
Enhancement of a modified
radix-2 Montgomery modular
multiplication

Se-Hyu Choi and Keon-Jik Leea)

School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook

National University, Daegu, 702–701, Korea

a) LeeMeeKael@gmail.com

Abstract: Recently, Manochehri et al. proposed a modified radix-2 Mont-

gomery modular multiplication with a new recording method. In this letter,

we present an improvement to their scheme that makes it simpler and faster.

Manochehri et al.’s algorithm requires n + 2 iterations, whereas the proposed

(non-pipelined) algorithm requires n + 2 iterations. Moreover, there is no

need for post-processing to obtain the correct output, nor for a non-standard

operation such as bitwise subtraction. The area/time complexity of our

pipelined multiplier is reduced by approximately 24.36% compared to

Manochehri et al.’s multiplier. The proposed architecture is simple, modular,

and regular. Moreover, it exhibits low complexity and propagation delay.

Accordingly, it is well suited for VLSI implementation.

Keywords: Montgomery, modular multiplication, radix-2, carry save adder

Classification: Integrated circuits

References

[1] P. L. Montgomery: Math. Comput. 44 (1985) 519. DOI:10.1090/S0025-5718-1985-
0777282-X

[2] C. D. Walter: Electron. Lett. 35 (1999) 1831. DOI:10.1049/el:19991230
[3] K. J. Lee and K. Y. Yoo: Inf. Process. Lett. 76 (2000) 105. DOI:10.1016/S0020-

0190(00)00131-9
[4] K. J. Lee, K. W. Kim and K. Y. Yoo: Inf. Process. Lett. 82 (2002) 65. DOI:10.1016/

S0020-0190(01)00249-6
[5] K. J. Lee and K. Y. Yoo: Integr. VLSI J. 32 (2002) 99. DOI:10.1016/S0167-

9260(02)00044-5
[6] C. McIvor, M. McLoone and J. V. McCanny: IEE Proc. Comput. Digit. Tech. 151

(2004) 402. DOI:10.1049/ip-cdt:20040791
[7] D. S. Lim, N. S. Chang, S. Y. Ji, C. H. Kim, S. J. Lee and Y. H. Park: J. Syst. Archit.

55 (2009) 355. DOI:10.1016/j.sysarc.2009.04.001
[8] K. Manochehri, B. Sadeghian and S. Pourmozafari: IEICE Electron. Express 7

(2010) 513. DOI:10.1587/elex.7.513
[9] H. Orup: Proc. Int. Symp. on Computer Arithmetic (1995) 193. DOI:10.1109/

ARITH.1995.465359

© IEICE 2014
DOI: 10.1587/elex.11.20140782
Received August 13, 2014
Accepted August 18, 2014
Publicized September 10, 2014
Copyedited October 11, 2014

1

LETTER IEICE Electronics Express, Vol.11, No.19, 1–5

http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1049/el:19991230
http://dx.doi.org/10.1049/el:19991230
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(01)00249-6
http://dx.doi.org/10.1016/S0020-0190(01)00249-6
http://dx.doi.org/10.1016/S0020-0190(01)00249-6
http://dx.doi.org/10.1016/S0167-9260(02)00044-5
http://dx.doi.org/10.1016/S0167-9260(02)00044-5
http://dx.doi.org/10.1016/S0167-9260(02)00044-5
http://dx.doi.org/10.1049/ip-cdt:20040791
http://dx.doi.org/10.1049/ip-cdt:20040791
http://dx.doi.org/10.1016/j.sysarc.2009.04.001
http://dx.doi.org/10.1016/j.sysarc.2009.04.001
http://dx.doi.org/10.1016/j.sysarc.2009.04.001
http://dx.doi.org/10.1016/j.sysarc.2009.04.001
http://dx.doi.org/10.1016/j.sysarc.2009.04.001
http://dx.doi.org/10.1016/j.sysarc.2009.04.001
http://dx.doi.org/10.1587/elex.7.513
http://dx.doi.org/10.1587/elex.7.513
http://dx.doi.org/10.1587/elex.7.513
http://dx.doi.org/10.1587/elex.7.513
http://dx.doi.org/10.1109/ARITH.1995.465359
http://dx.doi.org/10.1109/ARITH.1995.465359
http://dx.doi.org/10.1109/ARITH.1995.465359
http://dx.doi.org/10.1109/ARITH.1995.465359
http://dx.doi.org/10.1109/ARITH.1995.465359


1 Introduction

In a public key cryptosystem (PKC), the core operation is modular exponentiation

(ME), which is accomplished by repeated modular multiplications (MM). Because

the modulus is at least 1024 bits in size, high throughput is difficult to achieve

without the use of hardware acceleration. The majority of the contributions are

based on the Montgomery’s modular multiplication (MMM), which replaces trial

division by the modulus with a series of additions and divisions by a power of two

[1, 2, 3, 4, 5, 6, 7, 8, 9]. Thus, it is well suited to hardware implementation.

