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ON SHALLOW PAD-FOUNDATIONS FOR FOUR-LEGGED PLATFORMS

Roy BUTTERFIELD!

ABSTRACT

There are well-established procedures for assessing the combined horizontal and vertical load capacity of isolated,
shallow-depth pad foundations. However, when the pads act together in an interconnected group, as they do, for ex-
ample, under an offshore platform, some of them may be unloading whilst the loads increase on others. How the pads
in such groups respond to a monotonically increasing horizontal load up to failure; how their diameter and spacing
might best be assessed for specific design loads; how their safety, with respect to load, might be improved by shallow-
depth burial and how things change if the horizontal load is not distributed equally between the pads, are less well
understood questions. The paper presents a simple, new methodology for investigating these problems together with

numerical examples of its application.
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INTRODUCTION

Whereas the design and assessment of ‘safety’, with
respect to load, of shallow individual pad foundations is
relatively well understood, the process is much less well
defined for interconnected groups of pads such as, for
example, those which are sometimes used for offshore
structures. Two, philosophically different, methods are
commonly used to assess the safety of a specific founda-
tion: in what follows the possibility that the acceptability
of the foundation might be governed by service-state
displacements is not considered.

The traditional approach is to design the pad so that it
will ‘fail’ under a loading system comprising the expected
service-state loads at which it is intended to operate scaled
up by a ‘load factor’ F. In fact, this is a much more
complicated process than it might appear since F is
strongly dependent on the load-path to failure imposed
on the pad beyond the service-state loads. Unless all the
loads applied to the pad increase monotonically, whilst
maintaining their service-state proportions, the simple
concept of a unique value for F breaks down (Butterfield,
1993). In practice, this condition is most likely to be met
under monotonically increasing, vertical, centreline
loading.

Figure 1 is a loading diagram for a typical foundation
supporting both vertical and horizontal loads. In this case
its self-weight locates A on the vertical-load V" axis and
the load-path AB, B being the service-state load point,
indicates that a horizontal load H has been added to the
self-weight. The curved line represents a plausible ‘failure
load’ envelope-the locus of load points at which the pad
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Fig. 1. Load-path dependence of Factor of Safety

will fail-and V* is the vertical centreline load capacity,
shown here as unit load. Four possible load paths from B
to failure (1,2,3,4) are also shown.

On path 1, the pad is taken to failure by increasing H
whilst decreasing V. Along path 2 H is increasing at
constant V, whereas along path 4, V is increasing at
constant H. On path 3, both H and V are increasing
whilst maintaining their original ratio. This is the only
case for which the simple notion of F is adequate
(F=1.8). In case 2, a load safety factor on H=H,/Hjy
can be defined although its value will depend upon V. It
is clearly impossible to establish a unique load factor for
the foundation applicable to all load paths.

An alternative approach, essentially that adopted in
Eurocode 7, is derived from the concept of ‘partial
factors’ under which ‘service-state’ loads are factored up
(to become the ‘design loads’) and ‘expected’ ground
strength parameters factored down (to become the
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Fig. 2. Partial factors applied to Fig. 1

‘mobilised strengths’). The foundation is then designed
to fail under this combination of increased loads and
decreased strengths. (In principle, different factors can be
applied to different types of load and/or strength compo-
nents to reflect the uncertainty in their magnitudes).
Figure 2 interprets the load system of Fig. 1 in this way.
The two loads have been factored up, by 1.3, and the
relevant soil-strength parameter (e.g. the bearing capacity
factor N,) factored down; divided by 1.25.

The factored loads plot at (A’, B’) and for the pad to
fail at B’ it would need to have a vertical load capacity
Vi=0.8. It is clear that this method of including a meas-
ure of safety in a design also assumes monotonic, propor-
tional loading and takes no account of alternative load-
paths to failure. It is also clear that, for any specified
load-path and suitably selected partial factors, both
methods can lead to a footing design with identical
dimensions.

It is of considerable practical importance for the safe
design of interconnected pad footings, such as those sup-
porting offshore platforms, to investigate: the manner in
which these concepts might be applied to them; the se-
quential failure of the pads under increasing monotonic
loads; the relationship between the diameter of the pads,
their spacing and the loading regime, and the importance
of the manner in which the horizontal load is distributed
between them. The problem is further complicated by the
fact that such a platform may also fail by overturning,
which depends on the spacing of the pads but not on their
diameter. These questions are addressed in the paper.

