
IEICE Electronics Express, Vol.8, No.11, 835–841

An effective rasterization
architecture for mobile
vector graphics processors

Jinhong Park1a), Jinwoo Kim1, Woo-Chan Park2, Youngsik Kim3,
Chelho Jeong4, and Tack-Don Han1

1 Dept. of Computer Science, Yonsei University

134 Shinchong-Dong, Seodaemun-Gu, Seoul, 120–749, Korea
2 Dept. of Computer Engineering, Sejong University

98 Kunja-Dong, Kwangjin-Gu, Seoul 143–747, Korea
3 Dept. of Game & Multimedia Engineering, Korea Polytechnic University

2121, Jungwang-Dong, Shihung-City, Kyounggi-Do, 429–793, Korea
4 mGine Corporation

16–2, Soonae-Dong, Seongnam-City, Kyounggi-Do, 463–825, Korea

a) jhp@yonsei.ac.kr

Abstract: This paper proposed a novel index board rasterization ar-
chitecture which reduces mathematical calculations and memory traf-
fic for vector graphics. The proposed architecture uses the cell based
method which has advantages in computational complexity, and gen-
erates the active span by referring to only valid cells and placing them
in scanline order with two internal SRAMs. The proposed architec-
ture reduces the amount of calculation by an average of 59.4% and also
the external memory traffic by an average of 30.0% compared to the
traditional architecture.
Keywords: openVG, vector graphics, rasterization, hardware accel-
erator
Classification: Electron devices, circuits, and systems

References

[1] K. Pulli, “New APIs for mobile graphics,” Proc. SPIE-The International
Society for Optical Engineering, vol. 6075, pp. 1–13, 2006.

[2] K. Kallio, “Scanline edge-flag algorithm for antialiasing,” Theory and
Practice of Computer Graphics Conference, pp. 81–88, June 2007.

[3] D. Kim, K. Cha, and S. I. Chae, “A high-performance OpenVG accelera-
tor with dual-scanline filling rendering,” IEEE Trans. Consum. Electron.,
vol. 54, no. 3, pp. 1303–1311, Aug. 2008.

[4] Anti Grain Geometry (AGG), [Online] http://www.antigrain.com/
[5] Khronos Group Inc, “OpenVG Specification 1.0.1,”

[Online] http://www.khronos.org/openvg

c© IEICE 2011
DOI: 10.1587/elex.8.835
Received April 19, 2011
Accepted May 12, 2011
Published June 10, 2011

835



IEICE Electronics Express, Vol.8, No.11, 835–841

1 Introduction

As recent mobile devices require high quality graphics applications, vector
graphics (VG) service such as texts, maps, games, animations, and graphical
user interface (GUI) has become more important. Thus the implementation
of VG hardware on mobile devices is becoming a key issue [1].

A geometry described with VG is defined by one or more paths. Each
path consists of a series of edges. Through the rasterization process of each
edge, numerous pixels on the edge, called cells, can be generated. The cell
data is defined as two values: the coverage to present filtered alpha value,
and the area to provide the size of pixels affected by edge for anti-aliasing.
With these cells, active spans can be generated and then final anti-aliased
pixel colors within each active span can be calculated.

Based on the rendering style, previous methods can be divided into two
categories: active edge based [2, 3] and cell based [4] scanline processing.
The first method uses an active edge table (AET) for tracking active edges
on the current scanline. After cell generation with the active edges on current
scanline, active spans are generated in the scanline processing. The second
method calculates the cells by applying line drawing algorithms to edges
within the path and then active spans are generated by sorting the cells
within each scanline in order of the x-axis.

From the viewpoint of memory traffic, the first method is superior because
the number of edges is generally less than the number of cells. On the other
hand, the computational complexiy of the first method is higher than the
second method because it requires additional edge table (ET) setup and
calculation of the intersecting point between a scanline and an edge.

This paper, based on the second method, proposes an index board ras-
terization hardware architecture in order to reduce external memory traffic.
The index board denotes the array type of internal memory for a given axis
and is accessed directly by either the x or y coordinate value. The proposed
architecture takes advantage of the lower hardware cost of the second method
while alleviating the memory traffic problem resulting in an architecture suit-
able for mobile devices compared to the previous methods. In order to meet
this aim, the proposed architecture includes a Y -index board internal SRAM
to store the number of cells generated for each scanline, and an X-index
board internal SRAM to store the sorted cells of the scanline size. The tra-
ditional sorting method was replaced by our proposed method, which reads
only valid cells stored in the external memory through referring the Y -index
board SRAM and the X-index board SRAM. The implementation results
show that the proposed architecture reduces external memory traffic by up
to 53.6% compared to that of [4].

