IEICE Electronics Express, Vol.7, No.24, 1766-1772

Reconfiguration for
Sensitivity Technique:

A QoS-aware Co-Design
approach for stream-based
applications

Olufemi Adeluyi and Jeong-A Lee®
Department of Computer Engineering, Chosun University
375 Seosuk-Dong, Dong-Gu Gwangju 501-759, Korea

a) jalee@chosun.ac.kr

Abstract: Reconfiguration for Sensitivity Technique (RST) is pre-
sented as an approach for maintaining QoS in stream-based applica-
tions running on embedded systems. It is a co-design approach that
uses the reconfiguration and sensitivity metrics for QoS awareness; the
former for run-time reconfiguration in response to stimuli from the lat-
ter. The effectiveness of RST was tested after we used our CHARMS
algorithm to screen out 95.17% of the mapping-cases for a H.263 en-
coder. Our tests showed a 99.25% QoS provisioning-up-time-level at
any given instant, based on available battery power, using RST as
compared to 80.62% with Performance Aware Reconfiguration of Soft-
ware Systems(PARSY), 58.83% with Reconfigurable Service Composi-
tion(RSC) and 41.67% without RST.

Keywords: co-design, reconfigurable systems, stream-based, QoS
Classification: Integrated circuits

References

[1] M. Danelutto, M. Vanneschi, and C. Zoccolo, “A Performance Model
for Stream-based Computations,” Proc. 15th EUROMICRO International
Conference on Parallel, Distributed and Network-Based Processing (PDP),
Napoli, Italy, pp. 91-96, Feb. 2007.

[2] A. C. J. Kienhuis, Design Space Exploration of Stream-based Dataflow
Architectures: Methods and Tools, Ph.D Thesis, Delft University of Tech-
nology, The Netherlands, Jan. 1999.

[3] M. Marzolla and R. Mirandola, “Performance Aware Reconfiguration of
Software Systems,” Proc. 7th European Performance Engineering Work-
shop (EPEW 2010), Bertinoro, Italy, Sept. 2010.

[4] E. Park and H. Shin, “Reconfigurable Service Composition and Cate-
gorization for Power-Aware Mobile Computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 19, no. 11, pp. 1553-1564, Nov. 2008.

[6] S.-Y. Ahn, J. Kim, and J.-A. Lee, “Heuristic Algorithm for Reducing
Mapping Sets of HW/SW Partitioning in Reconfigurable System,” Proc.
9th Asia-Pacific Computer Systems Architecture Conference, pp. 102-114,
China, 2004.

1766

IEICE Electronics Express, Vol.7, No.24, 1766-1772

[6] A. B. Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, and
H. Levi, “An FPGA implementation of HW/SW codesign architecture
for H.263 video coding,” AEU — International Journal of Electronics and
Communications, pp. 605-620, Dec. 2006.

1 Introduction

Many of today’s embedded computing applications are stream-based. These
are applications described by task-flow graphs whose nodes represent compu-
tations and whose edges represent communications or synchronizations [1].
They describe dynamic applications with nodal data-dependencies that are
resolved at runtime [2] and require processing power in the order of several
dozens of RISC (Reduced Instruction Set Computer) -like operations with
data rates ranging from million to billion samples per second.

In this letter we propose hardware/software (HW/SW) co-design as a
means of designing high performance systems within the confines of resource
constraint realities. In co-design, applications, made up of operation blocks,
with their associated tasks, can be implemented either fully as hardware,
fully as software or a combination of the two. A partitioning is done for a
performance-cost optimal implementation that leverages on the high perfor-
mance of hardware and the flexibility of software.

We present designers with a new approach, called RST, for guarantee-
ing the QoS in stream-based applications. RST involves the choice of two
metrics (reconfiguration and sensitivity) and it involves the selection and
storage of optimal mapping sets for use at runtime. This selection is made
after the creation, testing and streamlining of several mapping-sets, gener-
ated by partitioning the application (H.263-encoder — Fig. 1 (a)) into the soft-
ware (NIOS-II-Softcore-Processor) and hardware (FPGA: Altera-Stratix-II-
EP2S60) architectures. The mapping-sets are then streamlined by our Cus-
tomized Heuristic Algorithm for Reducing Mapping Sets (CHARMS) using
the combo-metric cost as the streamlining parameter and the best mapping-
sets are those satisfying the pre-specified combo-metric performance levels,
which are also indicative of the QoS levels. They are then selected for differ-
ent levels of the sensitivity metric for runtime reconfiguration. By definition
the sensitivity metric is the more critical of the two, as its variations have a
greater impact on system performance, while the reconfiguration metric is the
parameter which has latitude for change to compensate for the fluctuations
in the sensitivity metric.

