IEICE Electronics Express, Vol.7, No.8, 513-519

A modified radix-2
Montgomery modular
multiplication with new
recoding method

Kooroush Manochehri®, Babak Sadeghian®,

and Saadat Pourmozafari®

Department of Computer Engineering and IT, Amirkabir University of Technology,
Tehran, IRAN

a) kmanochehri@ce.aut.ac.ir

b) basadegh@ce.aut.ac.ir

¢) saadat@ce.aut.ac.ir

Abstract: Montgomery modular multiplication algorithm is com-
monly used in implementations of the RSA cryptosystem and other
cryptosystems with modular operations. Radix-2 version of this algo-
rithm is simple and fast in hardware implementations. In this paper
this algorithm is modified with a new recoding method to make it sim-
pler and faster. We have also implemented this new algorithm with
carry save adders. Results show that, in average the proposed algo-
rithm has about 47% increase of data throughput with maximum 7%
increase of hardware area comparing with conventional algorithm.
Keywords: Montgomery, modular multiplication, radix-2, carry save
adder, recoding

Classification: Science and engineering for electronics

References

[1] P. L. Montgomery, “Modular multiplication without trial division,” Math-
ematics of computation, vol. 44, pp. 519-521, 1985.

[2] K. Manochehri, S. Pourmozafari, and B. Sadeghian, “Improved RNS for
RSA hardware implementation,” The CSI journal of computer science and
engineering, vol. 2, pp. 31-39, 2004.

[3] M. Huang, K. Gaj, S. Kwon, and T. Elghazawi, “An optimized hardware
architecture for the Montgomery multiplication algorithm,” LNCS/939,
pp. 214-228, 2008.

[4] Y. Fan, T. Tkenaga, and S. Goto, “A high speed design of Montgomery
multiplier,” IEICE Trans. Fundamentals, pp. 971-977, 2008.

[5] C.Mclvor, M. McLoone, J. V. McCanny, A. Daly, and W. Marnane, “Fast
Montgomery modular multiplication and RSA cryptographic processor ar-
chitectures,” Proc. 87th Annual Asilomar Conference on Signals, Systems
and Computers, pp. 379-384, 2003.

[6] K.Manochehri and S. Pormozafari, “Modified radix-2 Montgomery modu-
lar multiplication to make it faster and simpler,” IEEE Computer Society
Int. Conf. Inf. Technol.: Coding and Computing, vol. 1, pp. 598-602, 2005.

513



IEICE Electronics Express, Vol.7, No.8, 513-519

[7] K. Manochehri, S. Pourmozafari, and B. Sadeghian, “A new opera-
tor for multi-addition calculations,” Advances in Computer Science and
Engineering, Communications in Computer and Information Science,
Springer, vol. 6, pp. 938-941, 2009.

[8] K. Manochehri, S. Pourmozafari, and B. Sadeghian, “Very fast multi
operand addition method by bitwise subtraction,” IEEE Computer So-
ciety Proc. Fifth Int. Conf. Inf. Technol., pp. 12401241, 2008.

1 Introduction

RSA is the most widely used public-key cryptosystem. An RSA operation is
a modular exponentiation as C = A® (mod n).

Montgomery [1] and RNS are the most widely used to enhance the com-
puting speed. The Montgomery multiplication algorithm is an efficient
method for modular multiplication with an arbitrary modulus, particularly
suitable for implementation on general-purpose computers. The radix-2
Montgomery method is based on an ingenious representation of the residue
class modulo N, and replaces division by N operation with division by power
of 2. However, there have been various attempts to improve its hardware
implementations performance [2, 3, 4, 5].

Our previous paper [6] proposed a new radix-2 Montgomery algorithm
for RSA cryptosystem. But in this paper, with a new recoding method, a
new radix-2 Montgomery multiplication algorithm is proposed that can be
used not only for the implementation of RSA cryptosystem, but also for all
other cases. In this new algorithm one step of the main loop is removed that
leads to a faster algorithm. This new recoding method was first introduced in
references [7, 8], here we describe it again and proposed our general recoding
method and based on it, a modified Montgomery algorithm is proposed. The
results show a major improvement in its performance as would be described
in section 6.

2 Radix-2 Montgomery multiplication

The radix-2 version of Montgomery multiplication algorithm that calculates
the Montgomery product of A and B is summarized in the pseudo code
below [5].
Radiz-2 Montgomery Multiplication (A, B, n)
S[0] = 0;
foriin 0 to k—1 loop

¢ = (S[i]o + Ai.By) mod 2;

Sli+ 1] = (S[i] + A;.B + ¢;.n) div 2;
end loop;
return S[k];

In this algorithm A = a.2¥ (mod n) and B = b.2¥ (mod n) and k is the
number of bits of the operands. S[i]y stands for the LSB of S[i] and A; stands
for the ith bit of A. The output of this algorithm is A.B.27% (mod n).

514



IEICE Electronics Express, Vol.7, No.8, 513-519

The critical delay of this algorithm occurs during the calculation of the
S values given by the three inputs addition S[i + 1] = (S[i] + A;.B + q;.n).