2 Related works

In active edge based scanline processing [2, 3], active edges are tracked by
using AET and are used for scanline processing. For the cell generation, the
slope of edge, intersection test between each edge and the x-axis, coverage,

c© IEICE 2011
DOI: 10.1587/elex.8.835
Received April 19, 2011
Accepted May 12, 2011
Published June 10, 2011

836



IEICE Electronics Express, Vol.8, No.11, 835–841

and area should be calculated with all the active edges for each scanline,
resulting in an increase of computational complexity.

In cell based scanline processing [4], cells are generated for each edge
and then are placed to the corresponding scanline. The slope calculation is
performed only once for each edge and the intersection test does not occur,
so that the computational complexity is lower than that of the active edge
based scanline processing [2, 3]. On the contrary, the generated cells should
be stored in the external memory for later scanline processing, so that the
external memory traffic increases. Moreover, the cells belonging to different
edges should be sorted for scanline processing, which increases computational
complexity and memory traffic.

3 Proposed rasterization architecture

This paper proposes a novel rasterization architecture to reduce external
memory traffic and the comparison operations caused by sorting. For this
purpose, we proposed an index board sorting unit which includes a Y -index
board SRAM and an X-index board SRAM.

Fig. 1 shows the proposed rasterization architecture. In the external
memory, a path buffer to store a series of edges of the path and a cell array
which is a 2D array are included. The cell array can be indexed per scanline
corresponding to the y-coordinate value, and every cell with the same y-
coordinate value are stored in the same scanline position. Y -index board
SRAM stores the number of cells generated for each scanline. X-index board
SRAM is a buffer to store the sorted cells for a corresponding scanline.

Fig. 1. Proposed Rasterization Architecture.

The processing flow of the proposed architecture is as follows. First, with
a given path, the cells are generated with a series of edges and stored in the
corresponding scanline of cell array in the generated order. The number of
generated cells for each scanline is updated to Y -index board SRAM. After

c© IEICE 2011
DOI: 10.1587/elex.8.835
Received April 19, 2011
Accepted May 12, 2011
Published June 10, 2011

837



IEICE Electronics Express, Vol.8, No.11, 835–841

every process of generating cells of the path is completed, the cells in the
same scanline are retrieved from the cell array and then active spans are
generated by the scanning direction in the scanline. The generated active
span is transferred to the span and the remaining processes are executed.

In retrieving the cells from the cell array, the Y -index board SRAM is
accessed to obtain the valid size of memory access for the cells within a
corresponding scanline. The retrieved cells are stored into the X-index board
SRAM by using the x-coordinate value of each cell as the index of the X-
index board SRAM. For example, if x-coordinate value of the retrieved cell
is k, the cell is stored into k-th position of X-index board SRAM. If the
location in which cells are indexed overlaps, the current cell is accumulated
with the previouly stored cell. Through this process, cells can be sorted
without any comparison operation, reducing computational complexity and
external memory traffic.

In the point of the compuation requirement, the proposed method to
generate cells is the same as [4], whereas there is no calculation for cell
sorting in the proposed method. On the other hand, the external memory
traffic requirement of the proposed method is to store the generated cells into
the cell array and to retrieve the cells from the cell array. Note that there is
no additional external memory traffic for cell sorting of [4].

In the point of burst transaction of the external memory, the proposed
method is more effective compared to the active edge based method which
requires numerous external memory accesses on the edge data in order to
maintain the active edge table. Unfortunately, it is difficult to access contin-
uous memory address space in accessing the edge data and the active edge
table. On the other hand, the proposed method can retrieve a group of cells
by burst transaction from the cell array of the external memory into the
X-index board rasterization.

The cell information consists of a 24-bit for representing x-coordinate,
which is the same size as [2] and [3], a 9 (1 sign + 8 magnitude)-bit for
representing a coverage according to the specification of [5], and a 17 (1 sign +
16 magnitude)-bit for representing an area according to area-sampling anti-
aliasing of [4]. Therefore, the number of bits required to store one cell data
is 50.