Marzolla and Mirandolla [3] used a Performance Aware Reconfiguration
of Software Systems (PARSY) for maintaining QoS. It involves the selec-
tive upgrading/degrading of the runtime configuration whenever the utility
values exceed or fall below the pre-specified thresholds. Similarly, Park and
Shin [4] proposed Reconfiguration Service Composition (RSC) as a power-
aware approach for controlling QoS. They dynamically modified the QoS
levels in response to power-profile changes by choosing a service-specific map-

1767

IEICE Electronics Express, Vol.7, No.24, 1766-1772

ping option based on a predefined Precedence-Index (PI). PARSY and RSC
are compared with RST in section 3.

2 Y-Chart, Combo-Metrics, CHARMS and RST

The Y-chart process (Fig.1(b)) allows designers to map target application
processing elements (PEs) to HW/SW Functional Elements (FEs). This is
done in order to carry out an analysis and provide performance numbers used
to rank the mapping-cases. These performance numbers are approximated
based on available parameters from the profiling process. The task-flow graph
of the H.263 encoder application is used within the Y-chart process, where
mapping cases are evaluated. The Iterative Process feedback arrow allows the
system to select and evaluate new mapping cases with different architecture
descriptions until the designer’s requirements are met or until all cases are
exhausted.

The Customized Heuristic Algorithm for Reducing Mapping Sets
(CHARMS) algorithm is a modification of the Heuristic Algorithm for Re-
ducing Mapping Sets (HARMS) proposed by Ahn et al [5]. The HARMS
streamlines the mapping cases by first excluding impossible mapping cases
based on the FPGA size constraint and, as shown in Eq. (1a), it then uses the
values of workload and parallelism to estimate the throughput as a basis for
reducing the mapping-sets. CHARMS is a more flexible version of HARMS
that takes the varying computational complexities of the task nodes into ac-
count, making them similar to one another. A formal algorithm for CHARMS
is shown in Fig. 1 (c).

IF W1>W2 & Pl<P2, then T1<T?2 (1a)
c1

1
[combo_metrics] == | . = —————[metrics][weights]
no_of _metrics

Cn

mi1...M1p wq

L | (1b)

Myl - .- Mpp wy,

where W, P and T are workload, parallelism and throughput respectively.
Also wyj is the weight assigned to metric i, ¢;j is the combo-metric for the node
j in the application and myy, is the b*™ metric value for the n'* PE node in
the FE under consideration.

We have opted to use Combo-Metrics- weighted sum of contributing met-
rics, as this gives a more holistic view than is obtained with just one metric.
For our discussions we have assigned weights of “3” and “1” to the sensitivity
and reconfiguration metrics respectively. The combo-metrics are calculated

1768

IEICE Electronics Express, Vol.7, No.24, 1766-1772

for each of the application processing elements for both the software and
hardware FEs as shown in the matrix equations in Eq. (1b). The nodal
combo-metrics for each given mapping case are summed in each mapping-set
in order to index them based on the combo-metrics.

APPLICATION: H.283 ENCODER APPLICATION:

i ot G i ncoven
] § [l e

- MAPPING TO
SRC ontrol BWRSW

—_ E I |Ne:t Frame SINK

{ia} (1b)

Algorithm: Customized Heuristic Algorithm for Reducing Mapping Sets (CHARMS)

Require: A user application

Require: N number of tasks

Require: T set of tasks {T,, T,, Ty, ..., Ty}

Require: B number of metrics

Require: W set of weight factors {W,, W,, W, ..., W}

Require: M set of metrics for each task; set for task 1, T,: {Mqyy3, Myya, ..o, Mpga}
Require: D set of data dependencies {D}

