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Zusammenfassung
Hintergrund: Das Wachstum von Brustkrebs kann durch 
Tamoxifen gehemmt werden. Tamoxifen ist ein Prodrug 
das in einer ersten Reaktion vom Cytochrom P450 2D6 
(CYP2D6)-Isoenzym in das aktive Endoxifen umgewandelt 
wird. Wir haben das Verhältnis zwischen CYP2D6-Genoty-
pen und dem Metabolismus von Dextromethorphan (DM), 
das häufig als Surrogat für die Bildung von Endoxifen ver-
wendet wird, untersucht. Material und Methoden: Der 
CYP2D6-Genotyp wurde mittels Polymerase-Kettenreaktion 
(PCR) bei vorgängig unbehandelten Frauen mit Hormonre-
zeptor-positivem Brustkrebs untersucht, die für eine anti-
hormonelle Therapie in Betracht kamen. Die renalen DM/
Dextrorphan (DX)-Exkretionsquotienten wurden nach Ein-
nahme von 25 mg DM über Hochdruck-Flüssigchromato
graphie (HPLC)-vermittelte Urin-Analyse bestimmt. Das 
Verhältnis von Genotyp und Phänotyp wurde statistisch 
analysiert. Ergebnisse: Von 151 Patientinnen, die über den 
CYP2D6-Genotyp den „traditionellen“ Phänotypklassen 
poor, intermediate, extensive und ultrarapid zugeordnet 
wurden, konnten 83 anhand ihrer renalen DM/DX-Exkreti-
onsratio phänotypisiert werden. Der Genotyp poor metabo-
lizer-Status korrelierte dabei mit der DM/DX-Exkretionsratio, 
während intermediate, extensive und ultrarapide Genoty-
pen aufgrund ihres Phänotyps nicht voneinander unter-
schieden werden konnten. Die Einnahme von Citalopram 
hatte keinen signifikanten Einfluss auf den Phänotyp. 
Schlussfolgerungen: Mittels DM-Metabolismus kann die 
CYP2D6-Aktivität zuverlässig bestimmt werden. Die Korrela-
tion mit dem Genotyp kann inkomplett sein und scheint 
durch Citalopram unbeeinträchtigt. Die DM-Phänotypisie-
rung könnte zur Bestimmung der metabolischen Kapazität 
von CYP2D6 standardisiert werden.
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Summary
Background: The growth inhibitory effect of tamoxifen is 
used for the treatment of breast cancer. Tamoxifen efficacy 
is mediated by its biotransformation, predominantly via the 
cytochrome P450 2D6 (CYP2D6) isoenzyme, to the active 
metabolite endoxifen. We investigated the relationship of 
CYP2D6 genotypes to the metabolism of dextromethorphan 
(DM), which is frequently used as a surrogate marker for the 
formation of endoxifen. Methods: The CYP2D6 genotype 
was determined by polymerase chain reaction (PCR) in pre-
viously untreated patients with hormone receptor-positive 
invasive breast cancer considered to receive antihormonal 
therapy. The DM/dextrorphan (DX) urinary excretion ratios 
were obtained in a subset of patients by high-pressure 
liquid chromatography (HPLC)-mediated urine analysis after 
intake of 25 mg DM. The relationships of genotype and cor-
responding phenotype were statistically analyzed for asso-
ciation. Results: From 151 patients predicted based on their 
genotype data for the ‘traditional’ CYP2D6 phenotype 
classes poor, intermediate, extensive and ultrarapid, 83 pa-
tients were examined for their DM/DX urinary ratios. The 
genotype-based poor metabolizer status correlated with the 
DM/DX ratios, whereas the intermediate, extensive and ul-
trarapid genotypes could not be distinguished based on 
their phenotype. Citalopram intake did not significantly in-
fluence the phenotype. Conclusions: The DM metabolism 
can be reliably used to assess the CYP2D6 enzyme activity. 
The correlation with the genotype can be incomplete and 
the metabolic ratios do not seem to be compromised by 
citalopram. DM phenotyping may provide a standardized 
tool to better assess the CYP2D6 metabolic capacity.