3 Our recoding method

References [7, 8] introduce a new recoding method that can be employed for
many arithmetic algorithms, such as multi-addition or multi-subtraction. In
this section this new recoding method is described.

A new operator is defined as bitwise subtraction, and is shown with © to
recode the operand. Through our proposed recoding, an X can be recoded
with two numbers x1 and x2 such that X = x10x2. Thus our recoding
method results binary signed digits. Table I shows relationship between bits
of X, x1 and x2 for selecting proper coding. These selections are done base
on the target algorithms, to enhance their performances.

Table I. Our recoding method

Available coding
X=x10x2 x1 x2
0 0 0
0 1 1
1 1 0
1 0 -1

We can use this recoding to enhance multi-addition or multi-subtraction
calculations. This is done in references [7, 8].

3.1 Generalization of recoding method

In the previous section, a recoding method with an operator named as bitwise
subtraction was described. In general, we may have any operator for recoding
an operand, however this operator should yield the result and be easy to be
accomplished, or at least be easier than the main operator. For instance
assume that we want to compute (X op Y) and we have a set of operators as
OP_SET:

OP_SET = {all operations that can be computed easily}

To do op, we can recode X as X = x1 opl x2, that opl is one of the
operations chosen from OP_SET. To select opl, we should consider that it
should be an easily computed operator and it can help us to speedup the
calculation X op Y. Finally to obtain the result, (x1 opl x2) op Y should be
calculated.

Our generalized recoding method may be used in many arithmetic algo-
rithms to enhance its performance. So, the suitable selection of opl is open
problem for each algorithm. If opl has a property with the relation (x1 opl
x2) op Y = (x1 op Y) opl x2, we might have a great performance enhance-
ment, depending on x1 representation. For instance, our references [7, §]
shows that bitwise subtraction can speedup the multi-addition speed because
(x10x2) +Y = (x1 + Y)Ox2. Bitwise subtraction or some other operations

515



IEICE Electronics Express, Vol.7, No.8, 513-519

can act the rule of opl. For instance, CSA is achieved with our generalized
recoding method, if opl is defined as bitwise addition and op as full addition.

4 Modified radix-2 Montgomery multiplier

As mentioned, the critical delay for radix-2 Montgomery multiplier is the
delay of step 2 of the loop. One parameter of this delay is to calculate ¢;.
Then q; is multiplied with n, and the result is added to the summation. This
delay becomes more important when CSA architecture is used.

In order to calculate q;, the LSB of previous result, SliJy, is added to
A;.Bg. If By is equal to zero this step can be removed and ¢g; would be equal
to the LSB of the previous result. When B is an even number, this condition
is satisfied. We can change the operands to our desired forms, through our
recoding method. So, we can recode B as x10x2. Setting x1 = B and x2 =10
when B is even, and setting x1 = B — 1 and x2 = —1 when B is odd, make
the operand even. After this recoding, x1 should be the input of the loop
instead of B. With this assumption, x1g is zero and the first step of the loop
can be removed. The result has no changes if B is even but when B is odd
the result should be corrected as follows.

The final result of radix-2 Montgomery algorithm is A.B.27%(mod n).
If we put B as x1 = B — 1, the result will be A.(B — 1).27%(mod n) =
A.B.27% — A.27%(mod n). To correct the result we can add A.27%(mod n) to
the output of algorithm to reach the desired value A.B.27%(mod n). As we
know A = a.2X (mod n), so A.27¥ (mod n) is equal to a.2¥.27% (mod n) = a.
After the completion of the loop we can add ‘a’ to the result to correct it.
So we can have the following algorithm:

Modified Radiz-2 Montgomery Multiplication (a, A, B, n)
S[0] = 0;
if Bp=1thenzl=B—-1,22=-1
else x1 = B, 22 = 0;
foriin 0 to k—1 loop

Sli+ 1) = (S[i] + A;.x1 + S[i]o.n) div 2;

end loop;

q = (S[k]o©(x2.a9)) mod 2

Sk + 1] = (S[k]O(22.a) + ¢g.n) div 2;
return Sk + 1];

We can change the term S[k|©(x2.a) to bitwise addition of S[k] with ‘a’,
when B is odd, and with zero, when B is even. This can be done through the
existing CSA architecture with the new inputs.

As we know, if the final result of Montgomery multiplier be less than 2n,
the final reduction is removed [5]. If B is even, in the final iteration, we have
Sk] < 2n and then Sk + 1] < (2n+1n)/2 < 2n. Also if B is odd we have
Sk+ 1] < (2n+a+mn)/2 < 2n. Note that ‘a’ is always less than n.

The proof of the correctness of the result is as follows. As we know from
the radix-2 Montgomery multiplication algorithm, by modified algorithm we
have S[k] = A.x1.27¥ (mod n). If B is even, by the modified algorithm,

516



IEICE Electronics Express, Vol.7, No.8, 513-519

we have S[k + 1] = A.B.2=&+D (mod n) (Note: xI = B and x2 = 0).
If B is odd, we have S[k+ 1] = A.(B —1).2= &) + 2.2 (mod n) (Note:
x1 = B—1and x2 = —1), therefore S[k+1] = A.(B—1).2= (kD) 4 A 27k 2~ =
A.(B—1).27&) 4 A2=(+) = A B2-(+D (mod n). So, to convert back
from n-residue to normal number we should multiply the result with 2~ (k+1)

instead of 27¥ in Montgomery multiplication algorithm.