Require: P set of performance constraints {P, P,, ..., P}

Ensure:

*Get combo-metric value for each task, i: (W, *M;, + W,* M, + ... + W My)/B
*Arrange the T tasks in increasing order of combo-metric

*Select task candidate E, T, with combo-metric>>average combo-metric

+Split T, into T, and T,,, preferably half the combo-metric value

*Reprocess to get new mapping cases

*Check if new cases meet performance constraints {P}; eg QoS for specified period
«If yes, end CHARMS

*If no, restart process for the new N+E tasks; E is the number of executed iterations
*Repeat until the streamlined mapping sets contain the desired combo-metric values or
until all cases are exhausted

(1c)

Fig. 1. (a) Task-Flow Graph for the H.263 Encoder Ap-
plication (b) Y-chart process for RST (c¢) The
CHARMS Algorithm

The Reconfiguration for Sensitivity Technique (RST) is a co-design tech-
nique that works with the other methods listed in this section to execute
applications in HW/SW systems so as to meet the performance level spec-
ified by the designer. Prior to live execution of the application, a number
of mapping cases are generated from potential partitions to the hardware
and software systems using the Y-chart process and CHARMS. These map-
ping cases are then arranged based on the value of the combo-metric and
are screened based on the threshold combo-metric value determined by the
designer. This process identifies optimal mapping-cases, which we call fall-
back mapping-cases that can be used for QoS-aware reconfiguration during
the runtime of the live system. We have used power and throughput as the
sensitivity and reconfiguration metrics respectively. However, a designer can

1769

IEICE Electronics Express, Vol.7, No.24, 1766-1772

choose any sensitivity metric, provided it is the most critical to the design.

3 Performance analysis

The RST approach has been described using the same configuration used by
Atitallah et al in [6]. Thus the H.263 encoder, with its processing element
nodes, has been chosen as the application while the Stratix-II-EP2S60 FPGA
and NIOS-II-softcore processor have been chosen as the hardware and soft-
ware functional elements respectively. RST has been compared with PARSY
and RSC. A features-based comparison of the three techniques is given in
Table I.

The percentage of available battery power has been used as a measure
for sensitivity in this letter and used to quantify QoS. To analyze the perfor-
mance of the system with RST and others, we have defined two (2) inflection
points; these are points in the runtime where the power profile is expected
to begin to experience significant changes.

The first point chosen was the AC2GoodBattery, while the second was
GoodBattery2LeakyBattery. The former refers to a transition period when
the portable device has its live AC power disconnected, thus requiring it to
rely on a battery that is assumed to be in good working condition. The latter
refers to a transition from a battery in good working condition to one that is
a faulty and leaky battery. The periods between the runtime start, end and
inflection points constituted our test phases. As such, we had three (3) test
phases, namely:

i. Phase I: From an AC power connected startup to AC2GoodBattery
ii. Phase II: From AC2GoodBattery to GoodBattery2LeakyBattery

iii. Phase III: From GoodBattery2LeakyBattery until the end of runtime

The sensitivity (power) metric reflects the amount of power consumed in
the execution of a nodal task in HW/SW. The reconfiguration (throughput)
metric is defined as being dependent on parallelism and workload [5]. The
throughput is calculated as the product of the channel size and frequency
divided by the number of execution cycles (Eq. (2)). The workload is defined
as the volume of tasks to be processed, while the parallelism is calculated as
the ratio of the summation of the individual execution times assuming that
the tasks are all run sequentially to the execution time as a result of running
some tasks in parallel.

Parallelism ~ Frequency)
Workload No_of _Execution_Cycles

Throughput

We utilize the extracted mapping-sets from the previous steps (Y-chart
process with the combo-metric-centric CHARMS) to perform a “hot swap” of
the active mapping set at the inflection points to one of the fallback mapping-
sets in order to compensate for the changes and thus stabilize the QoS pa-
rameter.