THE LOAD CAPACITY OF SHALLOW PAD
FOUNDATIONS

It is now widely accepted that the failure-envelope with
(V, H) axes, for a shallow, rigid pad-foundation is very
closely a parabola (as shown in Figs. 1, 2). This is also
true with (¥, M/B) axes for a footing of breadth B loaded
by a moment M, leading to the conclusion that a cigar-
shaped three-dimensional failure envelope, with elliptic
cross-sections in V= constant planes, might be applicable
in (V, M/B, H) space (Butterfield, 1985). Experimental
evidence supporting these results and extensive discussion
of them can be found in Ticof (1977), Butterfield and
Ticof (1979), Butterfield (1980, 1993), Gottardi and

Fig. 3. A four-legged platform pin-jointed to rigid, circular pad-
foundations

Butterfield (1993).

We shall be concerned here solely with a parabolic
section of this envelope in the (V, H+) plane. The
parabola is identical to the one shown in Figs. 1, 2. If its
axes are normalized by plotting (H/V*) against (V/V?*),
its apex will always be at (V/V*)=1.

The equation to the parabolic (V, H) failure-envelope
is,

H=tV(1-V/V* )
or

H/V)=tV/VIA-V/VY 0]

This equation predicts, correctly, that the maximum
value of (H/V™) occurs at (V/V*)=0.5. Very many
experiments, using dense sand, loose sand, Kaolin and
brass-rod analogue material, have established that (H/
V*)max =0.125 very closely, consequently £~0.5.

We shall also need to calculate the vertical, centreline
load capacity Q, of a submerged, sea-bed supported,
circular pad-foundation, diameter D. In terms of conven-
tional bearing capacity and shape factors (V,, s,) this is

Qu=y".(D/2). N,.s,.(aD*/4)=1.y".N,.5,.(D*/8) (3)

LOADING TO FAILURE OF A TYPICAL FOUR-
LEGGED PLATFORM

Figure 3 shows an idealized, four-legged platform with
its legs connected, via pin-joints, to shallow, rigid, circu-
lar pad-foundations. Its effective weight is W and it is
subjected to wave and wind loads which generate a
horizontal force P (with expected maximum value Py),
acting at height 4 above the top of a square array of pads,
spaced at s centre to centre.

The loads generate vertical forces (Vi, Vi) and
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Fig. 4. Load paths of left-hand and right-hand pads to failure

horizontal forces (H, Hr) on each pad in the ‘left hand’
and ‘right hand’ pairs, respectively, as shown in the
figure. Initially, W will be distributed equally between all
pads with Vi = Vx=(W/4). It is not necessarily true that
H will be distributed equally between them. A more
general possibility is that Hy, =aP/2 and Hx=(1—a)P/2,
where (0 <a < 1); the requirement being that, for a four-
pad group loaded as shown, H; + Hy=P/2 always.

In what follows (W, P) will refer to ‘global’ forces
applied to the platform and (V, H) the consequential
‘local’, forces supported by specific pads.

Any increment dP of P, will generate a moment (dP.h)
at base level, which, because the legs are pinned to the
pads, will be resisted solely by changes (dV) in the vertical
forces acting on them. Hence,

dVi=—(dP/2)(h/s)= —dP(r/2)
and
dViy=(dP[2)(h[s)=dP(r/2), where r=h/s. ()

Integration of Eq. (4) provides the general loading regime
on the platform,

Vi=W/4—Pr[2=W/[4—H, r/a, since H ,=aP/2 (5a)
Ve=W/4+Pr/2=W/4+Hg r/(1—a),

since Hy=(1—a)P/2 (5b)

The slopes of the (H, V) load paths followed as P is
applied are therefore (—a/r, (1—a)/r). Whena=1/2, H.
=Hy=P/4 , the gradients are % (1/2r) and P is shared
equally between the pads.

The (V, H) diagram of Fig. 4 illustrate this situation
where, again, the vertical dead-load establishes point A
and (BL, Br) are specific points on load-paths for left-
hand and a right-hand pads, respectively, when a
horizontal load P, is applied.

The diagram follows the loading sequence of the plat-
form pad-foundations as they proceed, in (V/V*, H/V*)
space, from a vertical self-weight load at A (here V,/V*
=0.3), via an increasing wave load P along load paths
determined by Eq. (4) (gradient=0.75, hence r=2/3) to
points (By, Bg) at which H,/V*=0.05. Hence ny=Py/ W
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Fig. 5. FEM analysis showing plastic-zone development (Fisher and
Cathie, 2003)

=1/6 (i.e. the applied horizontal load is one sixth of the
weight of the platform).