*Present address: Laboratory Enders&Partner, Stuttgart, Germany
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Introduction

Tamoxifen is a selective estrogen reuptake inhibitor that is 
used in the neo-adjuvant and adjuvant treatment of pre- and 
postmenopausal patients with estrogen receptor (ER)-posi-
tive breast cancer, palliatively as well as in chemoprevention. 
Previous studies indicate that the tamoxifen efficacy depends 
on its biotransformation, predominantly via the cytochrome 
P450 2D6 (CYP2D6) isoenzyme, to the active metabolite en-
doxifen [1]. Levels of endoxifen may vary with the number of 
mutant CYP2D6 alleles or concurrent use of drug inhibitors 
of CYP2D6 [2–6]. In the adjuvant setting, non-functional and 
severely impaired CYP2D6 genetic variants and concomitant 
CYP2D6-inhibitory drug intake seem to affect the disease-
free survival and have even been associated with overall sur-
vival [7–12] as well as with a lower incidence of hot flashes in 
patients taking tamoxifen [13, 14]. So far, methodological 
problems such as lack of interstudy comparability, sample 
sizes and the growing number of complex allelic variants 
(more than 80 CYP2D6 variants are defined) make the 
prediction of the CYP2D6 phenotype from genotype data 
particularly challenging [1]. Meanwhile, more than 10 epide-
miologic studies have focused on the association between 
inheriting a variant CYP2D6 allele and breast cancer recur-
rence on tamoxifen and have reported highly heterogeneous 
relative risks [15] (for studies in which previous experiences 
are presented and summarized, please refer to table 1). In 
addition, a modeling analysis to calculate the disease-free 
survival of tamoxifen-treated patients who are wild type for 
CYP2D6 in comparison to aromatase inhibitors [16] and 
scoring systems were proposed that incorporate the impact of 
concomitant CYP2D6-inhibiting medications [17]. Also the 
combination of CYP2D6*4 and/or SULT1A1*1/*1 genotypes 
and incorporation of the ABCC2 gene to create a prediction 
for the prognosis of patients treated with tamoxifen and test-
ing the CYP2D6 gene dose effect on plasma concentrations of 
endoxifen has been explored [18, 19]. However, subjects with 
identical genotypes may exhibit considerable interindividual 
variability in metabolic ratio-based phenotypes, which often 
cover 1–2 orders of magnitude, and the range of the observed 
values may not always fall within one of the ‘traditional’ phe-
notype classes [15, 20, 21]. While there is no widespread 
testing for CYP2D6 gene mutations in breast cancer patients, 
of particular interest in clinical practice is how pharmacoge-
nomics can reliably determine a patient’s individual pheno-
type for tailoring treatment [22]. Gaedigk et al. [23] estab-
lished phenotype scores that have been derived from urinary 
ratios of dextromethorphan (DM), a frequent probe drug for 
CYP2D6 functional assessment. DM is O-demethylated into 
dextrorphan (DX) in humans by CYP2D6. Clinically, DM has 
been successfully used as an index of CYP2D6, and analytical 
data have validated the urinary molar ratio DM/DX to assess 
the CYP2D6 activity [24, 25].

Here, we investigate the relationship between 5 CYP2D6 
variants in previously untreated early-stage breast cancer pa-
tients with hormone receptor-positive tumors considered to 
receive antihormonal therapy and their functional capacity to 
metabolize DM as a surrogate predictive phenotypic marker 
of tamoxifen activation. The primary objective of this study 
was to determine whether the CYP2D6 genotype would cor-
relate with the phenotype of DM metabolism based on the 
measurement of the DM/DX urinary excretion quotient.

Methods

For genotyping, 151 patients with primary hormone receptor-positive 
early-stage breast cancer were recruited from July 2009 to September 
2010. All patients were Caucasian women pathologically diagnosed with 
ER- and/or progesterone receptor (PR)-positive, invasive cancer, who 
were considered to receive antihormonal therapy. Patients had neither 
received prior chemotherapy nor antihormonal treatment and were not 
included in this study in case of concomitant inhibitory drug intake other 
than antidepressants. Data on the stage of primary breast cancer diagno-
sis or recurrence were confirmed from the patients’ medical records. For 
the DM/DX phenotype study, a subset of 83 patients, including 7 patients 
with intake of the selective serotonin reuptake inhibitor (SSRI) citalo-
pram, were permitted. This observational study was approved by the local 
ethical committee of Zürich, Switzerland, and written informed consent 
was obtained from all patients. Due to the relatively small number of pa-
tients, no survival analysis was planned or performed in this cohort.