1770

E Lectronics
E X press

© IEICE 2010

DOI: 10.1587/elex.7.1766
Received October 14, 2010
Accepted November 16, 2010
Published December 25, 2010

IEICE Electronics Express, Vol.7, No.24, 1766-1772

Table I. Comparison between RST, RSC and PARSY
S/No | Type Key terms Mode of Operation Other
Comments
1. RST Combo-metrics, Do a pre-run of application | All 3 techniques
reconfigurable to select fallback options | support run time
metric, sensitivity | based on combo-metric | reconfiguration
metric, QoS, | values before live | based on profile
mapping sets, | implementation. At given | changes during run
weights, thresholds | threshold change to | time.
appropriate fallback option
2. PARSY Precedence Index | Assign utility values to | RST determines
(PI), upgrading and | components (tasks). | fallback options
degrading of | Determine upper and | before the live
components, upper | lower thresholds and | runtime and thus
and lower | monitor these in live | maintains QoS in a
thresholds, QoS execution. During | timely manner.
execution (if thresholds are
surpassed) determine | Both PARSY and
which components need to | RSC determine
be upgraded or degraded to | how to adapt
maintain QoS during the run time
3. RSC Utility, service | Give each service (eg | and thus lose some
composition, QoS, | hardware/software) a PI | time. Both RST
adaptation that indicates expected | and PARSY adapt
profitability of choosing a | their solution in
configuration. During live | order to maintain
implementation ~ modify | Qos while RSC
QoS based on the current | changes the QoS
situation. (to better or worse)
depending on the
runtime conditions.

Table II. Profile table for H.263 encoder in hardware and

software
Functional Element: Functional Element: Hardware
Software (NIOS II Softcore | (Altera Stratix II EP2S60 FPGA)
Processor)

Processing Through | Power Combo- || Through- | Power Combo-
Element - Metric || put Metric

put
DCT 936 675 2961 166568 93 166847
IDCT 936 675 2961 166568 93 166847
Quant 25266 20 25326 1874821 1874845
Dequant 46789 11 46822 1874821 1874845
ME 2339 217 2990 519354 30 519444

A comparison of the techniques and the profile table are shown in Ta-
bles I and II respectively. We have used only five(5) of the H.263 processing
elements shown in Table II since they account for over 97% of the computa-
tional activity [6]. These are the Discrete Cosine Transform (DCT), Inverse
DCT (IDCT), Quantization (Quant), Dequantization (Dequant) and Motion
Estimation (ME) from Predict & Restore shown in Fig. 1 (a).

Using our CHARMS approach described in section 2, a total of 4096
mapping cases were generated, from which 198 of the best mapping cases were
sieved, representing a streamlining of 95.17% of the cases, while retaining
4.83% of the best cases. Three (3) of these cases were selected for our test-
the 15* was the mapping set with the best throughput and worst power, the

1771

IEICE Electronics Express, Vol.7, No.24, 1766-1772

27 had average throughput and average power, such that the power never
falls below 66% of battery capacity; while the 3'% had the worst throughput
and best power, in order to lower the power consumption. These 3 cases were
stored as the fallback mapping-sets used for the Phase I, Phase II and Phase
IIT test phases respectively.

For power analysis, we have chosen the LG Li-lon 3.7v M-Commerce
battery. It has a capacity of 1050 mAh. We assume that the leaky battery
discharges 20% faster than normal. Unlike RST, both RSC and PARSY have
an additional overhead as a result of determining the best mapping case at
runtime. Similarly, unlike RST and PARSY, RSC changes (in this case it
degrades) the initial QoS settings in response to worse runtime operating
conditions.

Our implementation was based on a 12-minute test and we experienced
an up-time (time above the agreed QoS transition point or threshold of 0.66
of the rated battery capacity) of 99.25% with RST, as opposed to the up-
time of 80.62% with PARSY, 58.83% with RSC and 41.67% without RST.
As shown in Fig. 2, the QoS level (as typified by the % of available battery
power in our illustration) is much more stable with the RST than without it.

—e— Without RST,
“| = with RST

. PARSY
—»—RSC

igg
E
g
.
2
2

Fig. 2. Effect of RST on runtime implementation of H.263

4 Conclusion

In this paper, we have presented the Reconfiguration for Sensitivity Tech-
nique (RST) as a co-design approach that takes advantage of technologies
such as FPGAs to provide flexible solutions that can significantly improve
QoS guarantees in the runtime environments of stream-based applications.

1772

