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INTRODUCTION

Understanding the mechanisms of host resistance
to pathogens will allow insights into their role in
the emergence and transmission of such pathogens
across a landscape. Infectious hematopoietic necrosis
virus (IHNV) is a single-stranded negative-sense
RNA rhabdovirus (Wolf 1988) that is endemic to the

Pacific Northwest and infectious to Pacific salmon
and trout (Oncorhynchus spp.), as well as Atlantic
salmon Salmo salar. There are 5 phylogenetic geno -
groups of IHNV worldwide, and 3 of these geno -
groups (U, M, and L) are endemic to North America
(Kurath 2012). The U genogroup viruses are found in
the northern (or ‘upper’) regions of North America
(ranging from Alaska to Mid-Oregon), the M geno -
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ABSTRACT: Understanding the mechanisms of host resistance to pathogens will allow insights
into the response of wild populations to the emergence of new pathogens. Infectious hematopoi-
etic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and
trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss
in the coastal streams of Washington State, between 2007 and 2011, was geographically heteroge-
neous. Differences in host resistance due to genetic change were hypothesized to be a factor influ-
encing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault
National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a
stock originally derived from the same source population. Using a classical quantitative genetic
approach, we determined the potential for the QNFH steelhead trout population to respond to
selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV
resistance, mortality (h2 = 0.377 (0.226 − 0.550)) and days to death (h2 = 0.093 (0.018 − 0.203)).
These results confirm that there is a genetic basis for resistance and that this population has the
potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish
length suggests a correlated response in these traits to selection. Reduction of genetic variation, as
well as the presence or absence of resistant alleles, could affect the ability of populations to adapt
to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment
of the susceptibility of other steelhead populations.
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group viruses are found in the ‘middle’ regions
(Southern Idaho aquaculture region, Columbia River
Basin and Washington Coast) and the L genogroup
viruses are found in the southern (or ‘lower’) regions
(ranging from Southern Oregon to California) (Gar -
ver et al. 2003, Kurath et al. 2003, Breyta et al. 2013).
IHNV can infect a range of salmon species but the
endemic genogroups exhibit some degree of host-
specific virulence, where strains from the U, M and L
genogroups exhibit the highest virulence to O. nerka
(sockeye salmon and kokanee), O. mykiss (steelhead
and rainbow trout), and O. tshawytscha (Chinook
salmon), respectively (Garver et al. 2006, Bendorf et
al. 2007, Kelley et al. 2007, Peñaranda et al. 2009,
Purcell et al. 2009, Breyta et al. 2013). However, this
host-specific virulence is not observed in all salmo -
nids; for instance, virulence in Atlantic salmon does
not correlate with specific IHNV genogroups, proba-
bly due to a historic lack of exposure and subsequent
selection (Kurath et al. 2014).

Coastal streams in Washington State, USA, are
home to 7 species of Pacific salmonids: Chinook sal -
mon, sockeye salmon, coho salmon O. kisutch, chum
salmon O. keta, pink salmon O. gorbuscha, steelhead
trout, and cutthroat trout O. clarkii trout (Gustafson
et al. 2007). Prior to 2007, most strains of IHNV de -
tected in the coastal WA region were from the U
genogroup, which displays higher virulence in sock-
eye salmon (Breyta et al. 2013). However, between
2007 and 2011, there were several epidemics in juve-
nile steelhead trout, caused by strains from the MD
subgroup of the M genogroup. This genotype was
common in the Columbia River Basin but had only
been detected once in a Washington coastal popula-
tion (disease epidemic in juvenile steelhead trout,
1997) (Breyta et al. 2013). The 2007 to 2011 emer-
gence of IHNV did not affect all the coastal streams
equally in Washington State, and was not fully
explained by the security of hatchery water supplies
or by a higher virulence of the emergent strains
(Breyta et al. 2014). This variation across streams led
to the hypothesis that population-specific host resist-
ance may be one factor influencing the pattern of
IHNV emergence. To test this hypothesis, Breyta et
al. (2014) evaluated resistance to IHNV in 2 hatch -
ery populations, Quinault National Fish Hatchery
(QNFH) steelhead and Lake Quinault Tribal Hatch-
ery steelhead (LQ), which differed in the level of
juvenile disease suffered during the emergence
event. The 2 populations were founded from the
same ancestral population endemic to the Washing-
ton coast, Quinault winter steelhead, about 40 yr ago
(Breyta et al. 2014). Controlled laboratory IHNV

challenge studies demonstrated that the 2 popula-
tions exhibited differences in mortality when ex po -
sed to a representative MD IHNV strain, with the LQ
population being more susceptible to IHNV than the
QNFH population.