5 Implementation

To implement our modified Radix-2 Montgomery multiplication algorithm,
we use CSA architecture. Our modified Radix-2 Montgomery multiplication
algorithm can be implemented with employing 5-to-2 CSA logic [5, 6] as in
the following CMRMM algorithm:

5-to-2 CSA modified radiz-2 Montgomery multiplication (a, Al,
A2, B1, B2, n)

S1[0] = 0;

S2[0] = 0;

if Blg+ B29p =1 (mod 2) then

x1.1 = make_even(B1), 212 = make_even(B2), X2 = —1
else

x1.1=Bl,z12 = B2,22 = 0;
for iin 0 to k—1 loop

Sig = (S1[i]o + S2[i]p) mod 2;

S1li+1],S52[i + 1] =

CSR(S1[i] + S2[i] + A;.(x11 + x21.2) + Sig.n) div 2;
end loop;
q = (S1[k]o + S2[k]0©O(22.a¢)) mod 2
Sk + 1] = (S1[k] + S2[k]O(22.a) + g.n) div 2;
return S1[k + 1], S2[k + 1];

Note that the input operand A and B and the output product S are
represented in carry save format as Al and A2, B1 and B2, and S1 and S2
respectively. CSR stands for carry save representation. Barrel Register Full
Adder (BRFA) can be used to compute Ai, where Ai stands for the ith bit
of A [5]. In this algorithm, make_even sets the least significant bit to zero to
change the operand to even number. A four-to-two CSA module [5] can be
used to calculate S[k + 1], but the existing five-to-two CSA architecture can
also be used, as:

Slk 4+ 1] = CSR(S1[k] + S2[k] + 0 ©(22.a) 4+ ¢g.n) div 2.

This implementation needs one clock cycle for resetting S1[0] and S2[0],
and also one extra clock cycle for the last calculation after the loop. Thus
this algorithm may be executed in k + 2 clock cycles whereas the standard
algorithm has k + 1 clock cycles but with less frequency.

517



IEICE Electronics Express, Vol.7, No.8, 513-519

6 Results

In order to compare the two algorithm, they are implemented for ASIC
and FPGA technologies with VHDL language and synthesized by means of
Leonardo Spectrum 2002 tool. For ASIC synthesis, CMOS 0.6 micron meter
library and for FPGA synthesis, Xilinx Virtex2 series are used. The CSA
Montgomery architecture from reference [5] is used to implement the conven-
tional radix-2 Montgomery multiplier. So, the operands are in CSA format
and we don’t have any changes in the number of inputs for our new algorithm
implementation except input ‘a’. The reported area contains the area used for
this extra input. The results are shown in Table I1. Note that area for FPGA
is measured in term of slices and for ASIC in term of gates. Comparing with
conventional Montgomery algorithm, there are only 7.8% additional gates for
area in ASIC designs, but throughput rate is increased something between
30%-40%, depending on the bit lengths. For FPGA designs, these results are
still improved. Throughput is increased something between 50%-66% and
area is only increased something between 0.12%-0.23%.

Table II. Results of synthesis

Radix-2 Montgomery multiplier New Radix-2 Montgomery Multiplier
Bit Area Throughput Rate Area Throughput Rate
Length | (Gates/Slices) (Mb/s) (Gates/Slices) (Mb/s)
(k)
256 8206 108.77 8847 147.44
a 512 16282 108.08 17556 141.44
a 768 24532 100.06 26445 139.83
1024 32490 99.6 35032 139.62
256 1574 64.24 1576 96.94
2 512 3408 45.51 3416 75.80
9 768 5177 45.44 5188 74.90
1024 6814 44.95 6830 68.86
—8— Area Increase(ASIC) —— Throughput Increase(ASIC)
—&— Area Increase(FPGA) —+~ Throughput Increase(FPGA)
<
=
S—
e
c
Q
(&)
—
©
o

512 768

Operand bit length (k)

Fig. 1. %Throughput/Area increase using new Mont-
gomery algorithm

518



IEICE Electronics Express, Vol.7, No.8, 513-519

Fig. 1 provides a graphical representation of the percentage increases in
data throughput rate and area.

This figure shows that, the percentage increase in throughput is higher
than percentage increase in area.

7 Conclusion

Recoding method can help in enhancing the computation speed. In this
paper, a new recoding method is presented and a generalized recoding method
is proposed. Based on this new recoding method, a new algorithm for radix-2
Montgomery multiplier is introduced that achieves greater performance than
standard multiplier, when performance is defined as area x time. RNS or
the other implementations that are used Montgomery multiplier can use this
new algorithm to enhance their performance.

This new algorithm also can achieve better performance for sequential
software implementations, as one of its steps has been removed and so it can
be run faster.

519