However, a potential difficulty in its computation may come from addition of long

operands. If addition is computationally costly, all other related operations will be

affected accordingly. If a redundant number system or systolic array system is

employed, then the carry-propagation chain can be eliminated [3, 4, 5, 7]. Recently,

Manochehri et al. presented MMM with a new recording method in which one step

of the main loop is removed [8]. However, after the main loop, post-processing is

necessary to obtain the correct result. In this letter, we propose an improved MMM

algorithm that does not require post-processing.

2 MMM algorithm

2.1 Montgomery's algorithm

Using an ingenious representation of the residue class modulo N, the Montgomery

multiplication of A (¼ aRmod N) and B (¼ bRmod N) is given by MMM1ðA; BÞ ¼
ABR�1 mod N, where N is an n-bit odd integer, R ¼ 2n, and A (B) is the N-residue

of an integer a (b), for a; b; A; B 2 ½0; NÞ.
MMM1(A, B)

1: T ¼ 0;

2: for i ¼ 0 to n � 1 f
3: Q½i� ¼ ðT þ A½i� � B½0�Þmod 2;

4: T ¼ ðT þ A½i� � B þ Q½i� � NÞ div 2;
5: g
6: if (T � N) T ¼ T � N;

where A½i� denotes the i-th bit of A. Because T < 2Nð1=2 þ 1=4 þ � � � þ 1=2n�1Þ,
i.e., T 2 ½0; 2NÞ, after executing the loop n times, an extra subtraction is needed if

T � N.

2.2 Walter's MMM

Walter proposed the systolic MMM, where A; B; T 2 ½0; 2NÞ and the number of

iterations becomes n þ 2 [2]. Walter’s MMM retains the same range for input and

output (i.e., there is no extra subtraction step). The following MMM2ðA; BÞ
computes ABR�1 mod N, where R ¼ 2nþ2.

MMM2(A, B)

1: T ¼ 0;

2: for i ¼ 0 to n þ 1 f
3: Q½i� ¼ ðT þ A½i� � B½0�Þmod 2;

© IEICE 2014
DOI: 10.1587/elex.11.20140782
Received August 13, 2014
Accepted August 18, 2014
Publicized September 10, 2014
Copyedited October 11, 2014

2

IEICE Electronics Express, Vol.11, No.19, 1–5



4: T ¼ ðT þ A½i� � B þ Q½i� � NÞ div 2;
5: g
where the sizes of A and B are extended to n þ 2 bits, and A½n þ 1� and B½n þ 1� are
set to 0. After n þ 2 iterations, T < ð3N=2nþ1 þ � � � þ 3N=2 þ 0 þ NÞ=2; i.e.,

T 2 ½0; 2NÞ is satisfied. Thus, the output T can be directly used as the input for

the repeated MM in applications such as ME. Note that a long carry propagation

delay occurs in performing Step 4, which may be significant from the perspective

of hardware implementation.

2.3 Manochehri et al.'s MMM

Manochehri et al. presented a modified MMM using a new operator Θ called

bitwise subtraction. In MMM2, if B½0� ¼ 0, Q½i� is equal to the 0-th bit of the

previous result T. This condition is satisfied when B is an even number. To

accomplish this, B is encoded as B1 Θ B2. If B is odd, then B1 ¼ B � 1 and

B2 ¼ �1. If B is even, then B1 ¼ B and B2 ¼ 0. The algorithm MMM3ðA; B; aÞ
consists of two phases: the main loop and post-processing.