In the present study, we used a classical quantita-
tive genetic approach to determine whether there is
a genetic basis underlying IHNV resistance in the
QNFH steelhead trout population, and to determine
whether the population has the potential for further
adaptation to the pathogen. Logistical constraints of
our facility required that we could only assess one
population in depth. We chose to focus on the QNFH
population because this population showed a higher
degree of resistance to IHNV, a trait of interest
for conservation. Moreover, this population is main-
tained for conservation purposes and it was the pro-
genitor population of the LQ population. In the long
term, we are interested in characterizing the evolu-
tion of disease resistance as a fitness trait in natural
populations or in hatchery populations maintained
for enhancement or conservation purposes.

The aim of the present study was to determine the
proportion of the phenotypic variance that was due to
additive genetic variation in pathogen resistance in
the QNFH steelhead trout population described by
Breyta et al. (2014) and to evaluate whether the pop-
ulation could respond to selection caused by this
pathogen. To this end, we estimated the heritability
of 2 traits, mortality and days to death, which are
measures of resistance to IHNV following exposure
to the pathogen. Narrow-sense heritability provides
information on the amount of additive variance pres-
ent in a population, which reflects the potential of
the population to adapt to environmental change.
Greater genetic variation might facilitate host adap-
tation to pathogen resistance (Spielman et al. 2004).

MATERIALS AND METHODS

All animal experiments were approved by the Uni-
versity of Washington Institutional Animal Use and
Care Committee (protocol 3042-15). To create exper-
imental crosses with known family structure, gam -
etes were collected from mature adult steelhead
trout returning to QNFH (US Fish and Wildlife Serv-
ice, Humptulips, WA). The absence of viruses in the
parents was verified by collecting ovarian fluid and
kidney tissues (both males and females), which were
subsequently inoculated onto epithelioma papulo-
sum cyprini (EPC) cells (Fijan et al. 1983) using stan-
dard virological methods (USFWS & AFS-FHS 2014).
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All samples tested negative for viruses. The eggs
were fertilized by mating each male to 2 females and
each female to 2 males in a circular mating design
(Kimura & Crow 1963). This design resulted in both
paternal and maternal half-sib families and allowed
the partitioning of the genetic variance while permit-
ting independent tests for parental, specifically
maternal, effects. A total of 39 sires and 39 dams
were used to create 78 families. All families were
reared in separate tanks. Of these, 56 families, repre-
senting 27 maternal and 23 paternal half-sib families
from 29 females and 33 males (see Table S1 in
the Supplement at www.int-res.com/articles/suppl/
d117 p077_supp.pdf), comprised more than 100 in di -
viduals and were kept for subsequent challenges.

Challenges were conducted by waterborne expo-
sure to the IHNV strain Qts07 (type mG110M from
the M genogroup) isolated from a diseased steelhead
trout collected in 2007 from the Queets River, WA
(Breyta et al. 2013). The virus was propagated in EPC
cells at 15°C, quantified by plaque assay (Batts &
Winton 1989), and stored at −80°C until used. Chal-
lenges were conducted using the method described
by Garver et al. (2006). The fish used were 3 mo post
ponding and the mean weight was 1.2 g. Briefly,
48 fish from each family were divided into 2 replicate
tanks containing 1 l of static water with aeration and
exposed to 2 × 105 plaque-forming units (PFU) ml−1