When the horizontal load increases, the vertical load
on the left-hand pair decreases whilst that on the right-
hand pair increases until, if ¢=1/2 is maintained, the
‘upwind’ pads reach failure at point Cy (H/V* then being
0.075, accompanied by a decrease in V/V* to about 0.2).
The ‘downwind’ pads are now at point Cg, well away
from the failure envelope. If P increases further the left-
hand pair of pads will unload and both ¥, and H; will be
decreasing whilst traversing the failure envelope towards
D.. The right-hand pads would follow the path (Cg, Dy),
which reflects (Cp, Dp), until it intersects the failure
envelope at Dy, simultaneously locating D;: at which
stage all pads have failed. During the latter process P can
no longer be distributed equally between all pads.

The ‘safety’ for such a system (for the specified load-
path) is governed by the onset of ‘sliding’ failure of the
‘upwind’ pads. A load safety-factor for P can be defined
in this case-as the ratio of P(Cy)+ P(Cg) to that of P(B,)
+ P(Br)~0.15/0.1=1.5. When total failure occurs the
corresponding P ratio will be that for the D and B points,
i.e. (0.026+0.124)/0.1=1.5 again. The ratio has there-
fore not increased perceptibly and, once started, total
collapse of the complete foundation follows at an essen-
tially constant value of P.

The highly unsymmetrical manner in which pads
respond to horizontal loading is well illustrated in Fig. 5,
which shows finite element output of plastic zones at
failure under an idealised four-legged platform (Fisher
and Cathie, 2003), in which the ‘upwind’ pad has failed
by sliding and the ‘downwind’ one in the classical plung-
ing mode

PAD DESIGN FOR A FOUR-LEGGED PLATFORM

In the ‘partial factors’ method, well-defined loads are
factored up less than those whose values are uncertain.
Thus the lateral wave loading would be increased from
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the estimated value P, to Py, whereas the platform weight
W, known more precisely, would not be factored.
(In fact, a reduction in W would decrease the horizontal
load capacity of the pads, leading to an increase in their
diameter, whereas an increase in W would improve the
overall stability of the platform against overturning.) The
soil strength parameters tan¢’ (and thereby N,) would be
reduced to ‘mobilised’ values but the shape-factor s, and
the submerged soil density ¥’ would not be factored.

Eurocode 7 case C recommends a load factor of 1.3
““for unfavourable, variable actions’’ and a ‘‘strength
mobilisation’’ (reduction) factor of 1.25.

There are two failure modes to be considered.

a. Failure by overturning: Since this is determined sole-
ly by the applied loads and the platform geometry and
not at all by the subsoil properties, it can best be catered
for by an independent load factor F;, on P,. The platform
will therefore overturn when F, (P, h)=W(s/2), a
relationship which establishes the minimum pad spacing s
as

S:ZF() h(Po/W)=2Fohno (6)

b. Foundation failure: From the previous analysis it is
evident that, ideally, all pads should fail simultaneously.
The design values of (V, H) would then lie on a single
parabolic, mobilised-strength failure-envelope and the
design value of V*, for each pad in the factored system
would be identical.

If (W, P,) represent the factored ‘design’ loads, and n
the Py/ W ratio, then, from Eq. (5), the load coordinates
(V, H), for a left-hand pad at failure are, writing r=#4/s.

V, Hy, = {(W/4—nWr/2), naW/2}
=mW/2){(1/2n—-r), a} 0

From Eq. (2), the equation to the parabola can be
written as V*_ =¢V?/(tV-H) and, since (V, H), lies on it,
the value of V* corresponding to a C. failure-point can
be found by substituting (V, H). values from Eq. (7).
This leads to,

V* =(Witc?)/4(c t—2na): where c;=(1-2rn)  (8)

The value of V*y, corresponding to the point Ck can be
deduced similarly to be,

V= (Wtc?) [4(cat — 2n(1 — a)): where c;=(1+2rn) (9)

By equating V*; and V*y in Egs. (8), (9) we obtain the
specific value of ‘@’ which will achieve simultaneous
failure of all four pads,

a={1-2nr+4n**—8n’r’t+2(n*r* — 2nr’t

+ 23"} [{2(1 +4n*P)} (10)

For a surface pad (¢=0.5) and symmetrical load paths
(@=0.5) this equation reduces to #»=(1-4n)/n* a condi-
tion which can only be satisfied by unrealistically small
values of n, with r becoming zero when n=0.25.
Inserting the Fig. 4 parameters {r=0.5, r=2/3,
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Fig. 6. Failure envelopes and load paths for surface pads (¢ =0.467)

n=0.25) into Eq. (10) generates a=0.467 and V*_ = V*;
=0.667. Figure 6 shows the resulting failure envelope
together with that from Fig. 4. Although the difference in
the slopes of the load paths involved is quite small, simul-
taneous failure of all the pads has been achieved, the
design value of V*; has been reduced by one third and
therefore (from Eq. (3)) the pad diameter reduced by
about 13%.

