
LETTER IEICE Electronics Express, Vol.10, No.5, 1–7

Multi-level programming of
memristor in nanocrossbar

Xuan Zhu1,2a), Chunqing Wu2, Yuhua Tang1,2, Junjie Wu1,2,
and Xun Yi1,2

1 State Key Laboratory of High Performance Computing, National University

of Defense Technology, Changsha, Hunan, China
2 School of computer, National University of Defense Technology, Changsha,

Hunan, China

a) zhuxuan1986@gmail.com

Abstract: Utilizing memristor to obtain multi-level memory in
nano-crossbar is a promising approach to enhance the memory den-
sity. In this paper, we proposed a solution for multi-level programming
of memristor in nanocrossbar, which can be implemented on nanocross-
bar without the need for extra selective devices. Meanwhile, using a
general device model, this solution is demonstrated to be adaptive to
a wide range of memristors that have been experimentally fabricated
through HSPICE simulation.
Keywords: memristor, multi-level, nanocrossbar, memory, HSPICE
Classification: Storage technology

References

[1] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc.
IEEE, vol. 64, no. 2, pp. 209–223, 1976.

[2] H. Kim, M. P. Sah, C. Yang, and L. O. Chua, “Memristor-based multilevel
memory,” Proc. 12th. Int. Workshop on Cellular Nanoscale Networks and
Their Applications, pp. 1–6, 2010.

[3] I. E. Ebong and P. Mazumder, “Self-controlled writing and erasing in a
memristor crossbar memory,” IEEE Trans. Nanotechnol., vol. 10, no. 6,
pp. 1454–1463, 2011.

[4] K. H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain,
N. Srinivasa, and W. Lu, “A functional hybrid memristor crossbar-
array/CMOS system for data storage and neuromorphic applications,”
Nano Lett., vol. 12, no. 1, pp. 389–395, 2011.

[5] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Roger,
“A memristor device model,” IEEE Electron Device Lett., vol. 32, no. 10,
pp. 1436–1438, 2011.

[6] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnology, vol. 3, no. 7, pp. 429–433, 2008.

[7] G. S. Snider and R. S. Williams, “Nano/CMOS architectures using a field-
programmable nanowire interconnect,” Nanotechnology, vol. 18, no. 3,
pp.035204, 2007.

[8] J. Mustafa, “Design and analysis of future memories based on switchable
resistive elements,” Ph.D. dissertation, Dept. Elect. Eng., RWTH Aachen
Univ., Aachen, Germany, 2006.c© IEICE 2013

DOI: 10.1587/elex.10.20130013
Received January 08, 2013
Accepted January 12, 2013
Published March 05, 2013

1



IEICE Electronics Express, Vol.10, No.5, 1–7

1 Introduction

Multi-level memory is an effective approach to enhance memory density. As
a novel type of nanoelectronic device that has attracted great attention re-
cently, memristor intrinsically owns the multi-level resistance characteris-
tic [1]. Meanwhile, memristors that are integrated in nanocrossbar structure
can achieve a unit cell area of as small as 4F 2(F is the feature size). Com-
bining these advantages together, it is distinct that multi-level memristor
integrated in nanocrossbar has a significant potential in achieving ultra-high
memory density. Besides, it also shows important application in other fields,
such as hardware neural networks.

However, implementing multi-level memristor memory on nanocrossbar
faces many challenges. Multi-level programming of memristor is such a prob-
lem that need to be properly solved. [2] connects each memristor cell with a
selective transistor to achieve selection, which incurs higher cost, and makes
it unsuitable for nanocrossbar structure. Self-controlled write of memristor
on nanocrossbar implemented by [3] achieved only binary memory and also
need the help of additional selective diode for each memiristor cell. [4] is by
far the closest experimental demonstration of multi-level memristor memory
using nanocrossbar. However, programming method in this work is closely re-
lated to the intrinsic characteristic of the device, which might be unadaptive
to other types of memristors.

Based on a general device model, we proposed an multi-level program-
ming approach for memristor in nanocrossbar. By generating voltage pulses
of multiple width, we achieved precise programming of memristors’ resis-
tance with small error distribution. This approach can be implemented on
nanocrossbar without the need for extra selective devices, and is suitable for
a wide range of memristors that have been experimentally demonstrated.

2 Modeling of nanocrossbar and memristor

The nanowire is simulated using a distributed pi model. According to [7],
the resistivity can be approximately expressed by:

ρ

ρ0
= 1 + 0.75 × (1 − p)(

λ

d
) (1)

where ρ0, p and λ are constant parameters, and d is the width of nanowire
which is estimated to be 10 nm. Thereof, a 4 Ω interconnection resistance
between two adjacent cells can be obtained. Following a conservative esti-
mation, we set the interconnection resistance to 10 Ω. The parasitical capac-
itance of nanowire is set to 2pF · cm−1.

