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Critical Review

1. Introduction

Tannins, flavonoids, and lignin-carbohydrate complexes 
are three major classes of polyphenols in the land-plant 
kingdom. Tannins are classified into two large groups: 
hydrolysable and condensed tannins (1) (Fig. 1A).  
Hydrolyzable tannins have structures in which a poly
alcohol (mainly glucose) is esterified with a polyphenolic 
carboxylic acid such as a galloyl, hexahydroxydiphenoyl 
(HHDP) (a dimer of the galloyl group), valoneoyl (a  
trimer of the galloyl group), or dehydrohexahydroxy-
diphenoyl group (an oxidized metabolite of the HHDP 
group). Condensed tannins are composed of flavan units, 
mostly (+)-catechin, (−)-epicatechin, or their analogs, 
condensed with each other via carbon–carbon bonds.

Flavonoids are polyphenolic compounds that are  
secondary metabolites synthesized from chalcones  
and categorized into flavonols, flavones, flavanones, 
isoflavones, pterocarpan, coumestan, etc. (2) (Fig. 1B). 
Resveratrol, recently known for its anti-aging effect,  
is classified as a stilbenoid.

Lignins are formed through phenolic oxidative cou-
pling processes. Lignin macromolecules are formed by 
the dehydrogenative polymerization of three mono
lignols: p-coumaryl, p-conifery, and sinapyl alchohols. 
Some polysaccharides in the cell walls of lignified  
plants are linked to lignin to form lignin-carbohydrate 
complexes (3) (Fig. 1C). The molecular weight, acidity, 
and solubility of the lignin-carbohydrate complex may 
be changed subtly, depending on the ratio of lignin and 
carbohydrate moieties. Due to the difficulty of complete 
structural determination, the pharmacological studies of 
lignin-carbohydrate complexes have been limited, as 
compared with those of tannins and flavonoids (4 – 7).
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animal experiments are still mandatory. However, there 
are big differences in pharmacodynamics and pharmaco-
kinetics of drugs between animals and humans. Some 
animal protection groups protest against animal experi-
ments from the ethical point of view. These trends  
significantly reduce the support for the animal experi-
ments. Recent progress in computer technology led  
researchers to explore metabolic profiling with a chemi-
cally designed liver and microtips that mimic the func-
tion of internal organs, thus minimizing the weight of 
animal experiments (8). The other approach is to use 
cultured cells that mimic the whole body. In order to in-
vestigate the effect of polyphenols on the oral diseases, 
we have established simple in vitro assay systems with 
human cultured cells (Fig. 2). The present article re-
viewed the biological activities and possible dental ap-
plication of three major polyphenols, citing mostly our in 
vitro studies together with those from other groups.

2. Tumor-specific cytotoxicity against human oral  
squamous cell carcinoma

An in vitro assay system for tumor-specificity was 
established using human oral squamous cell carcinoma 
cell lines (HSC-2, HSC-3, HSC-4, Ca9-22) and human 
oral normal cells [gingival fibroblast (HGF), pulp cell 
(HPC), periodontal ligament fibroblast (HPLF)]. These 
cells were incubated for 48 h with increasing concentra-
tions of test samples, and the relative viable cell number 
was determined by the MTT method. In brief, the treated 
cells were incubated for another 3 h in fresh culture  
medium containing 0.2 mg/ml 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT). If cells 
are viable, the water-soluble MTT is reduced to an  
insoluble formazan having a purple color by NAD(P)H-
dependent cellular oxidoreductase enzymes. The forma-
zan is then solubilized with 0.1 ml of DMSO and  
the concentration (that reflects the relative viable cell  

Fig. 1.  Backbone structures of tannin (A), flavonoid (B), and lignin-carbohydrate complex (C). Pentagalloyl glucose is shown as 
an example for monomeric hydrolyzable tannins (A).
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number) determined by optical density at 540 nm.  
Tumor-selectivity index (TS value) was determined by 
dividing the mean CC50 against normal cells by the mean 
CC50 against tumor cells (Fig. 2A).

Among 24 plant extracts, Camptotheca acuminate leaf 
showed the highest TS value (88.3), followed by Vitis 
spp (> 3.5), Sasa veitchii (> 2.3), and Phellodendron 
amurense (> 2.1), whereas other plant extracts showed 

much lower TS value (< 2) (9). Anticancer drugs such  
as camptothecin [originally isolated from the stem wood 
of the Camptotheca acuminata tree) (TS = 2961) (10),  
anthracyclines (doxorubicin, daunorubicin, epirubicin, 
mitoxantrone) (TS = 181 ± 100) (range: 47 – 259)] (11), 
mitomycin (TS > 23) (12), docetaxel (TS = > 128) (13), 
5-FU (TS = > 66), and bacterial products (nocobactin 
NA-a, -b) (TS = 43.9 – 80) (14) showed higher tumor-