The philosophy of this approach, which provides an
alternative model for the load paths followed by the pads
from first loading to their simultaneous failure, is that:
even if @=1/2 at the start of loading from A there is no
reason why it should remain constant throughout the
complete loading process; ‘@’ will, more likely, change
progressively as P increases, distributing the horizontal
load between the pads in such a way as to ensure that they
fail simultaneously when P= P, (i.e. although the actual
load paths may be curved lines the mean paths cor-
respond to a=0.467).

NUMERICAL EXAMPLE 1

The parameters used in the following example are
similar to those used by Georgiadis (1985) and Powrie
(2004). The platform (weight W =48 MN) has an effective
height #=98 m, at which the expected horizontal wind/
wave load Py;=12 MN acts. Therefore ny=1/4 and, if a
factor of safety Fy=2 against overturning under P, is
adopted, Eq. (6) establishes s=98m and r=h/s=1.
Using the Eurocode 7 load factor, P;=(1.3 Py)=15.6
MN, hence nq=0.325 (considerably larger than the value
of 0.25 used in Figs. 4, 6). The objective is to determine
the safe diameter for the unburied pad foundations sup-
porting the platform.

If the Eurocode 7 reduction factor of 1.25 is applied to
tan(36°), the tangent of the expected soil friction angle
¢’0, the mobilised value ¢’ mo,=tan™"' (0.5812) = 30°.

For ¢’=(30°, 36°) and circular pads, reasonable
[(bearing-capacity factor) x (shape factor)] products are
(N,. 5,)=(20, 60). Equation (3) can then be used to
calculate Q, for any pad. Whence, if y’ =10 kN/m?, Q,=
(78.54, 235.62) D* kN for the two values of (,. s,).

Equation (10) then provides the required value of
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Fig. 7. Numerical example 1: failure envelopes and load paths for
surface pads (@=0.246)

a=0.246 and Eq. (8) (or (9)) the associated load-capacity
of each pad V*=48.8 MN. Equating this to Q, (for ¢’ =
30°) establishes the pad diameter D=28.5 m. Figure 7
shows the relevant failure envelope, load paths and
failure points. The point marked by a diamond on the
V=W/4=12 line at H=FyP,/4 =6 represents the P/4=
(H.+ Hy)/2 value at which the platform will overturn
(in this case, overturning would occur at 2P,=24
MN=1.5 Py).

A portion of the failure envelope for the fully realised
strength  (¢/0=36°, Qy=146 MN) is also shown.
Whereas, at failure, the load on a right hand pad is
always far removed from this envelope this is not so for
the left hand pads which fail at essentially identical load
points on both envelopes. If the safety factor of the whole
set of pads is defined as the ratio of their mean horizontal
load at failure to (Po/4) it is clearly only about 1.3 for
both full and reduced soil strengths. This is an unaccepta-
bly low figure, which highlights the vulnerability of
surface pad foundations to horizontal loads (Butter-
field, 1993).

Surface pads will not, in general, provide adequate
safety against horizontal failure—they need to be embed-
ded. The following sections extend the foregoing
methodology to encompass pads buried at shallow depth
d, where 0<d/D=<1.

LOAD CAPACITY AND FAILURE ENVELOPES
FOR SHALLOW PADS (0=<d/D<1)

Figure 8 illustrates the extended notation which
becomes necessary to include, not only actual (H, V) load
points with origin O, but also (H, V’) load points relating
to a coordinate origin O’ at the ‘zero’ of a shifted parabo-
la such that ¥V’ =(V+mV*). The maximum vertical load
capacity of the buried pad is still at ¥* but the maximum
span of the parabola, referred to O’, becomes V*/ =(1+
m) V*,

If the maximum value of H= V*/f, then, since V*/f=
V¥ t/4=V*(1+m) t/4, m and f are related via,

~
I~

‘ VHifj= V-t/a . \
-_)(Z__ = .__.ﬁP 1 = /3\\

/ N ' ,
KV L]

tap-(t) t,an-1(alr)/\'

O O wn | (V,V)

mV* v*
v*l

Fig. 8. Failure envelope and terminology for a buried pad

(1+m)y=4/ft (11)

If, also, kV* is the value of H at the origin O, at which
V' =mV*, then, since the point (mV*, kV*) lies on the
failure parabola passing through O’,

KV*=mV*t 1 —mV*/V*)Y=mV*t/(1+m)

i.e. (A+m)=mt/k (12)

Consequently the value of k determines both f and m
from,

f=4(t—k)/f* and m=k/(t—k) (13)

It is well known (e.g. Sokolowski, 1956) that, for
25° < ¢’ <=40°, the bearing capacity factors N, and N, are
almost equal. The vertical centreline load capacity O, of
a footing buried at shallow depth can then be expressed in
terms of the surface pad capacity Q as,

0v=00 (1+2d/D)=Qy(1+2b), where b=d/D (14)

Hence, by embedding a pad at (d/D)=(0, 0.5, 1.0) its
vertical load carrying capacity V* increases in the ratios
(1, 2, 3) and in our example the ‘expected’ (V,s,)s
products become (60, 120, 180) with corresponding
‘mobilised’ values (20, 40, 60).