At present, many circuit models for memristor have been proposed. Here,
we adopt the model reported in [5] as the base of our approach, because this
model depicts several details of the actual devices’ characteristics, and can be
applied to a wide range of memristors. In this model, the I-V characteristic
of memristor is expressed as follows:

I(t) =

{
a1x(t) sinh(bV (t)), V (t) ≥ 0
a2x(t) sinh(bV (t)), V (t) < 0

(2)
c© IEICE 2013

DOI: 10.1587/elex.10.20130013
Received January 08, 2013
Accepted January 12, 2013
Published March 05, 2013

2



IEICE Electronics Express, Vol.10, No.5, 1–7

where x(t) is the state variable which defines the resistive state of the mem-
ristor. x(t) is composed of two factors as expressed by:

dx

dt
= g(V (t))f(x(t)) (3)

Here, g(V (t)) describes the threshold effect of some of the memristor, which
holds the memristor’s state unchanged when a voltage smaller than a certain
threshold is applied:

g(V (t)) =

⎧⎪⎨
⎪⎩

Ap(eV (t) − eVp), V (t) > Vp

−An(e−V (t) − eVn), V (t) < −Vn

0, − Vn ≤ V (t) ≤ Vp

(4)

f(x(t)) reflects the relationship between the changing rate of x(t) and its
current state:

f(x) =

{
e−αp(x−xp) 1−x

1−xp
, x ≥ xp

1, x < xp

, whenV(t) > 0 (5)

f(x) =

{
eαn(x+xn−1) x

1−xn
, x ≤ 1 − xn

1, x > 1 − xn
, whenV(t) < 0 (6)

Here, Vp,Vn,Ap,An,xp,xn,αp,αn,a1,a2,b are all parameters that are used to fit
the characteristic curve of specific devices. It is clear that when applying a
constant voltage that exceeds the threshold to a memristor, the time needed
to program the memristor from an initial state to a target state is numerically
solvable, given the fitting parameter set.

3 Multi-level programming circuit

The block diagram of the proposed programming circuit is shown in figure
1. The word line controller(WLC) and the bit line controller(BLC) generate
control signals according to the data that is being written, and output to
the word line drivers(WLD) and bit line drivers(BLD), respectively. Each
word(bit) line is driven by a WLD(BLD) which outputs the driving voltage
needed to program or hold a memristor’s resistance.

The selecting scheme in this paper is similar to the published Vdd/2
scheme which makes use of the threshold effect [8]. Specifically, the word
line and the bit line pair that is selected is applied by either a write voltage
pair of (Vwp,−Vwp) or a erase voltage pair of (−Vwn,Vwn), according to the
process of the programming which will be introduced later. Here, choice of
Vwp and Vwn should meet the following requirements:{

Vp/2 < Vwp < Vp

Vn/2 < Vwn < Vn
(7)

The unselected word lines and bit lines are all grounded. Using such a con-
figuration, only the voltage across the selected memristor will exceed the
threshold, and thus only the resistance of the selected memristor will be
changed.

c© IEICE 2013
DOI: 10.1587/elex.10.20130013
Received January 08, 2013
Accepted January 12, 2013
Published March 05, 2013

3



IEICE Electronics Express, Vol.10, No.5, 1–7

Fig. 1. Block diagram of the proposed circuit.

The programming of a selected memristor consists of two steps: firstly,
erase the memristor from its current state to high resistive state, and then
write it from high resistive state to the target state. We use such an erase-
and-write scheme rather than program it directly from the current state to
target state, because such a scheme avoids the need for reading the current
state, and thus simplifies the circuit overhead.

During the erase process, a fixed width(TErase) erasing voltage pulse is
applied to the selected word line and bit line. As the decreasing speed of x(t)
decreases exponentially when it is below xn, final state of the erase process
will fall into a small range after a long enough process, even if the initial
state is distributed in a wide range. During the write process, according to
the data that is being written, WLC outputs a voltage signal VPRO+ of a
previously calculated width to enable the selected WLD. The WLD then
applies the driving voltage Vwp to the selected word line. Meanwhile, BLC
outputs a voltage signal VPRO− to enable the selected BLD to apply a driving
voltage of −Vwp to the selected bit line. By doing so, resistance of the selected
memristor is modified according to the width of the VPRO+ signal.

Take 4-level memory as an example. Figure 2 illustrates the circuit design
of the WLC, WLD, and BLD. Assume four target states x0(0.125), x1(0.375),
x2(0.625), x3(0.875) are used to represent the two-bit data 00, 01, 10, 11,
respectively. The driving voltage width that is needed to write 01, 10, 11
can be obtained by numerical calculation using the above-mentioned model,
which is denoted by TP1, TP2, TP3, respectively. The data decoder selects
one of the reference voltage generated by the voltage divider according to the
input data and outputs to the positive input end of a comparator. A saw-
tooth wave voltage is provided to the negative input end of the comparator
with an amplitude of Vdd and a rising time of TP3. The reference resistors in

c© IEICE 2013
DOI: 10.1587/elex.10.20130013
Received January 08, 2013
Accepted January 12, 2013
Published March 05, 2013

4



IEICE Electronics Express, Vol.10, No.5, 1–7

Fig. 2. Details of a 4-level programming circuit.

the divider are set as follows to generate the proper voltage reference:⎧⎪⎪⎨
⎪⎪⎩

R1

R1 + R2 + R3
=

TP1

TP3

R1 + R2

R1 + R2 + R3
=

TP2

TP3

(8)

Time sequence of all the control signals during the programming process
are shown in figure 3, where the specifics of voltage reference, the saw-tooth
wave Vsaw and the output of the WLC VPRO+ are provided in the insets.