Fig. 2.  In vitro assay systems used to evaluate the anti-tumor (A), anti-viral (B), anti-inflammatory (C), and anti-UV activity 
(D). Both human oral normal and tumor cells were treated for 48 h with the indicated concentrations of mitomycin (MMC),  
bleomycin (BLM), or peplomycin (PEP); and viable cell number was determined by the MTT method to calculate the tumor-
specificity index (TS value) (A). Mock- or HIV-infected MT-4 cells were incubated for 5 days with different concentrations  
of alkaline extract of leaves of Sasa senanensis Rehder (SE), and the relative viable cell number was determined by MTT assay, 
to calculate the anti-HIV index (SI value) (B). Human gingival fibroblast (HGF) cells were incubated for 24 h with the indicated 
concentrations of SE in the presence (black symbols) or absence (white symbols) of IL-1b (5 ng/ml), and the viable cell number 
(circles) and extracellular PGE2 concentrations (bars) were determined to calculate the anti-inflammatory index (SI value) (C). 
HSC-2 cells were exposed for 1 min to UV irradiation (closed circle) or not (open circle) in PBS(−) containing the indicated  
concentrations of sodium ascorbate and incubated for a further 48 h in fresh culture medium to determine the relative viable  
cell number and then calculate the anti-UV index (SI value). Each value represents mean ± S.D. of triplicate assays.
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specificity (Table 1). Especially, topoisomerase I inhibitors 
[camptothecin (TS = 2961), SN-38, an active metabolite of 
irinotacan (TS = 1321)] and topoisomerase II inhibitors 
[etoposide (TS = 486), teniposide (TS = 3190)] showed 
the highest tumor-selectivity, suggesting future applica-
tion for chemotherapy of oral squamous cell carcinoma 
(10). Although human normal oral cells (derived from 
mesenchymal tissues) and oral squamous cell carcinoma 
(derived from epithelial tissues) showed different cell 
types, the tumor-specificity determined by the present 
method seems to reflect the anti-cancer activity.

Lignin-carbohydrate complexes (TS = 2.7), flavonoids 
[flavonols, isoprenylflavonoids (TS = 2.1 ± 0.4) (15 –  
17), 2-arylbenzofurans (TS = 1.2 ± 0.2) (18), benzophe-
nones (TS = 1.7 ± 0.4), xanthones (TS = 1.2 ± 0.3) (19), 
anthraquinones (TS = 3.8 ± 4.9), phenylbutanone glyco-
sides (TS = 1.5 – 3.3), stilbene glucosides (TS = 2.4 ± 0.8), 
naphthalene glucosides (TS = 1.1 – 1.4) (20), luteolin 
glucosides (21)] (TS = 1 – 3.8), tannins (TS = 1 – 4.8) 
(22, 23), terpenoids and their glycosides (TS = 1.1 – 2.5) 
(4, 24, 25) showed much lower tumor-specificity.

Many antioxidants expected for anti-aging effect, such 
as sodium ascorbate (vitamin C) (TS = 2.5), gallic acid 
(TS = 1.1), catechin (TS = 1.0), epigallocatechin gallate 
(TS = 4.1), chlorogenic acid (TS = 1.7) (26), daidzein 
(TS = 1.1), genistein (TS = 2.4) (27), quercetin (TS =  
2.2), isoliquiritigenin (TS = 4.0), kaempferol (TS = 1.4), 
resveratrol (TS = 2.9) (28), and curcumin (TS = 1.7) (5) 
showed disappointingly lower tumor-selectivity (Table 1).

Among synthetic compounds, a,b-unsaturated ketones 
with ring structure such as 6-(4-nitrophenylmethylene)-
2-(3,4,5-trimethoxyphenylmethylene)cyclohexanone 
(TS = > 176) (29), 2-{3-[3,5-bis(benzylidene)-4-oxopi-
peridin-1-yl]-3-oxopropylsulfanyl}ethanesulfonic acid 
(TS = 154) (30), 3,5-bis(benzylidene)-1-diethylphosphono-
4-oxopiperidines (TS = 71) (31), 2-benzylidene-6- 
(nitrobenzylidene)cyclohexanones (TS = > 108) (32), 
and dimeric 3,5-bis(benzylidene)-4-piperidones (TS =  
90) (33) showed higher tumor-selectivity. These com-
pounds only slightly activated caspase-3, but did not  
induce internucleosomal DNA and fragmentation  
(biochemical hallmark of apoptosis) in human oral  
squamous cell carcinoma cell lines. Furthermore, codei-
none (oxidative metabolite of codeine) and morphinone 
(oxidative metabolite of morphine), which have an a,b-
unsaturated ketone structure did not induce apoptosis, 
but rather induced autophagy (formation of secondary 
lysosome) in HL-60 cells, which is known to be a very 
sensitive cell line to commit to apoptosis by many induc-
ers (34). These results suggest that the apoptosis-inducing 
activity may not be necessarily related to the tumor- 
selectivity.

