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Abstract: This paper addresses robust estimation for the frequency
offset of orthogonal frequency division multiplexing in non-Gaussian
noise channels. We first propose a maximum-likelihood (ML) estima-
tor in non-Gaussian noise modeled as a complex isotropic Cauchy pro-
cess, and then present a simpler, yet still robust, estimator based on
the ML estimator. From numerical results, it is confirmed that the
proposed estimators offer a substantial performance improvement over
the conventional estimators in non-Gaussian noise channels.
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1 Introduction

Due to its high spectral efficiency and immunity to multipath fading, or-
thogonal frequency division multiplexing (OFDM) has been widely used as a
modulation technique for wireless communication systems. However, OFDM
is very sensitive to the frequency offset (FO) caused by a Doppler shift or
oscillator instabilities: Thus, the FO estimation is one of the most impor-
tant technical issues in OFDM systems [1]. Specifically, we are concerned
about the FO estimation based on training symbols, which provides a better
performance than that based on the blind approach [2].

Conventionally, the FO estimation techniques have been proposed under
the assumption that the ambient noise is a Gaussian process [3, 4, 5], which
is generally justified with the central limit theorem. However, it has been
observed that the ambient noise often exhibits non-Gaussian nature in wire-
less channels, mostly due to the impulsive nature originated from various
sources such as car ignitions, moving obstacles, lightning in the atmosphere,
and reflections from sea waves [6, 7]. The conventional estimators developed
under the Gaussian assumption on the ambient noise could suffer from severe
performance degradation under such non-Gaussian noise environments.

In this paper, our goal is to obtain robust FO estimators for OFDM
systems in non-Gaussian noise environments. We first derive a maximum-
likelihood (ML) estimator in non-Gaussian noise modeled as a complex iso-
tropic Cauchy noise, and then derive a simpler estimator with a lower com-
plexity. From numerical results, the proposed estimators are confirmed to
provide a substantial performance improvement over the conventional esti-
mators in non-Gaussian noise environments.
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2 Signal model

In the presence of FO, the kth received OFDM sample can be expressed as

r(k) =
L−1∑
l=0

h(l)x(k − l)ej2πkε/N + n(k) (1)

for k = 0, 1, · · · , N−1, where h(l) is the lth channel coefficient of a multipath
channel with length L, x(k) is the kth sample of the transmitted OFDM
symbol generated by the inverse fast Fourier transform (IFFT) of size N , ε is
the FO normalized to the subcarrier spacing 1/N , and n(k) is the kth sample
of additive noise.

In this paper, we adopt the complex isotropic symmetric α stable (CISαS)
model for the independent and identically distributed noise samples
{n(k)}N−1

k=0 ; this model has been widely employed due to its strong agree-
ment with experimental data [8, 9]. The probability density function (pdf)
of n(k) is then given by [8]

fn(ρ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
exp

[
−γ

(
u2 + v2

)α
2 − j�{ρ (u − jv)}

]
dudv, (2)

where �{·} denotes the real part, the dispersion γ > 0 is related to the
spread of the pdf, and the characteristic exponent α ∈ (0, 2] is related to
the heaviness of the tails of the pdf: A smaller value of α indicates a higher
degree of impulsiveness, whereas a value closer to 2 indicates a more Gaussian
behavior.

A closed-form expression of (2) is not known to exist except for the special
cases of α = 1 (complex isotropic Cauchy) and α = 2 (complex isotropic
Gaussian). In particular, we have

fn(ρ) =

⎧⎨
⎩

γ
2π

(|ρ|2 + γ2
)− 3

2 , when α = 1
1

4πγ exp
(
− |ρ|2

4γ

)
, when α = 2.

(3)

Due to such a lack of closed-form expressions, we concentrate on the case of
α = 1: We shall see in Section 4 that the estimators obtained for α = 1 are
not only more robust to the variation of α, but they also provide a better
performance for most values of α, than the conventional estimators.