MMM3(A, B, a)

1: T ¼ 0;

2: if(B½0� ¼ 1) then fB1 ¼ B � 1;B2 ¼ �1;g
3: else fB1 ¼ B;B2 ¼ 0;g
4: for i ¼ 0 to n � 1 f
5: T ¼ ðT þ A½i� � B1 þ T½0� � NÞ div 2;
6: g
7: Q ¼ ðT½0�� ðB2 � a½0�ÞÞmod 2;

8: T ¼ ðT � ðB2 � aÞ þ Q � NÞ div 2;
where A, B < N and a is the normal number of the N-residue A. Note that, when B

is odd, post-processing of Steps 7 and 8 is necessary to obtain a correct result as

follows: After n iterations, T ¼ AB2�n mod N ¼ AðB � 1Þ2�n mod N ¼ AB2�n �
A2�n mod N. To obtain the desired result, a should be added to T. In Steps 7 and 8,

if B is odd, then T ¼ ðT þ a þ ððT½0� þ a½0�Þmod 2Þ � NÞ div 2. When B is even,

T ¼ ðT þ T½0� � NÞ div 2. The convergence range of T is analyzed as follows:

After n iterations, T < 2Nð1=2 þ 1=4 þ . . . þ 1=2n�1Þ, i.e., T falls within the range

½0; 2NÞ. In the following Steps 7 and 8, if B is odd, the range of T is T < ð2N þ
N þ NÞ=2 < 2N, as desired. If B is even, T < ð2N þ NÞ=2 < 2N is also satisfied.

Note that to keep the consistent range ½0; 2NÞ for both input and output, the number

of iterations of MMM3 should be increased from n to n þ 2.

2.4 Improved unified MMM

In this section, we propose a unified and efficient algorithm that does not compute

Steps 7–8 in MMM3. The inputs to the proposed MMM4 are two n þ 2 bit integers

and the output T is an integer satisfying 0 � T < 2N, where A½n þ 1� ¼ B½n þ
1� ¼ 0.

MMM4(A, B)

1: T ¼ 0;

© IEICE 2014
DOI: 10.1587/elex.11.20140782
Received August 13, 2014
Accepted August 18, 2014
Publicized September 10, 2014
Copyedited October 11, 2014

3

IEICE Electronics Express, Vol.11, No.19, 1–5



2: if(B½0� ¼ 1) then fB ¼ B � 1; T ¼ A;g
3: for i ¼ 0 to n þ 1 f
4: T ¼ ðT þ A½i� � B þ T½0� � NÞ div 2;
5: g
When B is odd, Step 2 sets the least significant bit of B to zero to make B an even

number. Then, to discard the post-processing phase, T is initialized as A. The

unified MMM4 is more efficient than MMM3 in computing the Montgomery

modular multiplication. Manochehri et al.’s MMM3 requires n þ 2 iterations,

whereas the proposed MMM4 also requires n þ 2 iterations. However, there is no

need for post-processing to obtain the correct output, nor is there a need for any

non-standard operations such as bitwise subtraction. The convergence range of

T is analyzed as follows: After n þ 2 iterations, T < N=2 þ N=2nþ1 þ 3Nð1=4 þ
1=8 þ . . . þ 1=2nþ2Þ, i.e., T is bounded by 2N, which guarantees that it can be

fed back as an input for the next multiplication when implementing ME. When

B is even, T < N=2 þ 3Nð1=4 þ 1=8 þ . . . þ 1=2nþ2Þ, i.e., T is also bounded

by 2N. The proof of the correctness of the algorithm is as follows: If B is

even, T ¼ AB2�ðnþ2Þ mod N. If B is odd, T ¼ ðA þ AðB � 1ÞÞ2�ðnþ2Þ mod N ¼
AB2�ðnþ2Þ mod N, as desired.

To eliminate the carry propagation chain encountered in binary adders, MMM4

can be implemented using the 5-to-2 carry-save adder (CSA) logic as in reference

[6, 8]. To accomplish this, Step 4 can be rewritten as the following two equations:

T0½i� ¼ ðT1 þ T2Þmod 2; ðT1; T2Þ ¼ ðT1 þ T2 þ A½i� � ðB1 þ B2Þ þ T0½i� �
NÞ div 2, where ðT1; T2Þ and ðB1; B2Þ denote the carry-save representations of T

and B, respectively. The computation of T0½i� is simply an odd-even check. Note

that to remove the data dependency between two equations, the use of T0½i�
computed at iteration i can be delayed until the next iteration i þ 1 [9]. As a result,

these two equations are performed in a pipelined fashion and thus the generation of