IHNV, the dose calculated to be lethal to 40% of the
population in a preliminary experiment that used a
pool sample of the population. After 1 h, the water
flow was resumed and tanks were monitored daily
for 21 d. At the end of the 21 d challenge, survivors
were euthanized with an overdose of buffered MS-
222 (tricaine methanesulfonate). In addition, 12 indi-
viduals per family were mock exposed to medium
only and held in the same conditions as the exposed
individuals. These individuals were used as a control
but not considered in the subsequent analysis. For all
individuals in the study, we recorded ‘mortality’ and
‘fork length’. Mortality corresponded to the status of
an individual at the end of the 21 d challenge (mor-
tality or survivor). Fork length was measured for each
individual at the time of death. During the challenge,
the fish were fed a maintenance diet. Therefore, we
assumed that growth was not significant. Addition-
ally, the trait ‘days to death’ was recorded for individ-
uals that died on a particular day following exposure
to the virus. We estimated 2 traits related to IHNV
resistance (‘mortality’ and ‘days to death’) and evalu-
ated the phenotypic and genotypic association be -
tween size and IHNV resistance. To verify that mor-
tality was caused by IHNV, 1 to 4 mortalities per

IHNV-exposed tank and all mock control mortalities
were stored at −80°C and presence or absence of the
virus was determined by cell culture (Batts & Winton
1989).

Narrow-sense heritability (h2) corresponds to the
proportion of the phenotypic variance (VP) that is
explained by the additive variance (VA) or the vari-
ance of breeding values. The animal model can be
used to estimate these variance components (Wilson
et al. 2010) in the context of complex pedigrees. This
model is a particular form of generalized linear
mixed effect model that estimates the breeding value
of an individual (ai), the relative genetic merit of an
individual, and subsequently treats it as a random
effect (Wilson et al. 2010). We used the ‘MCM-
Cglmm’ package (Hadfield & Nakagawa 2010) in R
that uses Bayesian inference to fit the animal model,
as it is appropriate for Gaussian and non-Gaussian
distributions. We estimated variance components
and h2 for 2 traits independently: mortality and days
to death (DTD). We investigated whether there was a
tank placement effect, fish length effect or maternal
effect on the estimation of the variance components
by adding these parameters (tank, length, dam) as
random effects to the model. Fork length was in -
cluded as a random effect rather than a fixed effect
since we were interested in knowing the proportion
of phenotypic variation attributable to the factor
length, rather than the effect of each yijkl + length
value. The full model was yijkl = μ + ai + tj + lk + dl +
eijkl where yijkl is the phenotype observed for individ-
ual i (mortality or DTD), μ is the population mean, ai

is the breeding value for individual i, tj is the tank
effect, lk is the length effect, dl is the dam effect, and
eijkl is the residual term. Mortality was analyzed as a
binary trait (de Villemereuil 2012), and we specified
a chi-square distribution for the prior on this trait. We
used an inverse Wishart distribution for the prior on
DTD and the trait was treated as a continuous trait
(Hadfield 2010, de Villemereuil 2012). Uninformative
inverse gamma distribution priors were used for
all the random effects (de Villemereuil 2012). The
Markov chains were run with 3 000000 to 8000000
iterations, 30000 to 80000 burn-in length, and thin-
ning every 300 to 8000 iterations. Independence
and convergence were checked visually and with
the func tion autocorr.diag implemented in ‘MCM-
Cglmm’.

Phenotypic resistance to pathogens, including
IHNV, increases with age (e.g. Lapatra et al. 1990,
Bergmann et al. 2003, Becker et al. 2005, Ryce et al.
2005). However, it is unclear whether there is a rela-
tionship between fish length at a specific age and

http://www.int-res.com/articles/suppl/d117p077_supp.pdf
http://www.int-res.com/articles/suppl/d117p077_supp.pdf