On the other hand, simple a,b-unsaturated carbonyl 

compounds (TS = 1.2 ± 0.3) (35), hydroxyketones (TS =  
5.7 ± 6.0) (36), b-diketones (TS = 1.8 ± 1.4) (37), trifluoro
methylketones (TS = 2.6 ± 1.6) (38), azulenequinones 
(TS = 2.6 ± 2.3) (39), vitamin K2 derivatives (TS = 1.9 ±  
0.2), and prenylalcohols (prenol, geraniol, farnesol,  
geranylgeraniol, geranylfarnesol) (TS = 1.3 ± 0.3) (40), 
coumarins (TS = 1.8 ± 0.9) (41), hydroxylated couma-
rins (TS = 2.4 ± 3.0) (42), azulene (TS = 1.7 ± 1.0)  
(43), trihaloacetylazulenes (TS = 6.5 ± 10.7) (44) and 
(TS = 1.7 ± 0.6) (45), water-soluble azulenes (TS =  
2.3 ± 0.6) (46), tropolones (TS = 2.6 ± 1.8) (47), 
benzo[b]cyclohept[e][1,4]oxazine, and 2-aminotropones 
(TS = 2.3 ± 1.0) (48), benzocycloheptoxazines (TS =  
3.6 ± 3.1) (49), 1,4-dehydropypyridine derivatives (1.6 ±  
0.8) (50), 2-aminomethylene-3(2H)-benzofuranone 
(2.1 ± 1.7) (51), benzothiepins (TS = 2.4 ± 1.6) (52), 
5-benzoylimidazoles (TS = 2.4 ± 1.1) (53), 4-trifluoro-
methylimidazoles (TS = 1.7 ± 1.0) (54), 3-formylchro-
mones (TS = 2.5 ± 1.3) (55), phenoxazines (TS = 
1.7 ± 1.1) (56), berberines (TS= 3.6 – 4.0) (57), sodium 
5,6-benzylidene-L-ascorbate (SBA) (TS = 2) (58),  
benzaldehyde (TS = 8.8) (59), naphtha[2,3-b]furan-4,9-
diones (TS = 3.5 ± 6.7) (0.3 – 36.9) (60), 2-styrylchro-
mones (TS = 7.3 ± 6.1) (61), local anesthetics (lidocaine, 
mepivacaine, dibucaine, bupivacaine, procaine, tetra-
caine, aminobenzoate) (TS = 1.4 ± 0.42) (62) showed 
relatively lower tumor-specificity. Introduction of the 
dibenzyol group to dihydropyridines enhanced the  
tumor-specificity (TS = > 33 – > 53) (63).

Recently, we found that 3-styrylchrome derivatives 
showed moderate to high tumor selectivity. Especially, 
compounds that have a methoxy group at the 6-position 
of the chormone ring and a hydroxyl group at the 4′- 
position of the phenyl group in the styryl moiety showed 
the highest tumor-selectivity (TS = 69.0) (64). Multi
variate statistics with chemical descriptors for the  
location of the substituted group, molecular shape, and 
electrostatic interaction may be useful for designing  
the most favorable compound with higher tumor 
selectivity.