If, in addition, the lateral resistance of the buried pad,
under zero vertical load, is equated to the passive
resistance of an equivalent skirted or solid pier then, with
K, the relevant passive earth pressure coefficient,

kV*=K, (y'd*/2)D =y D(K,b*/2) (15)

For a surface-pad the theoretical value of N, is directly
proportional to K,. By adopting K,=N,/5 we obtain
K,=(4, 12) for ¢’ =(30°, 36°), respectively, values very
close to those given by Sokolowski (1956) for rough walls
with d=2¢’ /3=(20°, 24°).

The bearing capacity Eq. (3), when extended to allow
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Fig. 9. Failure envelopes for pads, diameter D, buried at shallow
depth d

for shallow burial, and re-arranging the terms, becomes,
y .D*=8V*/(n.N,.s,.(1+2b)) (16)

By eliminating y’.D? between Egs. (15, 16), approximat-
ing s,= 1 and inserting K, = N, /5 we obtain a relationship
between k and b,

k=4b*/(5n(1+2b)) = (b*/4) /(1 +2b)) 17)

There is evidence, from small, brass-rod model tests
(Butterfield, 1985), which supports this lateral resistance
assumption and also demonstrates a decrease in f with
increasing burial depth to rather less than 6 for b=1. A
numerical analysis of a pad buried in granular material at
b/D=0.5 (Gottardi et al., 2005) concluded that f=~7. We
shall incorporate these results by assuming that,

f=(@-2b) (18)

Using this relationship to eliminate f from the first of
Eq. (13) connects (b, k, ¢) in an equation that can then be
used in conjunction with Eq. (17), to eliminate k. The
result is the following (b, 1) expression that reconciles all
the foregoing assumptions,

2(4-b)P—4t+ b2 /(1 +2b)=0 (19)

Equation (17) predicts that ¢ will increase slowly with b;
for example, b=(0, 1/2, 1) leads to k=10, 1/32, 1/12}
from Eq. (17), =1{0.500, 0.538, 0.569} from Eq. (19)
and m=1{0, 0.062, 0.172} from the second of Eq. (13).
The outcome of this new formulation is a set of ‘shifted’
parabolic envelopes as shown in Fig. 9.

By using these diagrams, the surface-pad design
methodology, developed earlier, can be extended to in-
clude shallow-depth pads (0<d/D<1) as follows.

The equation to the parabola in Fig. 6, referred to
origin O’ is,

H=H=VtQA=-V'/V*)=(V+mV{1—-V+mV*
J(V*+mV*)} (20)

Equation (20) can be re-arranged to provide the value of

V*
VE={c;+ @ mV?*+ )%} )2 me

T T T T T hodaks.
; ulf® (VJ;&HR lé| ngE0325 |
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/ A1/ =08§: r=H
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/ ! K
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A
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Fig. 10. Numerical example 2: failure envelopes and load paths for
buried pads (a=0.366, 5=0.5)

where

c;=H+Hm+mtV—1tV) @n

Equation (7) still applies and it can be used, now in
conjunction with Eq. (21), to establish equations corre-
sponding to (8, 9) which provide the values of V*, and
V* in terms of (W, r, t, n, a). Setting V*. = V*; gener-
ates the required expression for ‘@’, in terms of (m, n, r, t)
that will again ensure simultaneous failure, under the
specified loads, of the four buried pads supporting the
platform. As before back-substitution for ‘a’ determines
V* and the pad diameter via Eq. (3). These equations are
cumbersome but easily handled by an algebraic computer
package. (They are provided in APPENDIX A together
with a short Mathematica procedure that derives and
processes them, calculates key parameter values and plots
the failure envelopes and load-paths.)

NUMERICAL EXAMPLE 2

The data for this example is identical to that used in
example 1. The results provided are the failure envelopes,
load paths, pad dimensions and ‘safety factors’ obtained
using the buried-pad procedure for b= {0.5,1.0}.

a. Burial depth b=d/D=0.5

The values of (@, V*4) generated by the algorithm are
(0.366, 35.56) MN with the latter leading to D=6 m and,
for the full-soil-strength parameters (NV,s,), =40, V* ;=
106.7 MN.

