IEICE Electronics Express, Vol.2, No.19, 488-494

An arbitration algorithm for
multiport memory systems

Alex A. Aravind ¥

Department of Computer Science,
University of Northern British Columbia,
Prince George, British Columbia, Canada

a) csalex@unbc.ca

Abstract: Multiport memories are increasingly used in smart-phones,
multimode handsets, multiprocessor systems, network processors, graph-
ics chips, and other high performance electronic devices [1, 2, 4, 8]. This
paper presents a fully distributed software solution to the arbitration
problem in multiport memory systems. Our solution is simple, efficient,
and assures LRU fairness.

Keywords: multiport memory, arbitration, shared memory
Classification: Storage technology

References

[1] C. Springer, “Enabling Multimode Handsets,” EE Times, Oct. 2004.

[2] L. E. Frenzel, “Dual-Port SRAM Accelerates Smart-Phone Develop-
ment,” Electronic Design, Feb. 2004.

[3] G. Taubenfeld, “The Black-White Bakery Algorithm and Related
Bounded-Space, Adaptive, Local-Spinning and FIFO Algorithms,” Lec-
ture Notes in Computer Science, vol. 3274, pp. 56-70, 2004.

[4] C.-W. Wang, K.-L. Cheng, C.-T. Huang, and C.-W. Wu, “Test and Di-
agnosis of Word-Oriented Multiport Memories,” Proc. of the 21st IEEE
VLSI Test Symposium, pp. 248-253, 2003.

[5] J. H. Anderson, Y.-J. Kim, and T. Herman, “Shared-memory Mutual
Exclusion: Major Research Trends Since 1986,” Distributed Computing,
no. 16, pp. 75-110, 2003.

[6] J.H. Anderson and Y.-J. Kim, “Nonatomic Mutual Exclusion with Local
Spinning,” Proc. of the ACM Sym. on PODC, pp. 3-12, 2002.

[7] T. Raineault, “Semaphores Aid Multiprocessor Designs,” Embedded
Edge, pp. 14-20, Oct. 2001.

[8] R. Stodieck, “The IDT FourPort SRAM Facilitates Multiprocessor De-
sign,” IDT Application Note An-43, March 2000.

[9] M. Raynal, Algorithms for Mutual Exclusion Problem, The MIT Press,
Cambridge, Massachusetts, 1986.

[10] L. Lamport, “The Mutual Exclusion Problem Part II: Statement and
Solutions,” J. ACM, vol. 33, no. 2, pp. 323-326, 1986.

[11] L. Lamport, “A New Solution of Dijkstra’s Concurrent Programming
Problem,” Comm. ACM, vol. 17, no. 8, pp. 453-455, 1974.

488

IEICE Electronics Express, Vol.2, No.19, 488-494

1 Introduction

Multiport memories are increasingly used in smart-phones, multimode hand-
sets, multiprocessor systems, network processors, graphics chips, and other
high performance electronic devices [1, 2, 4, 8]. Multiport memory allows
concurrent accesses to memory words through multiple ports.

Resolving conflicting accesses to shared memory by concurrent proces-
sors, also called memory arbitration or mutual exclusion, is a fundamental
problem in concurrent computing. Distributed solution to this problem is
generally complex and many arbitration algorithms are available for single
port memory systems [9, 5]. The problem becomes more complex for mul-
tiport memory systems, due to the possibility of concurrent accesses to in-
dividual memory words through many ports. Among the solutions proposed
for single port memory systems, the algorithms presented in [11, 10, 6] can
be used to solve the arbitration problem in multiport memory systems. We
briefly review them here.

Lamport’s Bakery algorithm presented in [11] is the simplest and pop-
ularly known arbitration algorithm. It is based on the idea of using to-
ken numbers to resolve the conflict among the competing processors. This
algorithm has a practical limitation that the token numbers can grow un-
boundedly, if always some processor is in need of using the shared memory.
There are many recent attempts to bound the token values [3] and all these
attempts require exclusive access to the shared variables (memory words).
Therefore, they cannot be used in multiport memory systems. Another algo-
rithm, by Lamport, with many nice properties is incrementally developed and
presented in [10]. However, this algorithm is conceptually difficult for an av-
erage designer to implement. Recently, an algorithm for distributed shared
memory systems - where the memory access is non-uniform - is presented
in [6]. Also, after mentioning hardware based solutions such as hardware
interrupt masking, hardware semaphores, and stalling processors with busy
logic, a software based Master/Slave control protocol for a multiport memory
systems is presented in [8].