3. Anti-viral activity

Virus infection is one of the risk factors, and therefore 
anti-viral substances are expected to reduce the incidence 
of carcinogenesis. In order to evaluate the anti-HIV  
activity in vitro, the lethal condition for human T-cell 
leukemia virus I (HTLV-I)-bearing CD4-positive human 
T-cell line MT-4 by HIV infection was established  
(multiplicity of infection = 0.01). Mock- and HIV- 
infected MT-4 cells (3 × 104 cells/96-microwell) were 
incubated for 5 days with different concentrations of 
samples and the relative viable cell number was deter-
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Table 1.  Tumor-specificity of polyphenols
Compounds (n: number of compounds) Tumor-specificity (TS) Ref.
Lignin-carbohyrate complexes derived from pine cones (n = 4) 2.7 ± 1.1 (1.7 – 4.1) 5, 7
Flavonoids
  Flavones, flavonols (n = 36) 1.2 ± 0.6 (0.3 – 3.2) 4
  Flavonoids (n = 31) 3.2 ± 4.0 (0.8 – 31.7) 4
  Isoprenylflavonoids (n = 22) 2.1 ± 0.4 (1.6 – 3.0) 4
  2-Arylbenzofurans (n = 6) 1.2 ± 0.2 (1.0 – 1.5) 18
  Benzophenones (n = 5) 1.7 ± 0.4 (1.2 – 2.3) 19
  Xanthones (n = 9) 1.2 ± 0.3 (1 – 1.7) 19
  Anthraquinones (n = 13) 3.8 ± 4.9 (1.0 – 18.6) 20
  Phenylbutanone glycosides (n = 2) 2.4 (1.5 – 3.3) 20
  Stilbene glucosides (n = 9) 2.4 ± 0.8 (1.0 – 4.7) 20
  Naphthalene glucosides (n = 2) 1.3 (1.1 – 1.4) 20
  Luteolin glucosides (n = 3) 1 21
  Tricin, morin, quercetin, kaempferol 1.5 ± 0.6 (1 – 2.2) 28
  Isoliquiritigenin, datiscetin, galangin 2.0 ± 1.7(1 – 4) 28
  Resveratrol, daidzein, genistein 2.1 ± 0.9 (1.1 – 2.9) 27, 28
Tannin-related compounds
  Gallic acid, catachin 1.0 – 1.1 22
  Epigallocatechin gallate (EGCG) 4.1 22
  Procyanidins (n = 6) 4.8 ± 2.3 (1.0 – 7.4) 22
  Hydrolyzable tannins (monomer) (n = 7) 1.5 ± 0.5 (1.0 – 2.5) 22
  Hydrolyzable tannins (oligomers) (n = 3) 1.4 ± 0.2 (1.2 – 1.5) 22
  Large circular ellagitannins (n = 4) 4.4 ± 2.7 (2.3 – 8.2) 23
Terpenoids and saponins
  Triterpenes (n = 18) 1.2 ± 0.7 (0.7 – 2.1) 4
  Triterpene glycosides (n = 31) 1.2 ± 0.5 (1.0 – 1.8) 4
  Cycloartane glycosides (n = 7) 1.1 ± 0.2 (0.9 – 1.4) 4
  Furostaol glycosides (n = 17) 2.5 ± 4.1 (0.4 – 17.0) 4
Ketones
  a,b-Unsaturated ketones (n = 26) 1.2 ± 0.3 (0.6 – 1.9) 35
  a,b-Unsaturated ketones with ring structure (n = 4) > 229.0 29 – 33
  a-Hydroxyketones (n = 8) 5.7 ± 6.0 (1.0 – 17.6) 36
  b-Diketones (n = 22) 1.8 ± 1.4 (0.3 – 6.3) 37
  Trifluoromethylketones (n = 6) 2.6 ± 1.6 (1 – 4.5) 38
  Azulenequinones (n = 27) 2.6 ± 2.3 (1.0 – 10.2) 39
Other compounds
  Curcumin 1.7 5
  Chlorogenic acid 1.7 26
  Vitamin C 2.5 5
  Vitamin K2 derivatives (n = 3) 1.9 ± 0.2 (1.7 – 2.0) 40
  Prenyl alcohols (n = 5) 1.3 ± 0.3 (1.0 – 1.8) 40
  Coumarins (n = 21) 1.8 ± 0.9 (1.0 – 4.1) 41
  Hydroxylated coumarins (n = 23) 2.4 ± 3.0 (1.0 – 11.0) 42
  Azulenes (n = 27) 1.7 ± 1.0 (0.8 – 5.7) 43
  Trihaloazulenes (n = 26) 6.5 ± 10.7 (1.3 – 44.1) 44
  Trihaloazulenes (n = 20) 1.7 ± 0.6 (1.0 – 3.5) 45
  Water-soluble azulenes (n = 8) 2.3 ± 0.6 (1.4 – 3.5) 46
  Tropolones (n = 27) 2.6 ± 1.8 (1.0 – 9.9) 47
  Benzo[b]cyclohept[e][1,4]oxazine and 2-aminotropones (n = 20) 2.3 ± 1.0 (1.2 – 4.4) 48
  Benzocycloheptoxazines (n = 26) 3.6 ± 3.1 (0.8 – 12.5) 49
  1,4-Dehydropypyridine derivatives (n = 41) 1.6 ± 0.8 50
  3,5-Dibenzoyl-1,4-dihydropyridines (n = 2) > 43.0 (> 33 – > 53) 63
  2-Aminomethylene-3(2H)-benzofuranone 2.1 ± 1.7 (0.9 – 9.1) 51
  Benzothiepins (n = 11) 2.4 ± 1.6 (0.6 – 5.4) 52
  5-Benzoylimidazoles (n = 4) 2.4 ± 1.1 (0.9 – 3.5) 53
  4-Trifluoromethylimidazoles (n = 14) 1.7 ± 1.0 (1.0 – 4.3) 54
  3-Formylchromones (n = 16) 2.5 ± 1.3 (1.0 – 5.9) 55
  Phenoxazines (n = 24) 1.7 ± 1.1 (1.0 – 4.8) 56
  Berberines (n = 2) 3.8 (3.6 – 4.0) 57
  Sodium 5,6-benzylidene-L-ascorbate (SBA) 2 58
  Benzaldehyde 8.8 59
  Naphtha[2,3-b]furan-4,9-diones (n = 36) 3.5 ± 6.7 (0.3 – 36.9) 60
  2-Styrylchromones (n = 6) 7.3 ± 6.1 (1.1 – 17.4) 61
  3-Styrylchromones (n = 15) 14.9 ± 18.8 (1.6 – 69.0) 64
  Local anesthetics (n = 7) 1.4 ± 0.42 (1.1 – 2.2) 62
  Nocobactins (bacterial products) (n = 2) 62.0 (43.9 – 80.0) 14
Anticanceer drugs
  Anthracyclines (n = 4) 181 ± 100 (47 – 259) 11
  Mitomicin C > 29 12
  Bleomycin, peplomycin > 3.8 ± 0.2 12
  5-FU > 56 64
  Melphalan 11.1 13
  Docetaxel > 128 10
  Camptothecin 2961 10
  Camptotheca acuminate leaf extract 88.3 9
  Poly-herbal formula 839 117
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mined by MTT assay, to yield the CC50 and EC50 (that 
increased the viable cell number of the HIV-infected 
cells to 50%), respectively. The anti-HIV activity  
(selectivity index, SI) was determined by dividing the 
CC50 (mock-infected cells) by EC50 (HIV-infected cells) 
(Fig. 2B).

Alkaline extraction was found to be more effective 
than water extraction to obtain higher amounts of  
anti-HIV substances, regardless of the plant species. 
Water extracts of green tea leaves, oolong tea leaf, orange 
flow, and licorice root showed very weak anti-HIV  
activity; however, when the residue or fresh sample was 
extracted with alkaline solution, much higher anti-HIV 
activity was recovered (SI = 0.022 → 3, 0.033 → 13,  
0.5 → 15, 4 → 42) (65, 66) (Table 2). This explains why 
lignin-carbohydrate complexes, prepared by alkaline 
extraction show prominent anti-HIV activity. We  
have previously reported lignin-carbohydrate complexes 
prepared from the cone extract of Pinus parviflora  
Sieb. et Zucc. (67), pine cone of Pinus elliottii var.  
Elliottii. (68), pine seed shell of Pinus parviflora Sieb.  
et Zucc. (69), bark of Catuaba casca (Erythroxylum  
catuaba Arr. Cam.) (70), cacao husk (71), and mass (72) 
from the beans of Theobroma, Lentinus edodes mycelia 
extract (L∙E∙M) (73), precipitating fiber of mulberry 
juice fractions (74), and the leaves of Sasa senanensis 
Rehder (75) showed higher anti-HIV activity (SI =  
7 – 311). On the other hand, polysaccharides [except for 
sulfated polysaccharide (76)] (SI = 1), Kampo medicines 
(SI = 1), and its constituent plant extracts (SI = 1 – 4) 
(77), extracted by hot water, showed much lower  
anti-HIV activity. Among tannin-related compounds, 
only hydrolysable tannins showed some anti-HIV activ-
ity that was increased with oligomerization, in the  
order of monomer (SI = 1.8) < dimer (SI = 2.3) < trimer 
(SI = 3.4) < tetramer (SI = 7.3), whereas condensed  
tannins were inactive (SI = 1.1) (78). Flavonoids showed 
low anti-HIV activity (SI = 1.5 – 5.3) (15, 16, 18).  
Although luteolin glycosides (TS = 2 – 7) and tricin 
(SI = 24) showed slightly higher anti-HIV activity,  
but not to the extent attained by lignin-carbohydrate 
complexes (21) (Table 2).