Figure 10 shows the relevant failure envelopes and load
paths. If the left-hand pad failure-load coordinates at the
intersection of its load path (Eq. (5a)) with the ultimate
strength parabola (Eq. 20), are (Vir, Hir), then the value
of Hgy for the right hand pad will lie symmetrically on its
load path (Eq. (5b)) at Vge=(W/2— Vyip) as in Fig. 10.
(The expressions for (Vir, Hir, Vrr, Hzrr) are derived in
the penultimate paragraph of the Mathematica code in
APPENDIX A.)

The ‘full soil strength’ load factor of the pad relative to
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Fig. 11. 'Numerical example 2: failure envelopes and load paths for
buried pads (¢ =0.494, b=1.0)

P, is, as previously, (Hir+ Hgr)/(Po/4); in this case 1.79.
Embedment at 3 m depth therefore reduces the required
pad diameter from 8.5 to 6 m and increases their ‘factor
of safety’ against failure under horizontal loading by
about 35%.

If the pad is embedded one diameter deep the design
values of (a, V*;) become (0.494, 29.42 MN). Since
(N,s,), = 60 when b= 1, the required pad diameter reduces
further to 5m. The ‘full soil strength’ load factor
calculated as above is 2.26. However, to achieve this the
value of Vir has to become negative (Fig. 11). Since the
platform overturns when Vir=0 (indicated by the ‘dia-
mond’ at (12, 6)) and a factor Fy=2 against overturning
under Po has been incorporated, the ‘full soil strength’
load factor cannot exceed this value.

These results illustrate the proposed methodology and
the economy in pad size and improvement in lateral load-
capacity that can be achieved by modest depth burial (or
skirting) of pad foundations.

A PLATFORM AS A THREE-DIMENSIONAL
STRUCTURE

Since the lateral wave/wind load P, can strike the
platform from any angle all four pads will be identical.
However, it is still necessary to check whether or not pads
designed to resist P, acting perpendicular to a side of the
platform will be adequate when P, is directed along a
platform-diagonal.

The resistance of the platform to overturning will
nominally increase by a factor of ,/2 as the line of action
of P swings from being perpendicular to its side to being
diagonally aligned. In practice this will be offset by the
possibility of lateral instability of the in-line pads and the
true increase in stability is likely to be Iess.

Although the effective pad-spacing is increased, to s’ =
sﬁ, the overturning moment P.A is now only resisted by
changes in V on the two pads aligned with the diagonal.
Consequently AV= x(P)(h/s")=£P (h/s\/2)=£(P/2)

(rﬁ) and the pads themselves will be more vulnerable
under diagonal loading.

If the pad spacing were to be increased to s” =sﬁ the
length of the diagonal becomes 2s. The AV generated in
the diagonal load case would then be reduced to = (P/2)r
again and, if it is assumed that the intermediate pads each
support (P/4), and the distribution of the horizontal
loads between the new left-hand and ‘right-hand’ pads is
again {a, (1 —a)}P/2}, the results of the previous ‘side
load’ analyses using r would apply to the ‘diagonally’
loaded enlarged platform. The ‘r’ ratio to be used for
loads directed perpendicular to the sides of this platform
then becomes r” = (h/s/2)=r/,/2.

If all the previous analyses are to apply to a diagonal
plane of a platform it is one with an actual ‘r’ value of 7/
ﬂ-achieved by increasing the platform width to sﬁ.
This is, of course, a major practical disadvantage of a
2x2 array of pad foundations-and an argument in
favour of multiple pads or ‘ring’ foundations. The
enlarged system will be intrinsically more secure against
loads perpendicular to its sides and its factor of safety
against overturning increased by a factor of ﬁ; the pad
diameter required will still be that provided by an analysis
using 7.

CONCLUDING REMARKS

The well-established concept, that the failure-load
envelope for a shallow-depth pad foundation, under
combined vertical and horizontal loading, can be
represented satisfactorily by a parabola, has been extend-
ed to generate a new design and analysis methodology for
a square group of pad-foundations interconnected by an
idealised structural platform.

1. The procedure is simple to implement, either
numerically or graphically to provide a rational
prediction of the necessary pad diameter, for a
specified set of soil parameters and design values of
the static vertical and horizontal loads acting on
the structure. v

2. By allowing for the fact that the horizontal load
may not be distributed equally between the ‘up-
wind’ and ‘downwind’ pads, a pad diameter can be
deduced satisfying the ideal requirement that all
four pad foundations should fail simultaneously
under the specified design loading; thereby provid-
ing a minimum value.

3. New parabolic failure envelopes for pads embed-
ded up to one diameter deep are presented and the
analysis is extended to include buried pads. Both
pad failure, predominantly of the ‘upwind’ pads,
and platform overturning are incorporated with
the latter becoming significant for the more deeply
embedded foundations.

