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Abstract: The complex power theory is applied to characterize a
passive linear circuit as the resonating load of an oscillator. Thanks
to Tellegen’s theorem relating the port impedance and internal status,
the @ factor for use in Leeson’s spectrum model is derived in regard
to the behavior of the stored energy. The concept of complex ) factor
is introduced in terms of the power dissipation slope and the energy
difference between inductive and capacitive groups of components. As
their relationship results in mathematical complication, it is visualized
in Pythagorean charts for ease of phenomenological comprehension.
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1 Introduction

Since Leeson introduced a basic model of oscillator spectrum [1], it has been
applied to circuit designs and phase noise estimations in a wide variety of
oscillators. Even so, the ) factor of the oscillator continues to be an am-
biguous term [2]. Unlike passive resonators or filters, the definition of @
factor is not straightforward for circuits in an oscillating state. The conven-
tional definition based on its stored energy ratio to dissipated power does not
agree with the phase noise spectrum. This discrepancy was shown by using
a transfer function model of a positive feedback circuit [3]. The open-loop
group delay was discussed in terms of resonant energy and power [4]. The
spectrum-based @ factor applicable to Leeson’s formula was derived from the
circuit immittance matrix and compared with the energy-based @ factor [5].
However, an itchy question still remains: how the oscillation spectrum is re-
lated to the behavior of the energy stored in resonance? This paper clearly
gives a persuading elucidation to the problem.

2 Circuit Model

Consider an oscillator consisting of a one-port active device and a one-port
passive linear network for simplicity. The network includes resistors, induc-
tors, and capacitors. Some of them work for resonance, some for impedance
matching, and some as the output load. We assume a network in any com-
plicated topology of nodes and branches. It may involve multiple tanks and
filters of different resonant frequencies.

3 Complex Power

The active device generates RF power. Part of it is dissipated in the pas-
sive network and the rest is reflected back to the device. To express this
phenomenon, let us define the complex power

1

where v and ¢ are the RF voltage and current at the port of the network.
The asterisk designates the conjugate of a complex. The real and imaginary
parts respectively mean the effective power and reactive power flowing from
the device to the network.

According to Tellegen’s theorem, the voltage-current product is observed
at the port as the sum of that on each branch in the network.

vi* = 014} + voih + vgis + -+ vip 4+ (2)

where v and 7y are voltage and current on the k-th branch. Each branch
implies a lumped element, but in addition, distributed-constant elements
such as transmission lines and stubs may be also included because they can
be regarded as ensembles of infinitesimal R, L, and C. Therefore we can sort
all the elements into resistive-, inductive-, and capacitive-element groups.
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Substituting Eq. (2) into Eq. (1), we get
1 & 1 & 18
B . - .
P = 3 kazk + §kazk + B kazk

R 1 ) L 1 ) C 1 )
= Z §Rk |7,k| + Z §jWLk "Lk‘ — Z §jw0k "Uk|
= P,+2jwAU, AU=U, — U, (3)

where P, is the total power dissipated in all the resistive branches. Uy, and U,
are the total magnetic and electric energy stored in all the reactive branches.

On the other hand, the complex power is also written in terms of the
total impedance Z observed at the port of the network as

1 1
P =it =7 li|? (4)

From Egs. (3) and (4), the impedance is related as

2P 4jwAU
r+ sz (5)

7 =
12 ;
li] d

It is worth notifying that you can estimate the behavior of the internal
energy without knowing each branch status. You just have to measure the
port impedance Z for given w, meanwhile you can assume unity for current
|i| because the network is linear. This is an important aspect to discuss
oscillator @) factor and spectrum in the next chapter.

4 Oscillation Spectrum

Start from Leeson’s formula

s = {1+ (o) ] ©)

where w, and dw are oscillation frequency and offset from it. The output

spectrum Syt linearly responds to the stimulus Sj,. The formula says that
the oscillator amplifies the signal, whose gain has a sharp frequency selectiv-
ity. The key factor to discuss for this formula is Qg; spectrum-based quality
factor. As reported in [3, 4, 5], it is something different from just the quality
factor of a tank. Because Qs dominates the oscillation spectrum, it must be
estimated from characteristic of the network overall.

For this purpose, it is convenient for RF engineers to speak in a circuit-
parameter domain such as impedance or admittance. Referring to the linear
oscillator theory [5], we introduce the complex @ factor as the logarithmic
derivative of its input

impedance
o wo dz N wo d
Ce= 7 dw ™ 2 aw "t @
so that Qs = |Qsc|. Figure 1 (a) shows a Pythagorean chart to quickly get a

physical insight into this formula in the impedance domain.

387



IEICE Electronics Express, Vol.3, No.16, 385-389

Q,
0, | dX
2R | do
o, [dR Z=R+jX
2R |do

(a) impedance domain

< ﬁdAU‘

P, | do
®, |dP, LR =P, +2joAU
2P |do 2

(b) energy domain

2 o, |4
2 |do
O)_Od_(l (X=1n|Z|orln|Y|orln|P|
2 |dw (I)=ZZ or ZY or /P

(c) log-magnitude and phase

Fig. 1. Spectrum-based @ factor Pythagorean chart.

Applying Eq. (7) to Eq. (5), and then imposing the condition that imag-
inary part of the port impedance must vanish, we finally reach

wo dPy . w_g dAU

at w = w,. Another Pythagorean chart is shown in Fig. 1 (b) to depict the
same Qs = |Qsc| as in (a) but in the energy domain.
Though Egs. (7) and (8) look different styles, they can be translated into
polar coordinates resulting uniquely in
_woda | wodo
@se = 2 dw ) 2 dw ©)
where a and ¢ are log-magnitude and phase in either immittance or en-

ergy domain. Figure 1(c) gives a common vista on Eq. (9). The formulas
described here are summarized in Table 1.
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Table I. @ Factor Formulas at a Glance

immittance domain energy domain
circuit
status 7Z=R+ jX P= %vi* = Pr + 2j(DAU
Y=G+jB AU=U, -U,
resonance
condition X=0 ali=0
B=0 U,=U,

complex
Q factor Q =&£=&d_Y

* " 2Zdo 2Y do Q=2 dP

_o R 1 dX 2Pdo
2R do 2R do _ @ dP .o, dAU
_ 2, dG o, dB Hedo T do

2Gdo "2Gdw
polar
expression Q.= &ﬂ + &ﬂ

Y 2de T2 de

oc=1n|Z| orln|Y| 0t=1n|P|

b=2LZ or LY o=2P
modulus Q

Q.=[Q.| = Re{Q.}+Im{Q,.}?

Compare Eq. (9) with a predecessor’s work. The @ factor described in
Eq. (31) of reference [4] is somewhat similar to our Eq. (9), but actually
incomplete because they took only the phase slope d¢/dw into account for
spectrum analysis. For even simpler circuits like a single-tank resonator, the
conventional @) factor, i.e., the ratio of stored energy to power dissipation per
unit cycle eventually coincides with our spectrum-based @ factor.

5 Conclusion

The @ factor plays a crucial role in oscillator spectrum. It is necessary for
proper estimation to see the port impedance of the entire network, not only of
a constituent resonator. The phase slope or group delay is not sufficient but
a partial information to evaluate the @ factor. The complex power analysis
clearly relates the @) factor and energy stored in the circuit. Pythagorean vi-
sualization helps systematic understanding of the relationship. The modulus
of the complex @) factor contributes to the rigorous spectrum characteriza-
tion.
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