Lignin-carbohydrate complexes inhibited the adsorp-
tion of HIV to target cells and reverse transcriptase  
activity (79, 80). Limited digestion experiments with 
chlorous acid (that degrades the lignin) and sulfuric acid 
(that degrades the carbohydrate) revealed that the lignin 
moiety, but not the carbohydrate moiety, is essential  
for anti-HIV activity expression (78) (Fig. 2). This point 
was confirmed by our finding that dehydrogenation 
polymers of phenylpropenoids (caffeic acid, ferulic acid, 
p-coumaric acid) synthesized in vitro that do not contain 
sugars showed slightly higher anti-HIV activity (SI =  

50 – 100) (81). Since phenylpropenoid monomers were 
inactive (SI < 1) (81), polymerized structure of phenyl-
propenoids is essential for anti-HIV activity expression.

When radiolabeled lignin-carbohydrate complex was 
centrifuged on sucrose gradient centrifugation, it floated 
up on the top of the gradient. However, in the presence 
of influenza virus, it sedimented to the fraction that 
contained the virus, suggesting the tight binding of  
the lignin-carbohydrate complex with influenza virus 
(82). Lignin-carbohydrate complex inhibited the plaque 
formation and RNA polymerase activity in vitro (83, 84). 
Direct mixing of influenza virus with lignin-carbohydrate 
complex instantly diminished the infectivity of virus  
in mice (82). Similarly, dehydrogenation polymers of 
phenylpropenoids potently inhibited the plaque forma-
tion and RNA polymerase activity of influenza virus 
(85). Lignin-carbohydrate complex inhibited the plaque 
formation and adsorption of herpes simplex virus  
(HSV-1) to the cells (86) and cytophatic effects of rota-
virus and enterovirus (87).

4. Anti-inflammatory activity in human gingivitis 
model

Oral inflammation such as stomatitis may be triggered 
or aggravated by many risk factors including bacterial 
and viral infections, nutritional deficiencies, declined 
immune functions, allergic reactions, radiotherapy, 
stress, cigarettes, and diseases. Topical steroids, matrix 
type transdermal patch, vitamins, throat lozenges, mouth 
wash, Kampo medicines, and cryotherapy are used for 
the treatment of stomatitis. However, there are cases in 
which such treatments are not effective, and therefore 
treatments with broader spectrum are desirable.

As an in vitro oral inflammation model, IL-1b- 
stimulated human gingival fibroblasts (HGF) were used. 
When HGF cells were stimulated with IL-1b (5 ng/ml), 
one or two orders higher concentrations of inflammatory 
cytokines (IL-6, IL-8, MCP-1) and PGE2, but not TNF-a 
and nitric oxide (NO), were produced and released  
into the culture medium (88). The selective index (SI)  
for the anti-inflammatory activity was determined by 
dividing the CC50 (against unstimulated HGF cells) by 
the EC50 (concentration that inhibits the PGE2 production 
by 50% in IL-1b-stimulated HGF cells). Alkaline extract 
of the leaves of Sasa senanensis Rehder (SE) inhibited 
the PGE2 production (SI = > 75.8) in this oral inflamma-
tion model (Fig. 2C) (89) more effecively than rikkosan 
(Lot No. 2990110010), a Kampo medicine clinically 
used for the treatment of stomatitis (SI = > 4.0) (90). SE 
also potently inhibted the production of IL-8 by IL-1b-
stimulated HGF cells (88) and PGE2 production by 
IL-1b-stimulated human periodonal ligament fibroblasts 
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Table 2.  Anti-HIV activity of polyphenols

Samples (n = number of samples or compounds tested) Anti-HIV activity (SI) Ref.

Green tea leaves Hot water extraction < 0.022 65
Hot water extraction → Alkaline extraction < 0.11
Alkaline extraction 3

Oolong tea leaves Hot waer extraction < 0.033 65
Hot water extraction → Alkaline extraction 9
Alkaline extraction 13

Orange flower Hot water extraction < 0.5 65
Hot water extraction → Alkaline extraction 13
Alkaline extraction > 15

Licorice root Hot water extraction 4 66
Alkaline extraction 42

Lignin-carbohydrate complex
  Pine cone of Pinus parviflora Sieb. et Zucc. 14 67
  Pine cone of Pinus elliottii var. Elliottii 28 68
  Pine seed shell of Pinus parviflora Sieb. et Zucc. 12 69
  Bark of Erythroxylum catuaba Arr. Cam. 43 70
  Husk of cacao beans of Theobroma 311 71
  Mass of cacao beans of Theobroma 46 72
  Lentinus edodes mycelia extract (L∙E∙M) 94 73
  Precipitating fiber fraction of murberry juice 7 74
  Alkaline extract of leaves of Sasa senanensis Rehder 86 75
  Dehydrogenation polymers of phenylpropenoids (n = 23) 105 81