4. The methodology presented is thought to provide a
novel and useful way of exploring the fundamental
static load capacity, and overturning stability, of
idealized groups of shallow pad-foundations under
horizontally loaded, four-legged structures.
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434 BUTTERFIELD
respectively
NOTATION (V*L, V*p): values of (V;, V) for a pad failing under the design loads
a: horizontal load-share factor, (H,, Hy)=(a, 1-a)(P/2) (Vir, Hip): intersection point of a left-hand pad load path with the
b: footing burial-depth ratio=d/D ’ ‘full soil strength’ failure envelope
d: footing burial depth (Vrr, Hrp): point on a right-hand load path corresponding to (Vig,
D: pad diameter Hir) . . .
(f, m, k): dimensionless parameters defined in Fig. 8 W: effective platform weight =total vertical load on platform
F: general load factor
Fy: 10£‘ld factor agai_nst failure by overturning . . REFERENCES
h: height above (pinned) platform leg base to line of action
of P 1) Butterfield, R. (1980): A simple analysis of the load capacity of
H: horizontal load on a pad rigid footings on granular materials, Geotech., 30, 128-137.
(Hy, Hy): horizontal loads on (left, right) or (upwind, downwind) 2) Butterfield, R. (1985): Load-path dependent stability of shallow
pads footings, Discussion, Soils and Foundations, 25(3), 150-154.
K,: passive earth pressure coefficient 3) Butterfield, R. (1993): A new approach to safety factors for shallow
n: load ratio P/ W foundations: load combination factors as a basis for risk assess-
ng:  load ratio Py/ W ment, Risk and Reliability in Ground Engineering, ICE, London,
ng: load ratio Py/W 112-125. . A .
(N,, s,): bearing capacity and shape factors for a rigid, circular, 4) Butterfield, R. and Ticof, J. (1979): The use of physical models in
surface-pad design, Discussion, Proc. 7th ECSMFE, Brighton, 4, 259-261.
P: horizontal load on platform S) Fisher, R. and Cathie, D. (2003): Optimisation of gravity based
P, service state value of P design for subsea applications, Foundations: Innovations, Obser-
Py factored ‘design load’ value of P, vations, Design and Practice, Thomas Telford, London, 283-296.
Q,: vertical, centreline load, capacity of a specific rigid, circu- 6) Georgiadis, M. (1985): Load -path dependent stability of shallow
lar, surface-pad foundation foundations, Soils and Foundations, 25(1), 84-88.
Qy: vertical, centreline load, capacity of a specific rigid, circu- 7) Gottardi, G. and Butterfield, R. (1993): On the bearing capacity of
lar pad foundation at depth-ratio b surface footings on dense sand under general planar loading, Soils
r: platform aspect ratio=h/s and Foundations, 33(3), 68-79.
s:  centre to centre Spacing of pads in a square array 8) Gottardi, G., Govoni, L. and Butterﬁeld, R. (2005)’ Yield loci by
t: slope of a parabolic failure-envelope at its intersection ‘swipe” testing, ISFOG Con/., Perth, Australia (Accepted for pub-
with the vertical load axis lication).
V: vertical load on a pad 9) Powrie, W. (2004): Soil Mechanics-Concepts and Applications, 2nd
V*:  vertical centreline load capacity of a circular, surface-pad ed., London, E & F N Spon. .
V*,:  vertical centreline load capacity of a circular, pad at depth 10) Sokolowski, V. V. (1956): Statics of Soil Media, London, Butter-
ratio b WPfth~ .
V*4:  design value of ¥* at failure under the design loads 11) Ticof, J. (1977): Surface footings on sand under general planar
(V1, Vi): vertical loads on (left, right) or (upwind, downwind) pads loads, PhD Thesis, University of Southampton.
APPENDIX A

(i) The procedure for determining ‘a’ to ensure simultaneous failure of a set of four embedded pads leads to,

—h—hm+tv—mtv—,/4mt>*+ (h+ hm — tv + mtv)?