3 Proposed estimators

3.1 Cauchy maximum-likelihood estimator
In estimating the FO, we consider a training symbol {x(k)}N−1

k=0 with two
identical halves as in [3], i.e., x(k) = x(k + N/2) for k = 0, 1, · · · , N

2 − 1.
Then, from (1), we have

r(k + N/2) − r(k)ejπε = n(k + N/2) − n(k)ejπε (4)

for k = 0, 1, · · · , N
2 −1. Observing that n(k+N/2)−n(k)ejπε obeys the com-

plex isotropic Cauchy distribution with dispersion 2γ (since the distribution
c© IEICE 2011

DOI: 10.1587/elex.8.1412
Received July 15, 2011
Accepted August 04, 2011
Published September 10, 2011

1414



IEICE Electronics Express, Vol.8, No.17, 1412–1418

of −n(k)ejπε is the same as that of n(k)), we obtain the pdf

fr(r|ε) =

N
2
−1∏

k=0

γ

π
(
|r(k + N/2) − r(k)ejπε|2 + 4γ2

) 3
2

(5)

of r = {r(k + N/2) − r(k)ejπε}N/2−1
k=0 conditioned on ε. The ML estimation

is then to choose ε̂ such that

ε̂ = arg max
ε̃

[log fr(r|ε̃)]
= arg min

ε̃
Λ(ε̃), (6)

where ε̃ denotes the candidate value of ε and the log-likelihood function
Λ(ε̃) =

∑N/2−1
k=0 log

{∣∣r(k + N/2) − r(k)ejπε̃
∣∣2 + 4γ2

}
is a periodic function

of ε̃ with period 2: The minima of Λ(ε̃) occur at a distance of 2 from each
other, causing an ambiguity in estimation. Assuming that ε is distributed
equally over positive and negative sides around zero, the valid estimation
range of the ML estimator can be set to −1 < ε ≤ 1, as in [3].

From the fact that
∣∣r(k + N/2) − r(k)ejπε̃

∣∣2 = 4
∣∣∣∑L−1

l=0 h(l)x(k − l)
∣∣∣2

sin2(π(ε̃ − ε)/2) in the absence of noise, and that the logarithm is an in-
creasing function, it is straightforward to see that Λ(ε̃) in the absence of
noise is convex in each interval ε + 2z − 1 < ε̃ ≤ ε + 2z + 1, where z is an
integer. Thus, the ML estimate ε̂ in (6) can be found by solving dΛ(ε̃)

dε̃

∣∣
ε̃=ε̂

= 0
for ε̂: After some algebraic manipulations, we get

ε̂ =
1
π
�

⎛
⎝

N
2
−1∑

k=0

r∗(k)r(k+ N
2 )

4γ2+|r(k)|2+|r(k+ N
2 )|2−2|r(k)r(k+ N

2 )| cos(πε̂+θk)

⎞
⎠ , (7)

where θk = � (r(k)r∗(k + N/2)) with � denoting the phase angle in (−π, π] of
a complex number. The estimator (7) will be called the Cauchy ML estimator
(CME): The ML estimate ε̂ can be acquired, for example, via an iterative
procedure.

3.2 Simplified Cauchy maximum-likelihood estimator
As the signal-to-noise ratio (SNR) gets smaller, the CME would require more
iterations to produce a reliable estimate. To avoid the iteration, by assuming
that ε̂ is uniformly distributed over (−1, 1] (note that such an assumption is
the ‘worst-case’ when the distribution of ε̂ is unknown) and then taking the
expectation of the argument of � in (7) with respect to ε̂, we can obtain a
simplified estimator

ε̂s =
1
π
�

⎛
⎝

N
2
−1∑

k=0

1
2

∫ 1

−1

r∗(k)r(k+N/2)
A + B cos(πε̂ + θk)

dε̂

⎞
⎠

=
1
π
�

⎛
⎜⎜⎝

N
2
−1∑

k=0

r∗(k)r(k+N/2)√{
4γ2+(|r(k)|+|r(k+N/2)|)2

}{
4γ2+(|r(k)|−|r(k+N/2)|)2

}
⎞
⎟⎟⎠,

(8)
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where A = 4γ2 + |r(k)|2 + |r(k + N/2)|2, B = −2|r(k)r(k + N/2)|, and the
second equality is obtained using

∫ π
−π

1
a+b cos xdx = 2π√

a2−b2
[10]. The estimator

(8) will be referred to as the simplified Cauchy ML estimator (SCME).