Dis Aquat Org 117: 77–83, 2015

IHNV resistance. Overturf et al. (2010) examined the
phenotypic correlation between size and resistance
to IHNV in rainbow trout and only found a positive
correlation for older fish (213 d post-fertilization,
224.7 g), but not for younger fish. Additionally, Bar-
roso et al. (2008) determined that the 2 traits were
 genetically independent in rainbow × Yellowstone
cutthroat trout crosses. To investigate if resistance to
IHNV and length are correlated in this study, we esti-
mated the phenotypic correlation (rP) between fish
length and mortality or DTD and their p-values using
the rcorr function in the Hmisc package in R. We then
compared the phenotypic correlations to the genetic
correlations (rG) estimated using a multi-trait model
(mortality and length or DTD and length) in ‘MCM-
Cglmm’. If 2 traits are controlled by the same genes,
or by genes physically linked with each other, the
 genetic correlation between the 2 traits should be
 significant. The genetic correlation between mortality
and DTD could not be estimated as fish that were
alive at the end of the challenge did not have a value
for the trait DTD.

To determine whether the differences in mortality
between populations as observed by Breyta et al.
(2014) were present in our year class, we also per-
formed a comparative experiment in the same envi-
ronment, by challenging individuals from the LQ
population using a similar approach to Breyta et al.
(2014). We also performed reciprocal crosses be -
tween the LQ and QNFH (hereafter referred to as
hybrid crosses) for another independent study and
these families were also challenged with IHNV. A
total of 10 males and 10 females, and 5 males and 5
females contributed to the hybrid crosses and LQ
crosses, respectively. Both groups were challenged
simultaneously, but independently
from the QNFH population de -
scribed earlier, because the LQ and
hybrid crosses were created later.
We aimed to keep the age and
weight of the fish constant across
challenges. The fish were 3.5 mo
post ponding and the mean weights
of the hybrid and LQ fish were 1.5 g
and 0.9 g, respectively, at the time of
the challenge. The LQ and hybrid
crosses were not included in the her-
itability estimates, because the fam-
ily structure relevant to these ana -
lyses was not created, and only
cumulative percent mortality was
analyzed and compared to that of the
QNFH crosses.

RESULTS AND DISCUSSION

A total of 2687 QNFH fish were challenged with
IHNV in this study; an additional 645 QNFH fish
were mock challenged. Twenty-six (4%) mock indi-
viduals died during the challenges, but their death
appeared unrelated to IHNV as they tested negative
for the virus by cell culture. In contrast, the virus was
identified in at least one dead fish in every tank
exposed to the virus. The cumulative percent mortal-
ity (CPM) per family was 52% ± 18, ranging from 23
to 92% mortality per family (Fig. 1). The average
DTD was 12.78 and had very limited variation (stan-
dard deviation: 1.22 d).

Significant heritability for mortality indicated both
a genetic basis for resistance to IHNV and moderate
genetic variation for resistance in this population.
Heritability estimates for mortality at 21 d was 0.377
(95% confidence interval: 0.226−0.550) and DTD was
0.093 (95% confidence interval: 0.018−0.203). For
each trait, the tank and maternal effects were lim-
ited, each representing less than 0.1% of the varia-
tion observed for both traits, whereas there was a
length effect (see Figs. S1 & S2 in the Supplement at
www.int-res.com/articles/suppl/d117p077_supp. pdf).
The lower heritability value for DTD is likely to be
explained by the fact that there was very little pheno-
typic variance in that trait, but could equally be
explained by the fact that there is little genetic varia-
tion underlying this trait. Although heritability values
are population-specific, the heritability estimate for
mortality in this study is in the range of that esti-
mated in other systems: 0.05 to 0.51 for farmed rain-
bow trout (Yamamoto et al. 1991) or 0.27 to 0.38 for
sockeye salmon (McIntyre & Amend 1978).
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Fig. 1. Relationship between replicate tanks for cumulative percent mortality
(CPM) and mean day to death (DTD) for each steelhead trout Oncorhynchus
mykiss family following batch exposure to infectious hematopoietic necrosis
virus. For each family, the 2 replicate tanks are represented on the x- and y-axes
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We observed both phenotypic and genotypic corre-
lations between size at a specific age and susceptibil-
ity to the virus. Phenotypic correlations between
 mortality, DTD and fork length were all significant
(Table 1). However, the only significant genetic cor-
relation was between DTD and fork length, and this
correlation was positive, indicating that smaller sus-
ceptible fish died sooner than larger susceptible fish.
This result would suggest that some genes might be
involved in both resistance and growth, or that some
genes underlying these 2 traits are in linkage disequi-
librium. This aspect is particularly interesting as se-
lection on size is a common voluntary or involuntary
practice in aquaculture, and selection for larger fish
may cause a slight delay in the time to death of the
susceptible individuals following exposure to IHNV,
potentially allowing the immune system to respond to
the pathogen. However, it is important to note that
there was little genetic variation underlying DTD in
the QNFH steelhead population; therefore, selection
for larger fish is likely to have limited effect on the
overall susceptibility to IHNV in this population.