Polysaccharides
  Neutral polysaccharides of pine cone of P. parviflora Sieb. et Zucc. 1 7
  Uronic acid-containing polysaccharides of pine cone 1 7
  N,N-Dimethylaminoethyl paramylon (substituion ratio: 5%) < 1 76
  N,N-Diethylaminoethyl paramylon (substitution ratio: 10%) < 1 76
  2-Hydroxy-3-trimethylammoniopropyl paramylon chloride < 1 76
  Sodium paramylon sulfate (substitution ratio: 4%) > 274 76
  Dimethylaminoethyl curdlan (substitution ratio: 5%) < 1 76
  PSK (protein-bound polysaccharide) 1 76

Kampo medicines (n = 10) 1.0 ± 0.0 77

Constituent plant extracts of Kampo medicines (n = 25) 1.3 ± 0.8 (1 – 4) 77

Tannin-related compounds
  Hydrolyzable tannins (monomer) (MW: 484-1255) (n = 21) 1.8 ± 2.8 (1 – 13) 78
  Hydrolyzable tannins (dimer) (MW: 1571-2282) (n = 39) 2.3 ± 3.2 (1 – 15) 78
  Hydrolyzable tannins (trimer) (MW: 2354-2658) (n = 4) 3.4 ± 3.7 (1 – 10) 78
  Hydrolyzable tannins (tetramer) (MW: 3138-3745) (n = 3) 7.3 ± 6.5 (1 – 14) 78
  Condensed tannins (MW: 290-1764) (n = 8) 1.1 ± 0.4 (1 – 2) 78

Flavonoids
  Flavonoids (n = 92) 1.5 ± 1. 9 (1 – 12) 18
  Prenylated isoflavones (n = 10) 1.8 ± 1.4 (1 = 5) 15
  Isoflavones (n = 8) < 1 16
  Luteolin glucosides (MW: 419-449) (n = 3) 5.3 ± 2.9 (2 – 7) 21
  Tricin (MW: 331) 24 21

Anti-HIV drugs
  Dextran sulfate (molecular mass, 5 kDa) 2956
  Curdlan sulfate (molecular mass, 79 kDa) 11718
  Azidothymidine 23261
  2′,3′-Dideoxycytidine (ddC) 2974
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(SI = 96.8) (89). Possible mechanisms of this anti- 
inflammatory action of SE are mediated by preferential 
inhibition of COX-2 protein expression (A) and partial 
inhibition of both COX-1 and COX-2 enzyme activity 
(B) (Fig. 3) (Sakagami et al., abstract, The 56th Annual 
Meeting of Japanese Association for Oral Biology,  
September 2014). Metoboromic analysis is underway  
to identify the intracellular target molecules. It remains 
to be determined whether lignin-carbohydrate complexes 
and other polyphenols show similar anti-inflammatory 
action in this system.

Kampo medicines, Shosaikoto (TJ-9) (91) and Orento 
(TJ-120) (92) inhibited the Porphyromonas gingivalis 
LPS–induced PGE2 production, but not that of IL-6 and 
IL-8 production in human gingival fibroblasts. On the 
other hand, Rokumigan (TJ-87) inhibited the secretion  
of IL-6 but not IL-8 by Fusobacterium nucleatum– 
stimulated epithelial cells and gingival fibroblasts (93). 

Curcumin inhibited the COX-2 mRNA and protein  
synthesis in P. gingivalis LPS–stimulated human  
gingival fibroblasts possibly due to the inhibition of the 
NF-kB pathway (94). Curcumin may also induce anti-
inflammatory action via inhibition of Ca2+-release– 
activated Ca2+ channels and K+ channels in lymphocytes 
when it is orally administered (95). However, consider-
ing the limited pharmacokinetic availability of orally 
taken curcumin, careful interpretation is required for 
determining the effects in vivo (95). Recent studies  
suggest the possibility that a,b-unsaturated carbonyl 
based compounds might serve as the leading molecules 
for the design and development of improved anti- 
inflammatory agents (96).

5. Anti-UV activity

Ultraviolet rays (UV) are invisible electromagnetic 
waves. Moderate doses of UV exert several favorable 
effects, such as sterilization and disinfection, induction 
of vitamin D synthesis, and stimulation of metabolism 
and skin resistance, whereas an excessive dose of UV 
produces reactive oxygen species (ROS) that damage 
cellular DNA and proteins, leading to carcinogenesis. 
Molecular alterations in cutaneous neoplasms of the  
head and neck are often related to UV exposure (97).

We recently established a method for measuring  
the activity to protect the cells from UV-induced injury 
(referred to as ‘anti-UV activity’), using UV-sensitive 
human oral squamous cell carcinoma HSC-2 cells  
(Fig. 2D). HSC-2 cells were replenished with phosphate-
buffered saline with calcium and magnesium [PBS(−)] 
containing different concentrations of samples. The cells 
were then placed at 20.5 cm from a UV lamp (wave-
length = 253.7 nm), taking off the lid, and exposed to UV 
irradiation (6 J/m2 per min) for 1 min. The media were 
immediately replaced with fresh culture medium and 
cells were cultured for a further 48 h to determine the 
relative viable cell number by MTT method. From the 
dose–response curve, the CC50 against unirradiated cells 
and the concentration that increased the viability of  
UV-irradiated cells to 50% (EC50) were determined. The 
selectivity index (SI) was determined by the following 
equation: SI = CC50/EC50. UV irradiation, followed by 
48-h incubation resulted in almost complete loss of viable 
cells due to non-apoptotic cell death characterized by the 
lack of internucleosomal DNA fragmentation. However, 
addition of sodium ascorbate (vitamin C) at the time of 
UV irradiation potently inhibited the UV-induced cell 
death (Fig. 1D). Since anti-oxidant N-acetyl-l-cysteine 
and catalase could not prevent the UV-induced cell 
death, hydrogen may not be involved in UV-induced 
cytotoxicity (Table 3).