Genotyping and Genotype Classification
Genomic DNA was extracted from 200 ml ethylenediaminetetraacetic 
acid (EDTA)-whole blood samples in a fully automated manner on the 
MagNa Pure Compact instrument from Roche Applied Science using  
the MagNA Pure Compact Nucleic Acid Isolation Kit®. All samples 
were genotyped for the polymorphic CYP2D6 gene. The definition of 
CYP2D6 allelic variants is in accordance with the Cytochrome P450 
(CYP) Allele Nomenclature Committee (www.cypalleles.ki.se). We fo-
cused on the *3, *4, *5, and *6 alleles because these 4 variant alleles 
account for approximately 97% of the non-functional CYP2D6 variants 
in white populations [23]. The single-nucleotide polymorphisms (SNPs) 
CYP2D6*3, CYP2D6*4 and CYP2D6*6 were analyzed using tetra-primer 
polymerase chain reaction (PCR), and the CYP2D6*5 deletion allele 
using multiplex long PCR, followed by subsequent agarose gel electro-
phoresis according to methods previously described by Hersberger et al. 
[26]. We also looked for the presence of a CYP2D6 gene duplication or 
gene amplification using a long-range PCR-based method [27].

All investigated polymorphisms in the CYP2D6 gene, with the excep-
tion of the CYP2D6 gene duplication or amplification, give rise to null 
alleles that either code for an inactive enzyme or do not code for any 
enzyme protein at all. To enable the result evaluation, we stratified our 
patient phenotypes according to genotype as follows: Patients with 2 func-
tional copies of the CYP2D6 gene were considered to be ‘extensive 
metabolizers’ (EM) for CYP2D6. These were subjects in whom we did 
not detect any of the investigated polymorphisms or variants and who, 
according to the analysis, were wild-type carriers and expected to exhibit 
normal CYP2D6 enzyme activity. Patients with 1 wild-type and 1 defi-
cient allele were considered to be ‘intermediate metabolizers’ (IM) with 
impaired enzyme activity, whereas patients with 2 deficient alleles were 
classified as ‘poor metabolizers’ (PM) lacking enzyme activity. Carriers of 
more than 2 functional CYP2D6 gene copies were defined as CYP2D6 
‘ultrarapid metabolizers’ (UM) with increased CYP2D6 enzyme activity. 
This phenotype definition is compatible with the classification suggested 
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status, or histological grade in the women tested (data not 
shown), as was indicated in previous work [7].

Next, we studied the magnitude of difference between  
the analyzed CYP2D6 genotype and the corresponding DM 
metabolic ratios in patients where both genotype and pheno-
type data were available (23 patients with wild-type genotype 
and 60 patients with mutant alleles). According to their geno-
type, the subset of 83 patients available for DM/DX ratios 
included 14 PM, 38 IM, 23 EM and 8 UM, respectively.

According to phenotyping, the values for the DM/DX quo-
tient ranged from less than 0.1 to 5.3. The mean value for all 
phenotypically evaluated patients was 0.50, with a median of 
0.06. Patients in the UM group exhibited a median of 0.014 for 
the DM/DX quotient (range 0.01–0.1) and a mean of 0.02. 
According to the DM test, patients of the EM group exhibited 
a median of 0.019 (range 0.01–0.3) and a mean of 0.04. All 
further results are listed in table 2.

The DM/DX ratios differed significantly between the PM 
CYP2D6 genotypes and all other genotypes (p < 0.0001, after 
Bonferroni correction). In contrast, the extensive and ultrara-
pid genotypes could not be distinguished based on their meta-
bolic DM/DX ratio (p = 1.0). The associations of the DM/DX 
ratios with the CYP2D6 genotypes are shown in figure 1. 
Overall, according to the obtained phenotypes, the genotype 
was predictive in distinguishing between poor and non-poor 

from previous work and is based on the assumption of a gene dosage 
effect [1, 7].