V= — 22
2mt 22)
In these equations (v, /) represents (V, H). Substituting for (v, #) from Eqgs. (8, 9) provides (V*_, V*;) at pad
failure
v* S . nw—i +L(1—2 )it —Lm(l—-z t
L= Tt 5 a 2 amns 4 nr)tw 4 nr)tw
1 1 1 1 ?
— /—=m( - 2nr)’t*w?+ AW | amnw— —(1—=2nr)tw +—m(1 — 2nr)tw (23a)
4 2 2 4 4
Pre= — L —L(l—a)n —i(l— )m w+i(1+2 )t _ L (1+2nn)t
R 2mil T2 W aymn 2 nr)tw 2 m nrjtw

1 1 1 1 1 2
- «/<Zm(1 + 2nr)’t’w? + (2(1 —a)nw + ?(1 —a)mnw — I(l + 2nr)tw + ?m(l + 2nr)tw> ))

(23b)

Setting V¥, =V*; and selecting the relevant root provides the value of ‘a’ as

a=(1+2m+m’—- 2nr —4mnr — 2m’nr + 4n°r? + 8mn’r? + 4m’n’r? — 8n’r’t + 8m?n’r’t +

2,/ (0’r?+ 4mn’r? + 6mn*? + 4m°n’r> + m*n’r> — 2nr’t — 4mnr’t + 4m’nr’t + 2mnr2t + r2t? + 4mr’t’ +

6m’r’t’ + 4m’r’t* + m*r’t’ + 16mn’rt* + 32m?n’r*t* + 16m°n’r*t?)) /(2(1 + 2m + m? + 4n’r? + 8mn’r? + 4m’n’r?))
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EFFECT OF ANISOTROPIC YIELDING 435
These very cumbersome expressions are clearly best generated in, and handled by, an algebraic computing package.

(i) The following is a list of Mathematica code that does this, processes the data used in the examples and generates a
diagram in the form of Figs. 9, 10 and 11.

b=1.; (* the selected burial depth ratio *)

(* an example of input data®)

w=48; hh=98; po=12; pd=1.3*po; n=pd/w; fot=2; r=w/(2*po*fot);

gamdash = 10; ngamsgam = 20*(1 +2*b); (* using N,s,=60 for ¢’ =30° *)

f=(8—2*b); k=(b"2/4)/(1 +2*b);

Solve[2*(4 — b)*t"2 — 4%t +b"2/(1 +2*b) = =0, t] /N;

tt=t/.%][[2]]; (* root providing ‘t’ *)

m=k/(tt—k)+ .001; (* avoids the singularity when m=0%)

Simplify[Solve[h = = (v + m*vstar)*tt*(1 — (v + m™*vstar)/(vstar + m*vstar)), vstar]]/N; vvstar =vstar/.%[[2]];
(* root providing ‘vstar’ *) vstarleft=%/. {vo(m*w/2)*(1 —2*r*n)/(2*n), h—»n*w*a/2}; vstarright=%%/.
{vo@m*w/2)*(1+2%r*n)/(2*n), h—»n*w*(1 —a)/2}; Simplify[Solve[vstarleft = = vstarright, a]] /N; aa=a/.%
[[1,1]]; (* root providing ‘a’ *) vvstarleft =vstarleft/. a—aa/#N; (* V* at apex of parabola *)

diam = 10*(8*vvstarleft /(Pi*gamdash*ngamsgam))”~(1/3); (* pad D*)

gl =Plot[(v + m*vvstarleft)*tt*(1 — (v + m*vvstarleft) /(vvstarleft*(1 +m))), {v,0,vvstarleft}, DisplayFunc-
tion— Identity];

g2 =Plot[(v+ m*vvstarleft*3)*tt*(1 — (v + m*vvstarleft*3)/(vvstarleft*3*(1 + m))), {v,0,1.5*vvstarleft}, Dis-
playFunction— Identity];

g3 =Plot[— (aa/r)*(v-w/4), {v, 0, w/4}, ,DisplayFunction— Identity];

g4 =Plot[(1 —aa)*(v—w/4),{v, w/4,1.5%vvstarleft}, DisplayFunction— Identity];

g5 =ParametricPlot[{w/4,y},{y, 0, 3*vvstarleft/f}, DisplayFunction— Identity];

Show[{gl, g2, g3, g4, g5},DisplayFunction— $DisplayFunction]; (* figure *)

Solve[{h= = —(aa/n)*(v—w/4), h= = (v+m®*vvstarleft*3)*tt*(1 — (v + m*vvstarleft*3) /(3*vvstarleft*(1 +
m)))},{h,v}]/N;

(* (HgL, Vi) coords of failure point on full-strength parabola *)

failnl =h/.%[[2,111; failvl =v/.%%[[2,2]];

failv2 = (w/2 — failv1); failh2 = (1 — aa)*(failv2 — w/4);

loadfactor = (failh1 + failh2)/(po/2); (* load factor F, of pads rel.to Po *)

If[loadfactor > fot, maxloadfactor = fot];

(* this condition arises when failvl < 0, i.e. overturning will occur before pad failure *)
Print[StringForm[’a=", vstar =", pad diameter = “, maximum load factor on Po=", overturning load factor
=" aa, vvstarleft, diam, loadfactor, fot]];
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