Fig. 3.  Effect of alkaline extract of leaves of Sasa senanensis  
Rehder (SE) on COX-1 and COX-2 protein expression (assessed by 
western blot analysis) (A) and enzyme activity (B). Enzyme activity 
was determined by the amount of PGF2a produced in the enzyme re-
action, according to Cox Inhibitor Screening Assay Kit (Cayman 
Company). Each value represents the mean ± S.D. from 3 indepen-
dent experiments.
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Lignin-carbohydrate complexes (SI = 24.8 – 38.1) 
(98), Lentinus edodes mycelia extract (LEM) (SI = 41.9) 
(99), and SE (SI = 38.5) (100) showed comparable  
anti-UV activity with vitamin C. On the other hand, 
Kampo medicine (SI = 1 – 4.9), its constituent herb  
extracts (SI = 1 – 8) (77), green tea, black tea, jasmine 
tea, ohki-cha, and burley tea leaf extracts (SI = 1 – 3.6) 
(99) showed much lower anti-UV activity.

Among synthetic compounds, newly synthesized  
water-soluble azulenes showed potent anti-UV activity 
(46). These anti-UV samples are promising for applica-
tion to skin care products.

6. Anti-bacterial activity

The oral cavity contains almost half of the approxi-
mately 700 species of commensal microorganisms that 
are present in the human body. Hinokitiol, an aromatic 
seven-membered tropolon and a component of essential 

oils isolated from Cuoressaceae, inhibited the growth of 
Candida albicans, an opportunistic pathogen causing 
serious local and systemic infections especially in elderly 
and HIV-positive patients (101). A short-time treatment 
(30 min) with hinokitiol inhibited the adherence of C.  
albicans to oral epithelial cells and biofilm formation, 
but did not inhibit the growth of C. albicans. On the 
other hand, long-time treatment and a high concentration 
of hinokitiol inhibited the adherence of C. albicans, and 
damaged both commensal bacterial and epithelial cells 
(102). Gel-entrapped cathechin inhibited the growth of 
the Actinomyces and C. albicans, but did not inhibit the 
growth of the oral streptococci that are important in the 
normal oral flora (103).

7. Interaction with vitamin C

Vitamin C shows two distinct actions, reducing and 
oxidizing actions, depending on the experimental condi-

Table 3.  Anti-UV activity of polyphenols

Samples (n = nubmer of samples or compounds tested) Anti-UV activity (SI) Ref.

Lignin-carbohydrate complex 98
  Pine cone extract (n = 3) 33.4 ± 7.4 (24.8 – 38.1)
  Pine seed shell extract 25.6
  Lentinus edodes mycelia extract (L∙E∙M) 41.9
  Leaves of Sasa senanensis Rehder 38.5
  Vanillin 63.8

Kampo medicines (n = 10) 2.4 ± 1.8 (1 – 4.9) 77

Constituent plant extracts of Kampo medicines (n = 25) 1.4 ± 1.6 (1 – 8) 77

Tea extracts
  Green tea leaves 3.4 99
  Black tea leaves < 1
  Jasmine tea leaves < 1
  Coffee 9.6

Pet-bottle of tea extracts 99
  Oolong tea leaves < 1
  Green tea leaves 1.6
  Oh-ki tea leaves < 1
  Burley tea leaves < 1

Turmeric extract < 1 99
  Curcumin < 1
  Ar-turmerone < 1

Antioxidants
  Sodium ascorbate (vitamin C) 42.4 99
  Gallic acid 5.4
  Epigallocatechin gallate 7.7
  N-Acetyl-L-cysteine < 1
  Catalase < 1

Water-soluble azulenes (n = 8) 35.5 ± 21.6 (4.5 – 65.6) 46
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tions. In the presence of water and oxygen, vitamin C 
produces hydrogen oxide and injures the cells (104, 105). 
There was a positive correlation between the radical  
intensity and cytotoxicity in vitamin C derivatives  
(sodium l-ascorbate, l-ascorbic acid, d-isoascorbic acid, 
6-b-d-galactosyl-l-ascorbate, sodium 5,6-benzylidene-l-
ascorbate) (106). Lignin-carbohydrate complex enhanced 
both the radical intensity and cytotoxicity of vitamin C, 
whereas epigallocatechin gallate, gallic acid, and tannic 
acid inhibited were inhibitory (104). Lignin-carbohydrate 
complex also enhanced the superoxide and hydroxyl 
radical scavenging activity (71, 74, 107), anti-UV  
activity (99, 100), and oxygen consumption (hypoxia-
inducing activity) (108) of vitamin C.