Among the various criteria of the arbitration algorithms, the fairness
property is very crucial one. It decides which processor among the competing
processors is allowed to succeed next. First In First Out (FIFO) and Least
Recently Used (LRU) are two important fairness criteria widely used in many
applications. LRU favors the infrequent users of the resource compared to
the frequent users. There are many algorithms available in the literature [9, 5]
to assure F'IFO. To the best of our knowledge, no arbitration algorithm is
presented for shared memory system with LRU fairness criterion.

This paper presents a fully distributed software solution to the arbitration
problem in multiport memory systems. Our algorithm is simple, assures L RU
fairness, and applicable for multiport memory systems.

489

IEICE Electronics Express, Vol.2, No.19, 488-494

2 System Model and Problem Statement

We consider a multiport shared memory system of n-processors with ids
1,2,...,n. The processors can simultaneously access the same memory lo-
cation, may be through independent ports. The execution speed of any pro-
cessor is finite but unpredictable.

We assume R as the memory segment that requires mutually exclusive
access among the processors. The memory arbitration problem is to design
an algorithm that assures the following properties: (i) at any time, at most
one processor is allowed to access R (safety property) and (ii) when one or
more processors interested in accessing R, one of them eventually succeeds
in accessing R (liveness property). In addition to these two properties the
following is a desirable property: (iii) any processor interested in accessing
R will be able to do so in finite time (freedom from starvation property). We
also assume that a processor will neither accesses R continously forever nor
fails when it is accessing R.

The code segment that a competing processor executes can be divided into
two parts: the part which accesses the shared memory R (Critical Section
(CS)) and the remaining part (Noncritical Section (NCS)). A solution to the
arbitration problem has essentially two components: Entry Section and Exit
Section. These components has to be designed and inserted appropriately
in the codes that all the competing processors execute to ensure consistent
access to R.

3 The Least Recently Used (LRU) Algorithm

3.1 Idea

The basic idea behind the algorithm is very simple that, among the compet-
ing processors, the processor who accessed the CS “least recently” succeeds
to access the CS next. The popular way to implement this idea is by using
the timestamp (clock value) of each processor’s latest access to the CS. Un-
fortunately, this approach requires unbounded size shared variables, similar
to token variables in bakery algorithm, to hold the timestamp values. In this
paper, we introduce a different approach to implement the LRU idea. In-
stead of timestamps, our algorithm uses the order of most recent CS accesses
of the processors to choose the least recently CS accessed processor. The
appeal of our approach is that it uses only bounded size shared variables and
works for multiport memory systems.

3.2 Algorithm Design

We use an integer array called pos of size n to hold relative positions of the
recent CS accesses (we refer as LRU positions) of the processors. The cell
pos[1] holds the id of “least recently” CS accessed processor, pos[2] holds
the id of next least recently CS accessed processor, etc., and pos[n] holds
the id of “most recently” CS accessed processor. That is, between any two
processors p and ¢ with respective LRU position values ¢ and j, if ¢ > j
then the processor ¢ has higher priority than p in accessing the CS. Each

490

IEICE Electronics Express, Vol.2, No.19, 488-494

processor uses a local variable k to keep track of its LRU position in pos. A
boolean array competing of size n is used to indicate processors’ interest in
accessing the CS. Initially, for each p, pos[p| is set to p, competing[p] is set to
false, and k is set to n. If k is not the current LRU position of a processor
p, then it can find it by scanning the pos array downwards from location k
as follows:

while(pos[k] # p) k:=k — 1, (a)

In the entry section, a filter mechanism is used to block the lower priority
processors. A blocked processor, say p, can cross the filter only after all the
higher priority processors complete their CS executions. The filter essentially
has two components: (i) checking for the competition of higher priority pro-
cessors and (ii) waiting for the higher priority processors to complete their
CS accesses and leave the competition.