Assuming a resolution of VGA, the Y -index board uses 0.59 KB of SRAM
as 10-bit of memory space is required. On the other hand, the X-index board
uses 3.9 KB of SRAM as 50-bit of memory space is required to store cells per
index.

4 Experimental result & hardware implementation

To compare the proposed rasterization architecture with the traditional ar-
chitecture, Tiger, B8, Longhorn, and Cowboy images of [4] are used as test-
benches.

The memory access formula of [3] was used in order to calculate extenal
memory traffic of [2] and [3]. Equation (1) calculates the external memory

c© IEICE 2011
DOI: 10.1587/elex.8.835
Received April 19, 2011
Accepted May 12, 2011
Published June 10, 2011

838



IEICE Electronics Express, Vol.8, No.11, 835–841

traffic of [4] and the proposed architecture. Each term represents the number
of memory write, sorting, and memory read operations. In equation (1), N

stands for the number of edges, Cells of Edgei stands for the number of cells
created by each edge, and K1 stands for the number of bytes to store one cell
which includes each x-coordinate value and coverage data for anti-aliasing.

Memory Traffic =
N∑

i=1

Cells of Edgei × K1 +
N∑

i=1

Cells of Edgei

× log

(
N∑

i=1

Cells of Edgei

)
× K1 +

N∑
i=1

Cells of Edgei × K1
(1)

Fig. 2. Experimental Result.
c© IEICE 2011

DOI: 10.1587/elex.8.835
Received April 19, 2011
Accepted May 12, 2011
Published June 10, 2011

839



IEICE Electronics Express, Vol.8, No.11, 835–841

Fig. 2 shows the external memory traffic, processing throughput and re-
quired hardware resources of the proposed architecture and previous meth-
ods for four benchmarks. Fig. 2 (a) shows that the external memory traffic
of the proposed architecture is reduced by 35.4% ∼ 53.6% compared to [4],
0% ∼ 37.1% compared to [2], and 15.4% ∼ 33.4% compared to [3] at QVGA.
In VGA resolution, the traffic is reduced by 39.1% ∼ 57.5% compared to
[4] and is similar compared to [3]. On the other hand, the traffic is slightly
increased compared to [2] in cases of Tiger, B8, and Longhorn benchmarks,
whereas in case of Cowboy benchmark with high scene complexity it is slightly
reduced compared to [2].

For throughput comparison, we assume that hardware resource is not
considered so that only the external memory access overhead can degrade
the overall performance. For this purpose, we count the number of external
memory accesses for each method. We also assume that 8 burst AHB bus
transaction is adopted in external memory access. Fig. 2 (b) shows that the
throughput of the proposed method is improved by approximately 128.9%
compared to [2], 58.5% compared to [3], and 211.8% compared to [4] at
QVGA. In VGA resolution, throughput is improved by about 57.0% com-
pared to [2], 19.1% compared to [3], and 219.8% compared to [4].

The hardware resources needed to construct a pipeline of each method are
shown in Fig. 2 (c). As a result, the proposed method can reduce a multiplier
for a pipeline compared to [2] and [3].

The proposed architecture is built on an FPGA board containing a Xil-
inx Virtex4 LX200 FPGA operating at 48 MHz. The rendering time of the
proposed architecture is 11.4, 12.3, 13.2, and 8.3 frame/second for Tiger, B8,
Longhorn, and Cowboy, resepectively. The implementation in FPGA board
is shown in Fig. 3.

Fig. 3. Implementation in FPGA Board.

5 Conclusion

This paper proposed an effective rasterization architecture with a small
amount internal SRAM each for the X-index board and the Y-index board
to reduce the memory traffic without sorting for active span generation. Ex-
perimental results show that the proposed architecture achieves lower com-

c© IEICE 2011
DOI: 10.1587/elex.8.835
Received April 19, 2011
Accepted May 12, 2011
Published June 10, 2011

840



IEICE Electronics Express, Vol.8, No.11, 835–841

putational complexity and higher processing throughput compared to the
previous approaches.

Acknowledgments

This work was supported by the Small & Medium Business Administration
of Korea (No. S0807222-E0821730-10100001).

c© IEICE 2011
DOI: 10.1587/elex.8.835
Received April 19, 2011
Accepted May 12, 2011
Published June 10, 2011

841