Fig. 3. Sequence of all the control signals.

4 Simulation results

We take the device reported in [6] as an example to carry out the simulation.
The parameters are set to:Vp = 1.2 V , Vn = 0.6 V , Ap = 5, An = 30, xp = 0.7,
xn = 0.8, αp = 4, αn = 24, a1 = 2.3e−4, a2 = 3.8e−4, b = 0.04, according to
[5]. It should be noted that as the nanowire width is scaled from 50 nm as
reported in [6] to 10 nm, parameter b is correspondingly adjusted to 1/25 of
the original value. According to the numerical solving of a single memristor
model, the length of TErase, TP1, TP2 and TP3 is 35.77 ms, 34.17 ms, 17.54 ms,
8.78 ms, respectively. The divider resistor R1, R2, R3 are correspondingly
set to 25.7 KΩ, 25.6 KΩ and 48.7 KΩ, respectively. However, the numerical

c© IEICE 2013
DOI: 10.1587/elex.10.20130013
Received January 08, 2013
Accepted January 12, 2013
Published March 05, 2013

5



IEICE Electronics Express, Vol.10, No.5, 1–7

solving omits some of the circuit’s error, thus, the actual programming results
may vary from the numerical method.

We set up the circuit simulation of a 16 × 16 nanocrossbar, and consider
the memristor cell under the worst case scenario which locates at the furthest
corner to the driving circuits. The dash dot lines in figure 4 show the changing
of state variable x(t) when programming a memristor from an initial state
of x3 to each of the four target states using numerical method. The dash
line show the actual situation obtained by circuit simulation. It can be seen
that all the memristor’s final states are lower than the desired level. This
can be explained that due to the voltage drop on transistors and nanowires,
the actual voltage difference applied to the selected memristor decreases as
its resistance decreases.

Fig. 4. Changing of the state variable x(t) from an initial
state of x3. Erasing processes of the four different
target states overlap with each other.

In order to deal with this error, we could adjust the programming condi-
tion empirically by extending the write process. Specifically, we reconfigured
the resistance of R1, R2 and R3 to: 20.4 KΩ, 24.4 KΩ, 55.2 KΩ, respectively.
Simulation results after the adjustment are shown in figure 4 by the solid
lines, which match the final states obtained by numerical simulation closely.

Although empirical adjustment makes the simulation results match with
the numerical method at the initial state of x3, error might exist when the
programming starts from the other states. In order to evaluate the error and
exclude the possibility that it might be accumulated to disturb the next round
programming, we record the distribution of the programming’s final states
from different initial states, as shown by figure 5. 999 samples of the initial
state uniformly distributed from 0.001 to 0.999 are used for simulation, with
four target states of x0, x1, x2, x3. It can be seen that after programming,
distribution of the final states can be distinctly distinguished. The minimum
noise margin locates between the upper limit of state 00(0.197) and the lower
limit of state 01(0.266), which is about 0.069.

c© IEICE 2013
DOI: 10.1587/elex.10.20130013
Received January 08, 2013
Accepted January 12, 2013
Published March 05, 2013

6



IEICE Electronics Express, Vol.10, No.5, 1–7

Fig. 5. Distribution of the final states with a initial state
normally distributed from 0.001∼0.999.

However, this noise margin could be easily improved. After one program-
ming process, distribution of the final state will be compressed from 0.999
to 0.884. For the second time programming with a smaller range of initial
state, distribution of the final state will be more convergent, as shown by
figure 5. The noise margin between the upper limit of the state 00(0.132)
and the lower limit of the state 01(0.266) will be increased to 0.134. Inset
of figure 6 shows the distribution of x0 after different time length of erasing
process. As the erasing process extends, the distribution becomes narrower,
which also means the error distribution can be further reduced by increasing
the erasing time. Altogether, final state error incurred by circuit’s parasitical
effect will not effect the precision of the programming.

5 Conclusion

In conclusion, we proposed a circuit for multi-level programming of memristor
in nanocrossbar memory. Using a general device model, we verify the circuit’s
function by HSPICE simulation. The simulation results show that after the
programming, memristors with randomized initial states are configured to
different discrete states with sufficient noise margin.

Acknowledgments

This work was supported by NSFC project (Grant No. 61003082).

c© IEICE 2013
DOI: 10.1587/elex.10.20130013
Received January 08, 2013
Accepted January 12, 2013
Published March 05, 2013

7


