guesses. 
Contrary to this, for k3, the optimal solution can be found only from an initial guess value that is 
very close to the solution; starting with initial guesses from the searching region [6.5, 7.0] leads to 
success and otherwise does not. 

The optimization results for the GA and the Hybrid method are shown in Table 2. 
 

Table 2. Optimization results for the GA and the Hybrid method within 20 trials (case study 1) 
 GA Hybrid method (GA+MP)

No. of successes 20/20 20/20 
No. of Evaluations 16382896 ±  448760 ±  

Average cpu time* (sec)  6.280.45 ±  
*Ultra SPARC IIi 333MHz 

 
The GA and the Hybrid method require more cpu time for optimization than does the MP; however, 
even when the searching region for k3 is very wide, such as [0.0, 15.0], these two methods could 
estimate the k3 value correctly. When these two methods are compared, we see that the Hybrid 
method can terminate optimization about 4 times faster than the GA, and within 20 trials the Hybrid 
method has a smaller standard deviation for average cpu time than does the GA. 

5.2 Case Study 2 

The previous case showed the superiority in searching efficiency of the Hybrid method.  In 
case study 2, we increased the number of estimated parameters; the target parameters are k1, k2, 
and k3.  Since we have to estimate the value of k2 in this case, the optimization was evaluated 
from the experimentally observed time courses of X1, X2, X3, and X5 as shown in Figure 12. In 
this case, we set the searching regions for the three parameters to be estimated as follows: 
[ 8100.1  ,0.0 × ] for k1, [ 6100.1  ,0.0 × ] for k2, and [ 0.15  ,0.0 ] for k3. We executed 15 trials by using 
the GA and the Hybrid method. The result is shown in Table 3. 
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7102.3 ×



 

127 

C
on

c.
 (

x2
, x

5)
 

 C
on

c.
 (

x1
, x

3)
 

1.0E-04 

8.0E-05 

6.0E-05 

4.0E-05 

2.0E-05 

0.0 

1.0E-06 

8.0E-07 

6.0E-07 

4.0E-07 

2.0E-07 

0.0 
0.0 5.0 10.0 15.0 20.0 

Time (sec.) 

X2 
X5 
X1 
X3 

 
Figure 12.  The experimentally observed time course data 

 
 
Table 3. Optimization results for the GA and the Hybrid method within 15 trials (case study 2) 

 GA Hybrid method (GA+MP)
No. of successes 15/15 15/15 

No. of Evaluations 44 1011.11091.1 ×±×  33 1053.41065.5 ×±×  
Average cpu time* (sec)  6.8798.702 ±  

 
 
Both methods succeeded in searching for optimal solutions of k1, k2, and k3; however, the 

average cpu time for optimization by the Hybrid method is about one third of that required by the 
GA. 

6. Discussion 

In this study we proposed a new optimization method, which incorporates the genetic algorithm 
into the modified Powell method. The genetic algorithm we adopted in this study belongs to the 
real-coded genetic algorithm (RCGA), which has attracted attention as a numerical optimization 
method for nonlinear systems. One of the crossover operators for RCGA called the unimodal 
normal distribution crossover (UNDX), which we adopted as shown in Figure 8, performed well in 
the optimization of various functions including multi-modal ones and benchmark functions with 
epistasis among the parameters [20]. The UNDX generates a new population lying on some ponds 
or along some valleys in order to focus the search on promising areas from the viewpoint of 
searching efficiency. Especially when the function has epistasis among its parameters, namely 
valleys that are not parallel to the coordinate axis, the UNDX can efficiently optimize it. When a 
genetic algorithm (GA) is applied to optimization problems, it is important that characteristics are 
preserved in designing coding/crossover and diversity maintained in designing generation 
alternation. Generation alternation models are independent of problems, while coding/crossover 
depends on problems. The simple GA is one of the well-known generation alternation models; 
however, the simple GA has two problems. One is early convergence in the first stage of searching 
and the other is evolutionary stagnation in the last stage. A new generation alternation model called 
minimal generation gap (MGG) was proposed to overcome the above problems [20][23]. The MGG 

*Ultra SPARC IIi 333MHz
7.12207.2179 ±
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has all of the advantages of the conventional models as well as the ability to avoid early 
convergence and to suppress evolutionary stagnation.  In this study, the GA (MGG+UNDX) 
became a more powerful searching method by the incorporation of the modified Powell method 
(MP), which can accelerate the dropping to the minimum point in quadratic form. Although the 
Hybrid method is less powerful than the MP at convergence speed when the initial guess of the 
estimated parameter is located very near to the optimal solution (see Tables 5 and 6), the Hybrid 
method has a great capability for discovering the optimal solution even when the initial guess of an 
estimated parameter is far from the optimal solution. Also in comparison with the GA 
(MGG+UNDX), the Hybrid method has an additional advantage in its convergence speed.  

To summarize this study, the GA can find the solution within a comparatively large searching 
range, but it has very slow convergence, because the GA does not have an efficient local searching 
function. The MP can find the solution very quickly but only when optimization is started from 
very near the solution; the MP does not have the function of escaping from a local minimum. Thus 
the Hybrid method offers all of the advantages of both optimization techniques while offsetting 
their disadvantages; the proposed procedure (MGG+UNDX+MP) can not only help the algorithm 
to extricate the solutions from local minima but also seek out the global minimum with very fast 
convergence. 

7. Conclusions 

We have developed a parameter-fitting module for the web-based BEST-KIT. By using this 
module, the users can easily estimate unknown kinetic parameters based on the observed 
time-course data of reactants. This module adopted three optimization techniques, the modified 
Powell method, the genetic algorithm, and the Hybrid method, which we proposed. We carried out 
computational experiments to investigate the respective the features of these three optimization 
techniques. The MP can get the optimal solution very quickly only in the case where optimization 
starts from a point very near to the optimal solution. In contrast, the GA and the Hybrid method can 
find the optimal solution even when optimization starts far from the optimal solution. Especially, 
the Hybrid method showed superiority over the GA with respect to the speed of convergence. 
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