If there exists a higher priority processor ¢ with LRU position less than
k is competing for the CS, then p waits until ¢ completes the CS access and
leaves the competition. Since each higher priority processor changes the LRU
positions of all the lower priority processors before it exits, a lower priority
processor p can simply wait for its position change before it checking for any
other higher priority processors. Thus, the filter for a processor p is designed
as follows:
while(3j, (1 < j < k) A (competing[pos[j]|] = true))

{ wait until(pos|k] # p); while(pos|k| #p) k:=k —1; }

Next, we design a safety-net to assure exclusive access to the CS. Sup-
pose a processor p starts its competition, determines that no higher priority
processor is competing, and therefore proceeds further to enter the CS. Now,
a higher priority processor q starts its competition and determines a lower
priority processor p is competing. From ¢’s point of view, p could be ei-
ther blocked in the filter or in the CS (that is outside the filter). To avoid
this dilemma, we introduce a boolean array called in_cs of size n to indicate
whether the processors crossed the filter or not. The safety net will allow
a processor to cross it only when in_cs of all other processors are false.
(in_cs[p] is initialized to false, for all p). The safety-net for p is given next.
repeat {

in_cs[p] := false; filter; in_cs[p] := true;
tuntil (Vj # p, in_cs[j] = false)

Finally, after completing the CS access, the processor p adjusts the LRU
positions as follows:
while(pos|k] # p) k:=k — 1,
for(j :=k to n — 1) pos[j| := pos[j + 1];
pos|n] := p; (c)

The LRU positions adjustment basically promotes the processors between
location k£ + 1 and n by shifting one position left and places the id of p at
location n. Since each position adjustment (by (c)) is done exclusively after
every CS access completion, it is easy to see that it preserves the ids of all
processors in pos. Also, it is obvious that a processor can find its id (by (a))
during no LRU position shift. Suppose p is reading at pos[j] while ¢ is writing

491

IEICE Electronics Express, Vol.2, No.19, 488-494

the value of pos[j + 1] on pos[j] for a position shift, then it is easy to see that
pos[j + 1] cannot be equal to p (otherwise, since p is scanning from right to
left, it must have find its id at pos[j + 1] and therefore blocked at pos[j + 1]
(in the filter). If the value of pos[j| is p, before ¢ writes on it, then the
current value of pos[j — 1] must be p (due to shift). Therefore, even if p reads
pos|j] value as p during a shift and blocks at pos[j], it will eventually read
the correct value of pos[j| and proceed further to identify its LRU position.
That is, the possibility of inconsistent read due to multiport memory will not
affect the correct reading of the LRU positions. The complete algorithm for
the processor p is presented in Figure 1.

1. competing[p] := true; k := n;

2. while(pos[k] #p) k:=k—1;

3. repeat {

4. in_cs[p] := false;

5. while(3j, (1 < j < k) A (competing[pos[j]] = true))
6. { wait until(pos|k] # p); while(pos|k] # p) k:=k —1; }
7. in_cs[p] := true;

8. tuntil (Vj # p, in_cs[j] = false)

9. CS;

10. while(pos[k] # p) k ==k — 1,

11. for(j :=k to n — 1) pos[j] := pos[j + 1];

12. pos[n] := p;

13. competing|p| := false;in_cs[p| := false;

Fig. 1. LRU Algorithm

4 Correctness Proofs

First we introduce some terminology. We denote: (i) 7;(z) and w;(z), respec-
tively, as the read and write operations of processor i on the variable z; (ii)
an event e; occurred before another event e; as e; — ej. We say e; — ¢ as ¢;
precedes e; in time; (iii) an event e; does not occurred before another event
ej as e; # e;; (iv) occurrences of two events e; and ey that overlap in time
as eq||e2; and (v) occurrences of two events e; and e that do not overlap in
time as e; f|ea.

Theorem 4.1 The LRU algorithm assures mutual exclusion.