DM Phenotyping
DM undergoes polymorphic metabolism depending on variations in the 
cytochrome P450 enzyme phenotype, with the prime specific enzyme 
catalyzing the DM metabolism being CYP2D6 [28]. Formation of the 
major active tamoxifen metabolites is primarily catalyzed by CYP2D6 
and CYP3A4/5 [1]. The CYP2D6 activity was determined using DM as 
the phenotyping probe by high-pressure liquid chromatography (HPLC) 
analysis as described in detail by Abdel-Rahman et al. [29], and sub
sequently modified as described by Blake et al. [30]. In essence, 6 h after 
intake of 25 mg of DM, the urinary concentrations of DM and its O-
demethylated metabolite, DX, were determined by reversed-phase 
HPLC with fluorescence detection. For this, 1.25 ml of every urine sam-
ple was deglucuronized by adding 500 ml phosphate buffer and 25 ml glu-
curonidase. After incubating the solution at 50 °C in a water bath and 
subsequent cooling of the samples, an aliquot of every sample was centri-
fuged and proceeded for further analysis. Upon determination of the 
peak height concentrations of DM and its O-demethylated metabolite, 
DX, the quotient of DM/DX was calculated.

Statistical Analysis
DM/DX phenotype quotients are reported as median with range and 
were logarithmically transformed to obtain initial information on the ap-
proximately normal distribution. Phenotype expression in each defined 
genotype group was reported as median ± standard deviation (SD). Ge-
notypes were compared using simple analysis of variance with Bonfer-
roni-post hoc tests. The statistical program SPSS 17 (SPSS Inc., Chicago, 
IL, USA) was used for analyses. A receiver operating characteristic 
(ROC) analysis was employed to evaluate a cut-off for the DM/DX quo-
tient and to obtain maximum sensitivity (= 1) and specificity (< 0.9) for all 
phenotyping results. The 2-way analysis of variance was used to evaluate 
the effect of antidepressants on the DM/DX ratios; p < 0.05 was consid-
ered statistically significant.

Results

For genetic analysis, all 151 breast cancer patients were 
screened for 5 different CYP2D6 allele variants, including 
multiple copies of the gene, gene deletion, and 3 null alleles. 
The frequencies of the individual CYP2D6 genotypes are 
presented in table 2. CYP2D6 variants that predicted for the 
‘traditional’ phenotype classes PM, IM, EM and UM [6] were 
present in 16 (11%), 53 (35%), 71 (47%) and 11 (7%) indi-
viduals, respectively. These results correspond to frequencies 
previously observed in Caucasians populations [1, 31]. Geno-
type analysis revealed no statistically significant association 
between the CYP2D6 mutation status and tumor size, nodal 

Table 2. Numbers and percentages from 151 patients tested for CYP2D6 variants and predicted for the ‘traditional’ phenotype classes in the whole 
cohort of patientsa

Genotype All patients Paired Phenotype

n % n Median Range

Ultrarapid 11   7   8 0.014 0.01–0.1
Extensive 71 47 23 0.019 0.01–0.3
Intermediate 53 35 38 0.098 0.01–2.5
Poor 16 11 14 1.774 0.8–5.3
aResults of CYP2D6 testing in patients where paired genotype and phenotype were available, and associated results of the DM test (median, range).

Fig. 1. Graphical representation of the 4 classical genotypes when 
correlated with the results of DM testing.
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affect the type of adjuvant endocrine therapy remains highly 
controversial [15, 19]. Moreover, dose-setting studies with 
clinical and biomarker outcomes and models of receptor bind-
ing suggest that tamoxifen and its metabolites might poten-
tially reach concentrations sufficient to achieve the therapeu-
tic effect regardless of CYP2D6 inhibition. In addition, the 
absence of both functional CYP2D6 alleles does not preclude 
distinct concentrations of the tamoxifen metabolite endoxifen 
(of which the required amount is not known) in sera of pre- 
and postmenopausal women [15]. Finally, the above-men-
tioned considerations seem to be complicated by suggestions 
that the density of ERs on the surface of breast cancer cells 
might even be a surrogate marker for the efficacy of 
tamoxifen [34].