8. Signaling pathway

Lignin-carbohydrate complex is composed of two 
major components: lignin and carbohydrate. Limited  
digestion of lignin-carbohydrate complex suggests that 
the lignin moiety is involved in the prominent anti-HIV 
activity, whereas the carbohydrate moiety is involved in 
immunopotentiating activity (6, 7) (Fig. 4). Using DNA 
microarray analysis, we have recently reported that  
treatment of mouse macrophage-like J774.1 cells with 
lignin-carbohydrate complex isolated from LEM (Fr4) 
enhanced the expression of dectin-2 (4.2-fold) and  
TLR-2 (2.5-fold) prominently, but only slightly modified 
the expression of dectin-1 (0.8-fold), complement  
receptor 3 (0.9-fold); TLR1, 3, 4, 9, and 13 (0.8- to 1.7-

fold); Sykb; Zap70; Jak2 (1.0- to 1.2-fold); Nfkb1; 
NFkb2; Rela, Relb (1.0- to 1.6-fold); Nfkbia, Nfkbib, 
Nfkbie, Nfkbi12 Nfkbiz (0.8- to 2.3-fold). On the other 
hand, LPS did not affect the expression of dectin-2 nor 
TLR-2 (109). These data suggest the significant role of 
the activation of the dectin-2 signaling pathway in the 
action of lignin-carbohydrate complex on macrophages 
(Fig. 2). It is generally accepted that dectin-2 is the  
receptor for mannan, whereas dectin-1 is that for glucose 
(110 – 112). It remains to be investigated whether  
dectin-2 is responsible for the immunopotentiation  
activity of lignin-carbohydrate complex against oral  
cells such as gingival fibroblasts, by performing the 
knock-down experiments with siRNA for dectin-2.

9. Clinical application

Oral uptake of lignin-ascorbic acid combination tablet 
significantly improved the symptoms of HSV-infected 
patients (113). Potent antiviral, antibacterial, and anti-
inflammatory activity of alkaline extracts of leaves of 
Sasa senanensis Rehder (SE) prompted us to investigate 
whether SE is effective on oral lichenoid dysplasia and 
osteoclastogenesis. A male patient with white lacy 
streaks in the oral mucosa was orally administered SE 
three times a day for ten months. Long-term treatment 
cycle of SE progressively reduced both the area of white 
steaks and the base-line levels of salivary IL-6 and 8. 
IL-8 concentration after SE treatment was below the 
initial level throughout the experimental period. This  

Fig. 4.  Putative mode of action of lignin-carbohydrate complex.
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was accompanied by the improvement of the patient’s 
symptoms. SE significantly inhibited the RANKL- 
induced differentiation of mouse macrophage-like 
RAW264.7 cells towards osteoclasts (evaluated by 
TRAP-positive multinuclear cell formation). These  
pilot clinical studies suggest the therapeutic potentiality 
of SE against oral diseases (114). Tea polyphenols  
such as epigallocatechin-3-gallate and theaflavin-3,3′-
digallate also inhibited the osteoclast formation and  
differentiation in vitro (115).

Clinical application of gel-entrapped hinokitiol inhibited 
the attachment of C.abicans to the tongue and the inflam-
matory cytokine production (IL-1b, IL-1a) (116).

10. Summary and future directions

This review provides the data base for assessing  
the possibility of application of three representative poly
phenols to oral diseases. Most of the three major  
polyphenols (lignin-carbohydrate complex, tannins,  
flavonoids) showed much lower tumor-specificity 
against oral squamous cell carcinoma, in comparison to 
chemotherapeutic drugs. These disappointing observa-
tions suggest that the utilization of polyphenols for  
the therapy of oral cancer is not recommended, despite 
the numerous publications about the apoptosis induction 
by lower molecular weight polyphenols. Since the  
tumor-specificity and apoptosis-inducing activity are  
not necessarily overlapped with each other, the tumor-
specificity of each candidate compound should be  
confirmed before the extensive research aiming at their 
clinical application. However, it is also important for  
us to continue or challenge to find a new antitumor  
substance using the present screening system since we 
have previously reported that some poly-herbal formulas 
showed extensively higher tumor-selectivity (TS = 839) 
(117). Potent anti-UV activity of lignin-carbohydrate 
complex may lower the incidence of head and neck 
cancer generated by UV exposure (97).

Lignin-carbohydrate complex, which can be obtained 
by alkaline extraction at higher yield than by water  
extraction, showed the highest anti-HIV activity. Also 
alkaline extracts of various plant materials showed much 
higher anti-HIV activity as compared with their water 
extracts. We thus recommend the use of alkaline solution 
rather than hot water to obtain higher yield of antiviral 
substances from plants. However, it remains to be  
investigated whether alkaline treatment may cause the 
degradation, molecular association with other compo-
nents such as chlorophyll (7), and LPS contamination 
(118). We have previously reported that only 1.3% – 1.6% 
of orally administered lignin-carbohydrate complex  
appeared in the blood (119). Considering the low  

absorption through the intestinal tract, the application 
through the oral mucosa is recommended.

Oral care shortens the latent time of swallowing reflex 
presumably due to stimulating the nociception of the oral 
cavity. A combination of these sensory stimuli by foods 
with menthol or any other natural product candidates 
may improve swallowing disorders and prevent aspira-
tion pneumonia (120). Since the administration of 
Kampo formulation ameliorated the cognitive function 
and emotional/psychiatric symptom-related behavior in 
animals (121), clinical evaluation of these formulae for 
dementia therapy is crucial.

In contrast to studies of inflammation and carcino
genesis, the studies of inflammation and aging were  
investigated much less. It has recently been reported  
that the inhibition of inflammation may prolong  
longevity (122). The anti-aging effects of antioxidants 
and anti-inflammatory substances including naturally 
distributing polyphenols remain to be investigated. To do 
this, it is essential to establish the evaluation systems 
with appropriate aging markers.
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