T0½i� is excluded from the critical path. The pipelined version can be easily

constructed by increasing the number of iterations by one, modifying T0½i� � N

to T0½i � 1� � ð�N�1 mod 4Þ � N, and adding the initial values T0½�1� ¼ A½n þ
2� ¼ B½n þ 2� ¼ 0. The proof of the correctness of the algorithm is as follows: For

ease of explanation, we use the normal binary representation instead of carry-save

representation. Assume that B is an odd number. Let Ti be the value of the partial

product T at the start of the loop. So T0 ¼ 0. Let Ai ¼
Pi�1

j¼0 A½j�2j, T0i�1 ¼Pi�2
j¼0 T0½j�2j, and N 0 ¼ ð�N�1 mod 4Þ � N. So A0 ¼ T00 ¼ T0�1 ¼ 0. Then, by

induction, 2i � Ti ¼ A þ Ai � B þ T0i�1 � N 0. Thus, the final value Tnþ3 of T

satisfies 2nþ3 � T ¼ A þ A � B þ T0 � N 0, so that T ¼ A � B � 2�ðnþ3Þ mod N is

obtained. This is easily applied to the case that B is even. Similarly, by induc-

tion, 2i � Ti ¼ Ai � B þ T0i�1 � N 0 and Tnþ3 satisfies 2nþ3 � T ¼ A � B þ T0 � N 0,
therefore T ¼ A � B � 2�ðnþ3Þ mod N. Next, the convergence range of the output

T is examined. When B is odd, T is bounded by 0 � T < N 0=2 þ N 0=2nþ2 þ
3N 0ð1=4 þ 1=8 þ . . . þ 1=2nþ3Þ, i.e., T 2 ½0; 2N 0Þ, as desired. When B is even, T

is bounded by 0 � T < N 0=2 þ 3N 0ð1=4 þ 1=8 þ . . . þ 1=2nþ3Þ, i.e., T also falls in

the range of ½0; 2N 0Þ.© IEICE 2014
DOI: 10.1587/elex.11.20140782
Received August 13, 2014
Accepted August 18, 2014
Publicized September 10, 2014
Copyedited October 11, 2014

4

IEICE Electronics Express, Vol.11, No.19, 1–5



3 Analysis and conclusion

We obtained the area of the gates, multiplexer and flip flop along with their worst-

case intrinsic delays pertaining to unit drive-strength from the “SAMSUNG STD

150 0.13 µm 1.2V CMOS Standard Cell Library” databook. Using these data we

estimated the time and area complexities of the proposed structure and the

corresponding Manochehri et al.’s structure.

The notations TG and AG denote the delay and area of the two-input basic cell

G, respectively. Table I summarizes the time and area requirements for the standard

cells used in our analysis.

To demonstrate the efficiency of the proposed method, we measure the area/

time (AT) complexity of each work and then calculate the improvement defined as

ðATOLD � ATNEWÞ=ATOLD, where ATOLD and ATNEW denote the complexity of the

previous work and ours, respectively. From Table II, we can see that the developed

MMM obtains obvious time, area, and AT advantages over Manochehri et al.’s

MMM, assuming n is large enough to ignore the constant term. This work presents

an efficient Montgomery architecture for computing the modular multiplication,

which is the core operation in PKC. Compared to Manochehri et al.’s MMM, the

proposed multiplier has the following properties: 1) lower critical path delay and

area; 2) no requirement for post-processing to correct the output; 3) no requirement

for a non-standard operation such as bitwise subtraction; 4) better performance for

software implementation. Furthermore, the proposed MMM satisfies the demand

that we maintain a consistent range of input and output in MMM. Note that the

techniques proposed in this letter can be applied to systolic MMM architecture. The

proposed MMM can be used for PKC applications such as asymmetric water-

marking for geographic information system vector map management.

Table I. Cells used for evaluation of time and area

AND OR XOR INV MUX FF

Time (ns) 0.094 0.105 0.167 0.039 0.141 -

Area (transistor count) 6.68 6.68 12.00 2.68 12.00 24

Note: FF, INV, and MUX denote a flip-flop, an inverter, and a 2-to-1 multiplexer,
respectively.

Table II. Complexity comparison of MMM

Multipliers Clock Critical path Transistor AT Improvement

cycle delay count complexity Time Area AT

Manochehri
n þ 2

1:169ð3AFA 453:52ð3AFA þ 5AAND 530.16 14.29% 11.76% 24.36%
et al. [8] þ TXORÞ þ AXOR þ 3AMUX þ 10AFFÞ

Proposed n þ 3 1:002ð3AFAÞ 400:20ð3AFA þ 6AAND 401 - - -þ AXOR þ 2AMUX þ 8AFFÞ

© IEICE 2014
DOI: 10.1587/elex.11.20140782
Received August 13, 2014
Accepted August 18, 2014
Publicized September 10, 2014
Copyedited October 11, 2014

5

IEICE Electronics Express, Vol.11, No.19, 1–5