We were able to confirm that the difference in sus-
ceptibility between the 2 populations, QNFH and
LQ, was still evident in the year class we examined.
Although the QNFH fish were challenged separately
from the LQ and hybrid populations, and a batch
challenge effect cannot be ruled out, the CPM of the
LQ population (67% ± 13) was higher than that of the
QNFH population (Fig. 2), which is similar to the
observations of Breyta et al. (2014). Interestingly, the
CPM of the hybrid population (27% ± 13) was lower

than both parental populations, indicating increased
resistance among the hybrid crosses. This result
could be explained by heterosis (hybrid vigor). How-
ever, this hypothesis could not be formally tested, as
such a study would require multi-generational data
(McClelland & Naish 2007). Nevertheless, this sug-
gests that the genetic basis for resistance to IHNV
might be complex and should be examined further.

The results of this study show that there is a genetic
component for host resistance to IHNV and that there
is potential for the QNFH steelhead trout population
to adapt to this pathogen. Estimates of heritability
obtained for this system cannot directly be used to
predict evolutionary change in other populations
(Carlson & Seamons 2008). However, along with esti-
mates from previous studies (McIntyre & Amend
1978, Yamamoto et al. 1991), these re sults provide a
range of possible values that might be observable in
other populations. If genetic variation is reduced in
some populations, either through natural evolution-
ary proces ses, or through harvest activities or hatch-
ery practices such as inbreeding, this reduction could
affect their ability to adapt to the pathogen. Such
reduction of genetic variation, as well as the pres-
ence or absence of resistant alleles, could therefore
be partly responsible for heterogeneous host suscep-
tibility. It would therefore be invaluable to identify
genetic markers linked to IHNV resistance in order
to better understand how differences in host suscep-
tibility might affect emergence and transmission of
IHNV across the landscape. Although previous stud-
ies have identified polymorphisms and markers
linked to IHNV in salmonids through candidate gene
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Mortality DTD Length

Mortality 0.377 NA 0.012 
(0.226−0.550) (−0.071−0.053)

DTD −0.25 0.093 0.470
(p = 0.008) (0.018−0.203) (0.080−    0.713)

Length −0.19 0.38 –(p < 0.001) (p < 0.001)

Table 1. Phenotypic and genetic correlations between mor-
tality, days to death (DTD) and fork length, and heritability
estimates for steelhead trout Oncorhynchus mykiss families
exposed to infectious hematopoietic necrosis virus. Pheno-
typic correlations are represented below the diagonal, geno-
typic correlations are represented above the diagonal, and
95% confidence intervals are indicated in parentheses.
 Significant correlations are represented in bold. Phenotypic
correlation between mortality and DTD was calculated at
the family level because all individuals with a DTD measure
were susceptible to the virus. Heritability estimates for mor-
tality and DTD are designated in italics on the diagonal with 
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approaches (Palti et al. 1999, 2001, Trobridge et al.
2000, Arkush et al. 2002, Miller et al. 2004, Liu et al.
2013), low density quantitative trait loci (QTL) map-
ping (Khoo et al. 2004, Barroso et al. 2008) and
genome-wide association studies (Campbell et al.
2014), new tools available for Oncorhynchus mykiss,
including a draft genome (Berthelot et al. 2014) and a
57K single nucleotide polymorphism (SNP) chip
(Palti et al. 2015), will facilitate molecular-based
studies on a more extensive portion of the genome.
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