4 Numerical results

The mean square error (MSE) performances of the proposed estimators CME
and SCME are compared with those of the conventional estimators [3, 4, 5].
We assume the following parameters: The IFFT size N = 64, FO ε = 0.25,
iteration number of 20 with an initial value zero for the CME, and a multi-
path Rayleigh fading channel with length L = 8 and an exponential power
delay profile of E[|h(l)|2]=exp(−l/L)/

{∑L−1
l=0 exp(−l/L)

}
for l = 0, 1, · · · , 7,

where E[·] denotes the statistical expectation. Since a CISαS noise with
α < 2 does not assume a variance, the standard SNR becomes meaningless
for such a noise. We thus employ the geometric SNR (GSNR) [11] defined as
E[|x(k)|2]/(4C−1+2/αγ2/α), where C = exp{limm→∞(

∑m
i=1

1
i − lnm)} � 1.78

is the exponential of the Euler constant. The GSNR indicates the relative
strength between the information-bearing signal and the CISαS noise with
α < 2. Clearly, the GSNR becomes the standard SNR when α = 2. Since γ

can be easily and exactly estimated using only the sample mean and variance
of the received samples [12], it may be regarded as a known value: Thus, γ

is set to 1 without loss of generality.

Fig. 1. The MSE performances of the proposed and con-
ventional estimators as a function of the GSNR.
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Fig. 2. The MSE performances of the proposed and con-
ventional estimators as a function of α.

Table I. Correlation operations of the received OFDM
samples in the proposed and conventional estima-
tors.

Estimator Correlation operation

CME
N
2
−1∑

k=0

r∗(k)r(k+N/2)
4γ2+|r(k)|2+|r(k+N/2)|2−2|r(k)r(k+N/2)| cos(πε̂+θk)

SCME
N
2
−1∑

k=0

r∗(k)r(k+N/2)√
{4γ2+(|r(k)|+|r(k+N/2)|)2}{4γ2+(|r(k)|−|r(k+N/2)|)2}

[3]
N
2
−1∑

k=0

r∗(k)r(k + N/2)

[4]
N−1∑

k= mN
4

r∗(k − mN/4)r(k), for m = 0, 1, 2

[5]
N
16

−1∑
z=1

∣∣∣∣∣∣
N
16

−z−1∑
m=0

N
4
−1∑

k=0

zr(k + mN/4)r∗(k + (m + z)N/4)

∣∣∣∣∣∣

Figure 1 shows the MSE performances of the proposed and conventional
estimators as a function of the GSNR when α = 0.5, 1, 1.5, and 2. Similarly,
Figure 2 shows the MSE performances as a function of α when the GSNR
is 5 and 15 dB. The Cramér-Rao bounds (CRBs) 15N2

32π4C(N2−1)(GSNR)
and

3N
2π2(N2−1)(GSNR)

[4, 8] for FO estimation when α = 1 and 2, respectively, are
shown in Figures 1 (b) and (d) for reference.

From the figures, we can clearly observe that the proposed estimators not
only outperform the conventional estimators for most values of α, except for
those close to 2, but also provide a robustness to the variation of the value
of α. This can be explained from Table I showing the correlation operations
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of the received OFDM samples in the proposed and conventional estimators.
The correlation operations of the received OFDM samples in the proposed
estimators involve sample-by-sample normalization by the terms including
the magnitude of the received OFDM samples. As it is well-known in sig-
nal detection theory [13, 14], such normalization can effectively alleviate the
erroneous increase of the correlation due to noise samples of large magni-
tudes arising frequently in non-Gaussian noise environments, and allows the
proposed estimators to yield more reliable estimates than the conventional
estimators in impulsive (non-Gaussian) environments.

5 Conclusion

In this paper, we have proposed robust FO estimators for OFDM systems
in non-Gaussian noise environments. Modeling the non-Gaussian noise as a
complex isotropic Cauchy process, an ML estimator using an iterative pro-
cedure has been first derived. A simpler estimator has then been proposed
based on the ML estimator. From numerical results, we have confirmed that
the proposed estimators not only outperform the conventional estimators,
but also provide a robustness in non-Gaussian noise environments.
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