Analyses of retrospective data from 2 large trials (Arimi-
dex, Tamoxifen Alone or in Combination (ATAC) and 
Breast International Group (BIG) 1–98 presented at the  
San Antonio Breast Cancer Symposium (SABCS) 2010) 
found, in contrast to several previous studies, no effect of the 
CYP2D6 genotype in predicting breast cancer recurrence [35, 
36]. While further animating the substantial controversy re-
garding the pharmacokinetics of tamoxifen biotransformation 
and CYP2D6 enzyme activity, these retrospective data may 
also reflect the poorly understood adherence in breast cancer 
patients undergoing antihormonal treatment [37–39]. Thus, 
wide inter-individual variations in serum levels of tamoxifen 
metabolites seem to become more relevant, and additional 
therapeutic drug monitoring might link different genotypes to 
clinical outcome [40]. However, standardized endoxifen meas-
urements require attainment of steady state concentrations 
and interpatient variability in the endoxifen concentration 
may occur even after correcting for CYP2D6 status [17], pos-
sibly due to differences in tamoxifen metabolite elimination 
half-life, distribution volume, and formation rate [3]. While 
prospective trials currently explore whether the in vivo assay 
measuring CYP2D6 enzyme activity provides more accuracy 
in identifying patients with low endoxifen concentrations, 
caregivers exert caution and probably avoid potent CYP2D6 
inhibitors in women treated with tamoxifen.

The results in our study provide further support for the 
surrogate functional testing of the tamoxifen metabolism. 
Beside a wide interpatient variability, we found that 5 (6%) of 
the 83 patients tested phenotypically, due to their functional 
capacity and/or being compromised by inhibitor drugs, did 
not fall within one of the ‘traditional’ genotype classes [15, 
21]. Our findings are in line with results from Jin et al. [3], 
who demonstrated a wide range of efficacy in these subsets. 
Our model assumed a ratio of < 0.30 as threshold for suffi-
cient metabolism, which was derived from ROC analyses to 
determine a cut-off with maximum sensitivity and specificity 
and was deemed comparable to ratios from previously pub-
lished data [25]. Accordingly, all patients determined to be 
PM by genotyping also phenotypically proved to be PM and 
thus were identified as presumably producing inferior 

metabolizer status. When applying a cut-off of 0.3 for the 
DM/DX ratio, the CYP2D6 genotype-based prediction of 
phenotype failed in 5 (6%) patients (genotypically 1 extensive 
and 4 intermediate) who were phenotypically stratified as 
PM. In contrast, by using a metabolic ratio cut-off of 0.45, we 
achieved a phenotype-genotype concordance, in stratifying 
patients into poor and non-poor metabolizers, for all but 1 pa-
tient. This genotypically intermediate patient had a drug 
history of polymedication that could not be specified more 
precisely while an occasional use of antidepressants was also 
reported (table 3).

Of note, none of the 8 patients genotyped as UM in the 
subset where both phenotypic and genotypic data were avail-
able were carriers of the screened null alleles (CYP2D6*3, *4 
and *6) nor of the deletion (CYP2D6*5). On the basis of the 
investigated polymorphisms and their higher frequency in the 
general population, one can assume with a high degree of 
certainty that a common functional allele was amplified (for 
example, allele *1 or *2). We cannot exclude the rather small 
possibility of the presence of further non-investigated poly-
morphisms; however, the possibility that this rare allele would 
also be amplified is even smaller.

In addition, we examined a panel of 7 patients with con-
comitant intake of the antidepressant citalopram, which sup-
posedly does not reduce the efficacy of CYP2D6 metabolism 
[3]. Genotypically, 3 patients were classified as EM, another  
3 as IM, and 1 as PM. Except for 1 patient (genotypically 
classified as IM) who phenotypically demonstrated poor 
metabolizing features (ratio 0.45), all 6 remaining patients 
were not detected to have an impaired DM/DX metabolic 
urinary ratio. As it was expected from the literature [32], 
overall the use of citalopram antidepressant did not exhibit  
a significant effect (p = 0.23) on the DM/DX ratios.

Discussion

The effect of CYP2D6 genotypic variations on the tamoxifen 
metabolism is one of the best characterized and clinically 
important examples of pharmacogenomics in cancer. Wide in-
terpatient variations in circulating levels of both tamoxifen 
and metabolites seem to be explained by combinations of sev-
eral mechanisms, e.g., those responsible for resistance and ‘at-
risk’ alleles predictive for the response towards tamoxifen [18, 
33]. Despite this potential link between the CYP2D6 muta-
tion status and altered clinical outcomes among mutation 
carriers on tamoxifen intake, the discussion how this would 

Table 3. Patients with discordant genotype and phenotype

Patient Genotype Metabolic ratio

1 extensive wild type 0.32
2 intermediate CYP2D6*4, CYP2D6*2×2 0.43
3 intermediate CYP2D6*1/*3 0.44
4 intermediate CYP2D6*1/*4 0.45
5 intermediate CYP2D6*1/*4 2.52
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