Proof : Proof by contradiction. Suppose there are more than one processors
simultaneously accessing the CS. In particular, we consider two such proces-
sors ¢ and j that access the CS at same time. Each of these two processors
must have observed the other’s in_cs value as false, to cross the line 8 before
entering the CS. Let w;(in_cs[i]) and r;(in_cs[j]), respectively, be the latest
write on in_cs[i] at line 7 and the latest read on in_cs[j]| at line 8 by the pro-
cessor i before it entered the CS. Similarly, let w;(in_cs[j]) and r;j(in_cs[i]),

492

IEICE Electronics Express, Vol.2, No.19, 488-494

respectively, be the latest write on in_cs[j] at line 7 and the latest read on
in_cs[i] at line 8 by the processor j before it entered the CS. The read and
write operations of same processor cannot overlap in time. Therefore,

wj(in-cs[i]) — ri(in_cs[j]) (1)
and
w(in.cs[j) — r(in-csli) 2)

If wj(in-cs[j]) — ri(in_cs[j]) then the processor i must have read the
value of in_cs[j] as true at line 8 before entering the CS, which is a contra-
diction. Similarly, if w;(in_cs[i]) — r;(in_cs[i]) then the processor j must
have read the value of in_cs[i] as true at line 8 before entering the CS, which
is also a contradiction.

Without loss of generality, assume that w;(in_cs[j]) /r;i(in-cs[j]) (3)
It is enough to prove that w;(in_cs[i]) — r;(in_cs[i]). Relation (3) implies ei-
ther r;(in_cs[j]) — w;(in_cs[j]) or r;(in_cs[j])||w;(in_cs[j]). If ri(in_cs[j]) —
wj(in-cslj]), then by (1) and (2), we get w;(in_cs[i]) — rj(in_cs[i]). If
ri(in_cs[j])||w;(in-cs[j]), then by (1), w;(in-cs[j]) # w;(in_cs[i]). This means
either w;(in_cs[i]) — wj(in_cs[j]) or wj(in_cs[j])||w;(in_cs]i]).

Case 1: w;(in_cs[i]) — w;(in_cs[j])
= wyin-cslil) — w;(in-cslj]) — r;(in_csli) (by (2))
= w;(in_csi]) — rj(in_cs[i])

Case 2: w;(in_cs[i])||w;(in_cs[j])

From the hypothesis, we get w;(in_cs[j]) overlaps with both w;(in_cs[i])
and 7 (in_cs[j]). By (1) w;(in_cs[i]) must terminate before w;(in_cs[j]) termi-
nates, for r;(in_cs[j]) to overlap with w;(in_cs[j]). This implies, and by (2),
w;(in_cs[i]) must terminate before r;(in_cs[i]) starts. That is, w;(in-cs[i]) —
rj(in_cs[i]). Hence the proof.

Theorem 4.2 The LRU algorithm assures liveness.

Proof : 1If there is only one processor trying for its CS execution, then it
can complete the lines 1 to 8 without blocking, and hence it can enter the
CS in a finite time. If more than one processors are competing for the CS,
then except the processor with the lowest L RU position, all other processors
will be blocked at the filter in lines 5 and 6. This will eventually allow the
processor with the lowest LRU position to cross the line 8 and enter the CS.

Theorem 4.3 In LRU algorithm, the mazimum number of overtakes possi-
ble over a processor to access the CS isn — 1.

Proof : A processor after completing its CS execution, shifts the LRU posi-
tions in lines 11 and 12 in such a way that it gets the lowest priority for the
next turn. So, a processor cannot execute its CS consecutively when there
are other processors currently competing for their CS executions. But, it is
possible that a later processor can overtake an earlier arrived processor once
due its current LRU position. Since the maximum number of processors in
the system is n, the maximum number of overtakes possible over a processor
isn—1.

493

IEICE Electronics Express, Vol.2, No.19, 488-494

5 Conclusion

In this paper, after briefly reviewing the hardware and software solutions for
the arbitration problem in multiport memory systems, we presented a new
algorithm. Our algorithm is simple, efficient, and assures LRU fairness.

494

